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Recently, biological applications start to be reimplemented into the applications which exploit many cores of GPUs for better
computation performance. Therefore, by providing virtualized GPUs to VMs in cloud computing environment, many biological
applications will willingly move into cloud environment to enhance their computation performance and utilize infinite cloud
computing resource while reducing expenses for computations. In this paper, we propose a BioCloud system architecture that
enables VMs to use GPUs in cloud environment. Because much of the previous research has focused on the sharing mechanism of
GPUs among VMs, they cannot achieve enough performance for biological applications of which computation throughput is more
crucial rather than sharing.The proposed system exploits the pass-through mode of PCI express (PCI-E) channel. By making each
VM be able to access underlying GPUs directly, applications can show almost the same performance as when those are in native
environment. In addition, our scheme multiplexes GPUs by using hot plug-in/out device features of PCI-E channel. By adding or
removing GPUs in each VM in on-demand manner, VMs in the same physical host can time-share their GPUs. We implemented
the proposed system using the Xen VMM and NVIDIA GPUs and showed that our prototype is highly effective for biological GPU
applications in cloud environment.

1. Introduction

Virtualization technology has been widely adopted into com-
puting systems to increase hardware resource utilization and
reduce total cost of ownership (TCO). Virtualization technol-
ogy enables multiple computing environments to be consoli-
dated in a single physical machine. This consolidation brings
efficient use of hardware resources and flexible resource
provisioning to each computing environment [1]. In cloud
computing, virtualization is key enabling technology because
flexible resource provisioning is essential for unpredictable
user demands.

Although virtualization adds an additional software layer
over bare metal hardware, the overhead incurred by the
additional layer has been reduced by various efforts. Hard-
ware vendors have extended their architectures to support

virtualization. In system software area, paravirtualization
techniques, such as the Xen [2], reduce the performance gap
between native environment and virtualized environment
by slightly modifying operating systems in virtual machines
(VMs). Due to the narrowed performance gap, the virtualiza-
tion technology expands its coverage from cloud computing
to high performance computing [3–5]. Recently, biological
applications, which require high performance computing
environment, are moving into cloud computing environment
due to the narrowed performance gap and the advantage of
flexible resource provisioning [6–8]. It is better to use elastic
resources in cloud than to build one’s own computing cluster
in terms of TCO.

Meanwhile, graphic processing units (GPUs) are recently
exploited in high performance computing because a GPU
provides one or two orders of magnitude faster computation
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than a CPU does. The computing capability of GPU has
been rapidly improved for a decade. To cover vastly increased
demands of 2D and 3D data processing, GPU embeds
hundreds of computing cores in a single chipset. In addition,
memory bandwidth in GPU is also widened to follow the
increased computing power. For example, NVIDIA Tesla
C2090, a state-of-the-art GPU device, is equipped with 512
computing cores, 6GB of dedicated memory and 177GB/s
internal memory bus [9]. It provides 1331 GFLOPS for single
precision floating point operation and 665 GFLOPS for
double precision floating point operation.

With the advance of GPU hardware, general purpose
GPU computation on graphic processing units (GPGPU)
has been emerging to exploit high performance computing
capability of GPU not only for 3D graphic manipulation but
also for general-purpose computation. The GPU program-
ming framework such as the CUDA [10] and the OpenCL
[11] provide application programming interfaces (APIs) of
underlying GPU hardware, GPU programming model, and
memorymodel.Due to the openAPIs,many general-purpose
applications can exploit fast GPUs for their computation-
intensive applications [12].

Data copies between host memory and internal memory
of GPU could be overhead of GPU computing. In GPU
programming models, it is essential to store data on GPU-
accessible memory for GPU to manipulate them. Accord-
ingly, the data copies become a critical performance bottle-
neck of GPU computing. The data copy overhead, however,
has been alleviated by making host memory GPU-accessible.
In the application processing unit (APU) of AMD, CPU and
GPUare integrated in a single chipset, and the two computing
units share the same memory controller so that GPU can
access the host memory. In addition, various studies have
been conducted to lessen the data copy overhead. Despite
of the data copy overhead, the performance improvement by
GPU computing is significant in many research areas [10, 13–
15].

With the trend of GPU computing in high performance
computing and biological applications, virtualization needs
to be incorporated in the GPU based high performance com-
puting platforms. By providing virtualized GPUs to VMs in
cloud computing environment, many biological applications
will willingly move into cloud environment to reduce their
expenses for computations. However, few studies have been
done to useGPU computing in virtualmachine environment,
and most of them have limitations in terms of performance
penalties by GPU virtualization overhead. Therefore, it is
also important to minimize the overhead caused by GPU
virtualization.

