Weak formulation of mechano-electro-chemical cartilage model
Discretization and non-linear equations system

For the temporal discretization of the governing equations, we consider the partition

1

U™ (¢ t..1] of the time interval of interest T, and focus on the typical time

n=1
subinterval [t,, ty4q] with At = t,,; — t, = 0 denoting the corresponding increment
of time. It is assumed that the primary unknowns and all derivable quantities are
known at time t,. The generalized trapezoidal method is applied (Crank and Nicolson
1947), with ae(0,1], such that t,,, = t, + a At. In this method the following scheme
is used for the temporal discretization of primary variables (here only ¢V is shown,

while e* and £~ and u have the same discretization):
ey =& + Aty (A1)
e =& (1—a) + &)@, (A.2)

. . . . ae%
where &/,,, &Vip and &7,, are approximations of &% (t,;1), (W)(tnm) and

ae” : : AW e .
(%)(tnﬂ), respectively. From a practical standpoint &), is introduced as a predictor

value of &', ;, which only depends on magnitudes at time t,,:
=+ —a)At-&y, (A.3)
&7, 1 can be computed by

5Wn+1_§r‘y+1 (A 4)
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Substitution of equations (A.3) and (A.4) in the weak form of the problem vyields a

semi-discrete set of equations that are discretized in time.



Spatial discretization of the problem

The semi-discrete system is discretized in space using the finite element method. The

Nel

domain Q is discretized into ng elements Q°, with Q =U_ 2

1 Q°. The primary unknown
fields are interpolated within a generic element QFf in terms of the nodal values

through shape functions, that is,

h
gW |.Qe = Nswswe ’

+h

et ge = N+£*°, (A.5)

S_hIQE = N£—£_e ,
u|ge = Nyu®é,

e —
where &€, g*° g€

and u® are column vectors of nodal values of the primary
unknowns at element e and N.w, N.+, N.- and N, are matrices of element shape

functions, that is,

Ng+ = [N, ..., N, (A.6)

N,=|[0 N! 0O 0 N 0 |,
0 0 Ny 0 0 NJen



where N! is the shape function associated with element node i and ng,, is the number

of element nodes. Following a Bubnov-Galerkin scheme, the same shape functions are

also applied to interpolate the test functions:
8" ge = Nwde"®,
8etMge = N,+8&°, (A7)
5e M qe = N.-8&7¢,
Su’|ge = N 6u®.

Likewise, the discretization of the related gradients of the test functions and the

primary unknowns take the following element wise format:

we yields

Ve |ge = V- Nwe¥® —— Vep|ge = V- Nwde"®, (A.8)

h e Yields e
Vet |Q€ =V- Ng+£+ — V65+h|Q€ =V- Ng+6£+ ,

—h _ ‘ B _eyields _ _ . B _e
Ve M|ge = V-Np-g7 ¢ —— VSe p|ge = V- N.-8g°.

The strains are interpolated in the following form:

€"|ge = Byu®, (A.9)

where B, is a matrix of derivatives of shape functions:

B, = HN,,,

(A.10)



p= 0
ad
0 5 0
0 0 %
20y 20x
10 10
20y 0 2%
10 10
10 3% 25

Substituting the equations (A.5), (A.7) and (A.10) into the semi-discrete system and
choosing appropriately arbitrary coefficients §e¥¢, §&*¢, §€=¢ and Su® of the test
functions, one can finally arrive at a set of non-linear algebraic equations which is
sufficient to determine the nodal values of the primary unknowns that can be written

in the form:

Fint — (Zn+1' Zn+(1)(;fn+1) — FeXt(Zn+1) ) (A].Z)

where Z,,,, and Z,,, are the global column vector of nodal values of the primary
unknown fields at time t,,; and the corresponding predictor value, respectively. This

vector can be obtained as follow:

L1 = IRZS} ey (A.13)
Inyr = Reid5y (A.14)

where R denotes the standard finite element assembly operator and d?,, and d¢ .,

can be defined by

_ e _4¢ _-e T
nt1 = [En41 Ens1 Ensn Ungal (A.15)

4 _ ~ e ~+e ~_t ~ T
n+1 = [En41 Ens Envr Ungq] (A.16)



The internal and external global force vector represented by F™t and F&* also come
from the assembly of element contributions:
Fint = Rlenfinte, (A.17)
o= Ry (A.18)
where
inte __ int,e int,e int,e int,e
fn+1 - [fs n+1’ fe+n+1'f£ n+1'fun