In this paper, we propose a BioCloud system architecture
that enables VMs to use GPUs in cloud environment. From
the high performance computing power of GPUs, biological
applications hosted in cloud can also show high performance
while minimizing TCO of their computing infrastructure.
The proposed system exploits the pass-through mode of PCI
express (PCI-E) channel. By making each VM to be able
to access underlying GPUs directly, applications can show
almost the same performance as when those are in native
environment. In addition, our scheme multiplexes GPUs

by using hot plug-in/out device features of PCI-E channel.
By adding or removing GPUs in each VM in on-demand
manner, VMs in the same physical host can time-share its
GPUs.

The rest of the paper is organized as follows. Section 2
introduces brief background and describes related work.
Section 3 presents the design and operation of our GPU vir-
tualization and sharing mechanisms. Section 4 demonstrates
evaluation results and usability, and Section 5 discusses the
superiority of our proposed system for biological applica-
tions. Finally, Section 6 concludes our work.

2. Background and Related Work

2.1. VMM and GPU Virtualization. Virtualization provides
an illusion, a VM, to its hosted operating system. By multi-
plexing underlying hardware resources, a physical host can
consolidate multiple VMs simultaneously. The core of virtu-
alization technology is virtual machine monitor (VMM) that
is in charge of multiplexing hardware resources such as CPU,
memory, and I/O devices to multiple VMs. The common
role of VMMs is to provide virtualized resources albeit their
implementations diverse from emulation of virtual devices to
hardware-assisted virtualization.

Hardware-level assists to virtualization take overhead out
of a VMM. Previously, a VMM either emulates the behavior
of virtualized devices or incorporates with operation systems
in VMs. The overhead of these approaches affects the system
performance as compared to native environment. To reduce
this overhead, hardware vendors extended their CPUs to
support virtualization. The Intel VT [16] and the AMD-V
[17] unburden the VMM overhead of CPU and memory
virtualization. In addition, the Intel VT-d [18] and the AMD-
Vi [19] support device virtualization so that operating systems
in VMs can directly access I/O devices without security
concerns. Despite of these technology advances, GPU has
limitations for virtualization by itself. Since aGPU is in charge
of manipulating graphic data, a large amount of data should
be transferred from a VM to a GPU device. Since the amount
of data is too large, emulation, one of methods to virtualize a
device, is inefficient for GPUs.

In GPU virtualization, there have been some related
previous research such as the gVirtuS [20], the GViM [21],
and the vCUDA [22]. These ultimately aim at providing the
flexible sharing of a GPU among VMs taking performance
degradation lying down. Therefore, they have the similar
architecture that host operating system orVMMmanages the
overall operations and privileges of GPU. In the case of the
gVirtuS based on KVM, one of VMMs working on top of
host operating system provides a mechanism to access GPU
based on the communication between virtual device drivers
on host operating system and VM for each. The GViM and
the vCUDA are based on the Xen, a VMMon bare-metal, and
similarly use virtual device drivers between VMs and VM0
which is in charge of I/O. Although these GPU virtualization
architectures, which are based on virtual device drivers, can
enhance the sharing of GPUs among VMs, there are two
critical limitations as below.
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(i) Reimplementation and low flexibility of GPU APIs:
for sharing of GPU among VMs, the management
of GPU is concentrated on host operating system
or VMM, and the communication between virtual
device drivers is highly dependent on the implemen-
tation of them. Actually, they have to reimplement all
GPU APIs, and this limits flexibility and portability.
For example, if a version of GPU APIs is updated
or modified, the virtual device drivers should be
reengineered according to the changes. Even more,
VMs in a physical host should use the sameGPUAPIs
and version as the implemented virtual device drivers.

(ii) High performance overhead: the architectures on
related work adopt the fine-grained time-sharing
technique among VMs to share GPU, but these
largely depredate the overall performance of GPU by
increasing the communication traffic between virtual
device drivers and systembus.Moreover, the response
times of GPU are not uniform due to the scheduling
of VMs. According to the papers, they show 10–40%
performance degradation.

In order to overcome these limitations, our scheme uses
the direct pass-through approach to use GPU in virtual-
ized environment [23]. By using the direct pass-through
approach, operating systems in VMs can exclusively and
directly access underlying GPU devices. Accordingly, the
performance penalty when VMM involves in arbitrating
GPUs can be eliminated.

2.2. GPU and Biological Application. The term GPU was
mentioned byNVIDIACorporation first, when it announced
a new graphic controller named GeForce in 1999. In the
early 1990s, graphic controllers in general PCs were in charge
of simply translating computation results of CPU to visual
characters on monitors. After the mid of 1990s, the role of
graphic controller started to change into manipulating rich
multimedia contents. Multimedia contents usually require
lightning effects and texture mapping in order to make the
contents more realistic. These computations burden CPU,
thus an additional coprocessor, like GPU, is needed to lessen
the computation load for multimedia processing in CPU.

Although the architecture of GPU is similar to that of
CPU, GPU has enhanced processing parallelism as shown
in Figure 1. In the figure, CPU has a few high performance
arithmetic and logic units (ALUs) and the large region of
chipset is assigned to internal caches. The reason for this
composition is to improve performance in task-level paral-
lelism.On the other hands, GPU consists ofmany small ALUs
optimized for graphic data processing in a single chipset.
Since the characteristic of computations on GPU is highly
data parallel, multiple data can be calculated by the same
arithmetic operations. Accordingly, GPU outperforms the
CPU in terms of parallel processing on the same computation
with multiple data [24].

Since computations supported by GPU are specialized to
graphical data manipulation, general-purpose computations
cannot be easily ported into GPU. To address this obstacle,
various general-purpose GPU frameworks have been built.
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ALUALU
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Figure 1: The architecture of a GPU equipped machine on PCI-E
channel.

The CUDA of NVIDIA and the OpenCL of Khronos Group
are most representative frameworks in the area of general-
purpose high performance computing. These frameworks
provide an extended C language so that non-graphic-friendly
programmers can intuitively translate their computation
logics into GPU-friendly ones.

From the consensus betweenGPUperformance improve-
ment and easy programming APIs, biological applications
prevalently start to use GPUs for their computations. Espe-
cially, computations requiring a large amount of data, such
as next generation sequencing and protein simulation, are
proper targets to exploit GPUs.Manavski andValle suggested
a GPU implementation of Smith-Waterman sequence align-
ment [6], and Vouzis and Sahinidis transformed the BLAST
tool to a GPU based application, named the GPU-BLAST [7].
The barraCUDA [25] and the G-aligner [26] are also kinds of
short sequence alignment tool with GPU acceleration.

3. GPU Virtualization

3.1. Overview. Our approach for virtualizing and sharing
of GPUs is based on the GPU direct access scheme in
our previous work [23]. The previous work exploits the
PCI-E direct pass-through mechanism of GPUs in order
to reduce the virtualization overhead and to increase the
GPU API flexibility. Since the direct pass-through approach
can minimize the interference incurred by VMM, VMs can
achieve bare-metal performance. Moreover, since each VM
can use their own GPU APIs, it can be freed from the
reengineering and modification of GPU APIs.

The direct pass-through approach in virtualized system
should be supported by input/output memory management
unit (IOMMU) hardware feature. Similar to a traditional
memory management unit (MMU) which translates CPU-
visible virtual addresses to physical addresses, IOMMU takes
care of mapping device-visible I/O addresses to physical
addresses and also provides memory protection frommisbe-
having devices.

Figure 2 shows the system architecture diagram of the
proposed scheme, the GPU virtualization using direct pass-
through.The systemwe suppose has a privileged control VM,
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Figure 2: The system architecture of direct pass-through GPU
virtualization.

generally called VM0, to interface with VMM and control
other user VMs. Note that VM0 denotes the privileged
control VM, and guest VMs denote otherVMs of users. In the
system, each GPU is attached to PCI-E channels and VMM
passes the control of PCI-E channel and GPU to VMs. Each
VM has its own GPU API and GPU device driver, and it can
access and control GPU without the intervention of VMM.

However, the direct pass-through mechanism has a limi-
tation that the sharing of GPU among VMs is not possible.
For example, once a GPU is allocated to a VM at booting
time of the VM, it cannot be deallocated until the VM halts.
To address this problem, we extend our previous work to
have the coarse-grained sharing mechanism based on the hot
plug functionality of PCI-E channel. The sharing mechanism
enables VM0 to allocate GPUs to VMs and deallocate GPUs
from VMs while the VMs are running. To enhance the
utilization of GPUs, we add two features: (1) allocating GPUs
when a VM actually requires GPUs to compute its data and
(2) deallocating GPUs immediately after the computation.

The hot plug-in/out mechanism that is adopted in this
research is a mechanism to install or remove PCI devices
on online. To utilize the hot plug mechanism in virtualized
systems, VMM needs the functionality of IOMMU. The
system we suppose has GPU installed on a PCI-E channel,
and a GPU can be allocated or deallocated by using the PCI-
E channel hot plug-in/out. Due to this mechanism, the users
of VMs can utilize virtualized GPUs in the same way with
native GPUs.

Figure 3 shows the overall coarse-grained GPU sharing
mechanism. First, (1) each guest VM requests GPU allocation
to the VM0 when it needs GPU computation. Then, (2) the
VM0 checks the GPU pool which has all GPUs installed on
the host machine to find an available GPU. If there is an
available GPU in the GPU pool, the VM0 plugs in the GPU
into the requested VM. (3) The guest VM processes its job,

and (4) the GPU is revoked from the guest VM after the end
of computation using the hot plug-out message.

In this mechanism, largely, we have two main considera-
tions. One is when to allocate and deallocate GPUs. Although
the users of guest VMs can directly request the allocation
and deallocation of GPUs, it might decrease usability. It
is inconvenient to allocate GPUs manually before invoking
a GPU application. We need to provide more convenient
interfaces. The other is how to prevent excessive occupation
ofGPUs byVMs. It is crucial to increase the overall utilization
of GPUs in a system. Therefore, we need a compulsory
revoking mechanism when a GPU of a guest VM is not
utilized for computation. Then, the reclaimed GPU can be
used for other guest VMs. For this mechanism, we designed
and implemented the GPU-Admin module in the VM0 and
the GPU-Manager module in the guest VMs, respectively,
as shown in Figure 4. The detailed operations of them are
described in the following subsections.

3.2. GPU-Admin. The GPU-Admin is a daemon process in
the VM0 and performs allocation and deallocation of GPUs
according to the request of the GPU-Managers. It also takes
in charge of compulsory revocation of unused GPUs. For
this responsibility, it periodically checks the status of GPUs
allocated for guest VMs and deallocates them if GPUs are not
actually used for computation.

In the initial stage of the GPU-Admin, it identifies the
number ofGPUs installed on a virtualized system and records
the PCI-E channel information and the slot ID of each GPU.
Using this information, the GPU-Admin registers all GPUs
into the GPU pool for later management. All of the registered
GPUs are initialized and stay in available state, and one of
them is allocated via the GPU-Admin when a guest VM
requests a GPU. At this moment, the GPU-Admin stores
the virtual machine identification (VMID) and IP address
of the guest VM to be referred for usage checking and
compulsory revoking operations. After the initialization of
GPU pool, the GPU-Admin creates two worker threads: the
ManagerListener which handles the requests of the GPU-
Manager and the PoolChecker to prevent unnecessary GPU
occupation of VMs.

3.2.1.ManagerListener. TheManagerListenerworker is a part
of GPU-Admin to accept and handle the requests from guest
VMs.Themessage types of GPU-Managers in guest VMs are
five, and the corresponding reactions are as follows.

(1) GPU allocation request by a user: it is the case that the
user of a guest VM explicitly requests the allocation
of GPU for computation. Responding to this request,
theManagerListener picks an available GPU from the
GPUpool and allocates it into the requested guestVM
via hot plug-in mechanism.

(2) GPU deallocation request by a user: on contrary to
(1), this message is to explicitly deallocate an allocated
GPU of guest VM by a user. The ManagerListener
deallocates the GPU from the guest VM and registers
it again into the GPU pool after reinitialization of the
GPU.



BioMed Research International 5

Virtual machine monitor (VMM)

Virtual 
machine 0

Direct pass-through
(PCI-E channel)

(1) GPU allocation request

(2) GPU allocation (hotplug in)

(3) Task execution

(4) GPU deallocation (hotplug out) 
GPU-Admin

GPU 0
GPU pool

GPU 0
GPU 3

GPU N

Virtual 
machine 1

GPU driver
CUDA library

GPU-Manager

· · ·
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Figure 4: The detailed modules and operations of the GPU-Admin and the GPU-Manger.

(3) GPU allocation request by the WrapCUDA library:
when a user of a VM invokes a GPU application
without an allocated GPU, the WrapCUDA library
detects the situation and automatically requests GPU
allocation to theGPU-Admin.This requestmessage is
delivered implicitly and transparently without recog-
nition of users. The handling of this message is the
same with the case (1).

(4) GPU deallocation request by theWrapCUDA library:
before finishing GPU application, if it calls several
specific CUDA library call, the WrapCUDA library
requests the deallocation of GPUs implicitly. This
mechanism is also performed without the inter-
vention of users. Responding to this message, the
ManagerListener deallocates the GPU similarly to the
case (2).

(5) Disconnection from WrapCUDA library: from
the case (3) to (4), the ManagerListener and the
WrapCUDA library keeps their connection. If the
connection is disconnected for any reasons such
as halting or finishing the GPU application, the
ManagerListener recognizes it and then deallocates
the GPU of the guest VM.

In our prototype, we use TCP/IP network communi-
cation method between the GPU-Admin and the GPU-
Manager to utilize the virtue of its well-defined and con-
crete interfaces. Since the communication messages are
not incurred frequently, its overhead is negligible. The hot
plug-in/out operations of GPUs by the ManagerListener are
performed via the management interface of the Xen.

In the case that there is no available GPU in the GPU
pool, the allocation request is inserted into the waiting queue
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of the ManagerListener, and the response is blocked until
a GPU become available by being deallocated from other
guest VMs. If more than one allocation request messages are
waiting in the waiting queue, theManagerListener prioritizes
them according to their waiting time.

3.2.2. PoolChecker. The major role of the PoolChecker is
to find the allocated GPUs to guest VMs and decide that
they are currently used for computation or not. We add
this mechanism to prevent the situation that a guest VM
excessively occupies GPUs while it does not actually utilize
GPUs for computation. Due to this mechanism, the system
can achieve higher overall utilization of GPUs by inhabiting
unnecessary occupation of GPUs.

The PoolChecker works periodically. When triggered, it
checks the GPU pool to search GPUs already allocated to
guest VMs and sends a message requesting usage report of
GPU to each GPU-Manager of guest VMs. On receipt of
this message, each GPU-Manager investigates the usage of its
own GPU and replies to the PoolChecker. The PoolChecker
tracks the utilization of each GPU and deallocates it forcibly,
if it has not been used for computation for a while. This
GPUutilization checkmechanismof the PoolChecker is a last
resort to prevent useless occupation of GPUs by guest VMs.
In most cases, where the users of guest VMs are not evil, the
unused GPUs are immediately reclaimed by the deallocation
message or the disconnection message of the WrapCUDA
library.

Our prototype sets the trigger period of the PoolChecker
as five seconds and the reclaim time limit as ten seconds.
These configured values are decided intuitively because
we assume that the users of VMs might not need GPUs
currently, if the GPUs are not used for computation more
than ten seconds. The time-out value of the PoolChecker is
easily reconfigurable by editing the configuration file of the
PoolChecker.

3.3. GPU-Manager. The GPU-Manager is a module working
in a guest VM to provide interfaces allocating or deallocating
GPUs and report the utilization of its GPU responding to
the request of the PoolChecker in the GPU-Admin. The
interfaces to request GPU allocation and deallocation can be
divided in two. One is a transparent and implicit interface,
which is requested by the WrapCUDA library when a user
starts and finishes a GPU application.The other is an explicit
interface, which is performed by a user action of guest VM.

In the initialization stage of the GPU-Manager, it iden-
tifies its hostname, local IP address, and GPU-Admin IP
address to communicate with the GPU-Admin for allocation
and deallocation of GPUs. The GPU-Manager consists of
three parts: the AdminListener thread which handles the
request of the PoolChecker, the WrapCUDA library hooking
the API calls of the native CUDA library to support the
implicit allocation or deallocation, and the RequestSender to
provide the explicit user interface.

3.3.1. AdminListener. AdminListener thread works similarly
to the ManagerListener of GPU-Admin. It opens a specified

port and waits the GPU usage report request. After allocation
of GPUs, the PoolChecker sends periodical requests to check
the utilization of GPUs, and the AdminListener responds
to this request. To get the utilization of its GPUs, the
AdminListener searches the usage of GPU driver module in
the proc filesystem, a virtual filesystem presenting process
and system information. At least, if more than one GPU
application utilizes GPU hardware, the driver module works
and the usage of the driver module increases. Therefore,
sending this information, the AdminListener reports the
usage of GPUs to the PoolChecker. Then, the GPU-Admin
can deallocate the GPUs of guest VMs based on this criteria,
if it decides that the GPUs are not used for computation.

3.3.2. WrapCUDA Library. TheWrapCUDA library of GPU-
Manager is to allocate and deallocate GPUs automatically.
To increase the usability of GPUs, the WrapCUDA library
enables GPU allocation and deallocation without the inter-
vention of users, when a GPU application starts and finishes.

The WrapCUDA library is implemented in a shared
library and is preloaded using LD PRELOAD environment
variable after the startup of guest VMs. It is in charge
of dynamic allocation of GPU when a user starts a GPU
application even if one’s VM does not have a GPU. A GPU
application should use a specified programming framework
such as the CUDA to interface GPU, and several APIs of
them are generally called to probe and initialize its GPU
in the initial stage of the application. For example, the
cudaGetDeviceCount() function to get the number of GPUs
installed on system and the cudaMalloc() to allocate heap
memory onGPUare representatives.TheWrapCUDA library
hooks these kinds of several native CUDA library calls. If a
GPU application calls the wrapped CUDA library functions
to access GPU, they are redirected to the WrapCUDA library
which implements the same function due to LD PRELOAD
environment value. Then, the WrapCUDA library checks
whether its guest VMhas aGPU and requests GPU allocation
if the guest VM has no GPU. After a GPU is allocated, the
function of WrapCUDA library executes the native function
of the CUDA library.

Similarly, a GPU application calls several CUDA APIs
to release the resource of GPU at finishing time, and the
WrapCUDA library catches these calls before transferring
to the native CUDA library for deallocation of GPU from
its VM. Although a GPU application might not call these
resource release APIs by implementation, the WrapCUDA
library can deallocate the GPU of VM immediately, since the
connection between the WrapCUDA library and the GPU-
Admin is disconnected after the halt of a GPU application.
Additionally, as mentioned in Section 3, we also implement
the PoolChecker mechanism, which checks the status of
GPU and deallocates it after several seconds to prevent the
occupation of GPUs unnecessarily.

In order to interpose the API calls of GPU applications,
the WrapCUDA library has to define API functions to catch
and embed the implementations of them. These might not
be a burden to implement the WrapCUDA library, since
the number of APIs to start GPU application is limited to
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Table 1: The functions that are wrapped by theWrapCUDA library.

GPU allocation call GPU deallocation call
cudaGetDeviceCount ( ) cudaThreadExit ( )
cudaGetDevice ( )
cudaMalloc ( )
cudaDeviceReset ( )
cudaChooseDevice ( )
cudaDeviceSynchronize ( )

Table 2: The specifications of evaluation system.

Device Specification
CPU Intel(R) Xeon(R) E5620 (2.40GHz)
Chipset Intel(R) 5520
Memory DDR3 1333MHz (24G)
PCI slot PCI Express Gen2, 4 EA
GPU NVIDIA Quadro FX 3800, 4 EA

several ones and the patterns to develop a GPU application
are regularized. Actually, our prototype implements the API
functions listed in Table 1, and the top three functions
can cover all the 84 GPU application examples and several
biological GPU applications used in the evaluation section.
Even more, for the implementation of a function call in
the WrapCUDA library, we used seventeen C language code
lines as shown in Algorithm 1. This engineering overhead is
negligible for an experienced programmer and can be applied
to other GPU programming frameworks besides the CUDA
programming framework.

3.3.3. RequestSender. To run GPU applications without the
WrapCUDA librarymechanism, the users of VMs can explic-
itly request the allocation and deallocation of GPUs. The
RequestSender module provides the explicit interfaces. In
this case, the GPU explicitly allocated via the RequestSender
is specially handled as an exception for the PoolChecker.
Therefore, it is not deallocated automatically until the user
requests deallocation of the GPU via the RequestSender
interface. Since this mechanism enables a user of VM to
monopolize GPUs in a system, it should be allowed to
trusted users when they need continuous and reliable GPU
computing environment.

4. Evaluation

4.1. Overview. We used the Xen VMM for implementing
and evaluating the prototype of the proposed BioCloud
architecture. For GPU computation, we used the NVIDIA
GPUs and the CUDA programming frameworks. The host
machine specification is summarized in Table 2. Briefly,
the machine is equipped with Intel Xeon E5620 CPU, four
NVIDIAQuadro FX 3800GPUs, and 24GBofmainmemory.
Each GPU is installed on PCI-E (2nd generation) channel in
the host machine.

The main goals of the prototype evaluation are (1) the
GPU virtualization overhead of our scheme, when GPU

applications run in virtualized environment as compared to
those in native environment, (2) the latencies of GPU hot
plug-in/out in VMs, and (3) the benefits by our scheme.

4.2. Virtualization Overhead. In this section, we compare
the proposed virtualization scheme with others which are
mentioned in the related work and measure the biological
application execution time when each application runs in
native environment and in virtualized environment using our
scheme.

Figure 5 shows the execution time comparison of
BlackScholes application among the GViM, the vCUDA, and
our scheme. Unfortunately, we cannot replay all the three
schemes (gVirtuS, GViM, vCUDA) because their hardware
and software configuration are too outdated. Instead, we bor-
rowed the evaluation results compared native environment
based on their papers. Note that the gVirtuS scheme is omit-
ted because it does not evaluate BlackScholes application.
Although their evaluation environments are all different from
each other, we can focus on the gap between native and VM
and identify that the execution time overhead of our scheme
is less than 0.5%, while those of others are 25∼73%. Because
the other two schemes are based on the virtual device driver
mechanism and focused on the sharing of a GPU among
VMs, their overheads are not negligible.

Figure 6 is the evaluation results of several biological
applications. In this evaluation, we ran the barraCUDA [25],
CUDASW++ [27], MUMmerGPU [28], and CUDA-MEME
[29]. The 𝑥-axis denotes the workloads and biological appli-
cations, and the 𝑦-axis is normalized execution time which
includes disk I/O, CPU computation, and GPU computation.
The overhead of our scheme is 3% on average, and the
maximum overhead case is the MUMmerGPU with the
SSUIS workload by 10%. From our analysis, the most part
of overhead is caused by the disk I/O of virtualized system
to read workload data files, not by the GPU virtualization.
Except the disk I/O time, the GPU computation time is the
same as that in the native environment. Comparing the result
of Figure 5 which does not include the disk I/O overhead, we
can confirm that the direct pass-through GPU virtualization
mechanism shows the least overhead and highly useful for
long running biological applications.

4.3. Sharing Effect

4.3.1. GPU Allocation and Deallocation Overhead. Our
scheme uses GPUhot plug-in/out to provide sharing of GPUs
among VMs. In this evaluation, we measure additional time
overhead to hot plug-in/out of GPUs to a VM. Table 3 shows
the time for allocating and deallocating a GPU in a VM. Each
value is the average of ten attempts. As shown in the table,
the allocation time and the deallocation time are 1.3 seconds,
identically. Considering general biological applications take
from tens of minutes to hundreds of minutes, this allocation
and deallocation time penalty is negligible compared to the
total execution time of general biological applications.

4.3.2. Effect of Real Workload. The main role of our scheme
is to make a GPU directly accessible and to coordinate
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(1) cudaError t cudaGetDeviceCount(int ∗count) {
(2) static cudaError t (∗ofuncp)(int ∗count);
(3) char ∗error;
(4) cudaError t rs;
(5)
(6) checkgpuon(); // Checks having GPU. Request a GPU, if not.
(7)
(8) if (!ofuncp) {
(9) ofuncp = dlsym(RTLD NEXT, “cudaGetDeviceCount”);
(10) if ((error = dlerror()) != NULL) {
(11) fputs(error, stderr);
(12) exit(1);
(13) }

(14) }
(15) rs = ofuncp(count);
(16) return rs;
(17) }

Algorithm 1: An example implementation of the WrapCUDA library function.
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Figure 6: The performance evaluation using bioapplications.

the ownership of a GPU among VMs for time sharing. In
order to reveal the effect of GPU sharing in our scheme, we
measured the application execution time whenmultiple VMs
share a finite number of GPUs. In this evaluation, we used
the barraCUDA application that performs next generation
sequencing. Each of the barraCUDA applications performs
five-million read mappings of E. coli genome data. One
execution of the application takes 18 seconds in average.
One workload in a VM runs the barraCUDA application
five times with sleep time between consecutive runs. The
sleep time models the behavior of a user that interprets the
result of a previous run and adjusts parameters for the next
run. We varied the sleep time to 9, 18, and 36 seconds, and
each are 50%, 100%, and 200% of the application execution
time, respectively. During this sleep time, an allocated GPU
to a VM is returned to the GPU-Admin and could be
reallocated to another VM for sharing. Accordingly, we can
expect performance improvement by reducing the idle time
of GPUs.

Figure 7 shows the evaluation results with four VMs and
varying the number of GPUs from one to four. The sleep
time of each evaluation is denoted in the parentheses of each
legend. For example, Execution(S9) denotes that the sleep
time is 9 seconds. Execution denotes the real execution of
four VMs whileTheoretical denotes the theoretical execution
time in four VMs when a GPU(s) is exclusively used by
the VM. Hence, the time is the same as the execution time
when four workloads run in a single VM sequentially with
the given number of GPUs. Albeit the theoretical execution
time is not realizable without our mechanism, the time is
used for comparison purpose. The execution time in our
scheme is normalized to the theoretical time with the same
configuration of sleep time and the number ofGPUs, for each.

In case of Execution(S9), the sleep time after each com-
pletion of application is 9 seconds. When four VMs share
one GPU, our scheme shows reduced total execution time
by 20% as compared to the theoretical time. When the
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Figure 8: The average waiting time of VMs.

sleep time increases, our scheme reduces the total execution
time because the increased sleep time naturally increases
the probability to share the GPU during the sleep time. In
case of Execution(S36) with one GPU, our scheme shows
reduced total execution time by 53%. As the number of GPUs
increases, the performance benefit of our scheme reduces.
When the number ofVMs is the same as the number ofGPUs,
our scheme shows no performance benefit. But, we believe
that the number ofVMs requiringGPUswill bemore than the
number of GPUs installed in a physical host, since multiple
applications andVMswill be consolidated in a single physical
machine in the cloud computing environment.

4.3.3.Waiting Time. Finally, wemeasure thewaiting time, the
time to wait for allocation of a GPU, in the same evaluation.
When there is no available GPU, a VM should be idle until a
GPU becomes available. Accordingly, this additional waiting
time can worse the overall execution time of each workload.
Figure 8 shows the average GPU waiting time with varying
the number of GPUs from one to four. When the number
of GPU is one, the average waiting time is 25.05 seconds.
Although this waiting time could increase the execution time
of a single workload, the overall performance is still improved
as shown in Figure 7. In addition, when the number of
GPU increases more than one, the average waiting time is
significantly reduced to 4.15 seconds. Except the hot plug-in
time, 1.3 seconds as shown in Table 3, a VM should wait 2.85
seconds on average when the number of GPU is two. This
result indicates that if the number of GPUs is more than one,

Table 3: The time to hot plug-in/out of PCI-E channel.

Operation Time (second)
GPU allocation (hot plug-in) 1.3 ± 0.1
GPU deallocation (hot plug-out) 1.3 ± 0.1

GPUs can be efficiently shared among VMs with negligible
performance degradation.

The modeled scenario in the two previous subsections
is synthetic and might be different case by case. Note that
the benefit gap and the waiting time in these evaluations
will diverse according to the running time and the sleep
time of GPU applications. But, at least, we can confirm that
our mechanism to virtualize and share GPUs works fine
and is reasonably effective for biological GPU applications in
BioCloud.

5. Discussion

In this section, we discuss how our proposed architecture is
suitable for biological applications in terms of memory and
time of workloads in bioinformatics.

One of major characteristics of workloads in bioinfor-
matics is massively data-intensive computing. For example,
in a protein sequence alignment workload, a large volume
of gnome references are indexed by large-size hashing index
(tens of GBs). The workload can perform better when the
reference indices are (mostly) in GPU memory and most of
them are filled in GPU’s internal cache memory [26]. When
multiple workloads share a single GPU device at fine-grained
level (e.g., API-levelmultiplexing [20–22]), theGPUmemory
should be shared between multiple workloads. Accordingly,
the memory size for each workload is inevitably reduced.
Otherwise, when a GPU context switch occurs, the data in a
GPU’s memory should be replaced with the data for the next
workload [30]. This data replacement leads to unnecessary
and slow data copies between host memory and GPU mem-
ory (and memory copies between host memory and guest
VM memory [22]). Since the bioinformatics workloads are
highly data intensive, these penalties by memory sharing can
result in performance degradation.

Our scheme, however, does not cause those penalties.
In our GPU virtualization architecture, a workload can fully
exploit the memory in a GPU device while the workload is
running. A GPU context switch only occurs after a currently
scheduled workload finishes. Accordingly, our scheme can
show better performance by eliminating those memory
penalties.

The other characteristic to note is that bioinformatics
workload usually takes a long time from several minutes to
hundreds of minutes depending on the workloads [25, 28].
Therefore, when theAPI-levelmultiplexing schemes are used,
fine-grained sharing of GPUs may result in thousands of
context switches on a GPU in a second.This frequent context
switch causes frequent flushes of warmed-up data in GPU
internal caches and even in GPU memory [30, 31]. Although
the batching GPU APIs [22] are aimed at reducing the
frequent context switches, it cannot eliminate whole context
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switches in a long-time period (tens of seconds) so that
flushing warmed-up data in GPU cache and GPU memory
is inevitable.

Our GPU-virtualization architecture can avoid the fre-
quent context switches in a GPU device thereby showing
better performance. Since a GPU is multiplexed at coarse-
grained level (at workload), each scheduled workload can
fully exploit the cache and memory in a GPU without
unnecessary flushing of data until the workload finishes.
When the context switch occurs, the previousworkload never
reuses the warmed-up data in those memory spaces because
the workload is finished. As evidence, our architecture shows
minimal performance degradation as compared to the other
schemes.

6. Conclusions

For higher utilization of systems, the machine virtualization
and cloud computing trend will prevail more and more.
Besides, the high performance computing based onGPU also
has proved its outstanding capabilities for general-purpose
computation in many research areas. Especially, the biologi-
cal applications are outstanding, since their computation can
derive a large amount of benefit from many cores of GPUs.

For biological GPU applications, we propose a cloud
system to exploit GPUs in VM while multiplexing them
among VMs and achieving almost the same performance as
that with native use of GPUs. Considering the characteristics
of bioinformatics workloads which have long execution time,
our GPU virtualization mechanism is focused on high GPU
computation throughput, rather than sharing GPUs among
VMs. Although our prototype is based on the Xen VMM
and NVIDIA GPUs, it can be easily ported into other
implementations. In the evaluation section, we showed the
effectiveness of our mechanism using a modeled scenario.
Although the performance benefit and the waiting time can
diverse in case by case, we believe that our scheme is highly
effective for biological computation using GPUs in cloud
environment.
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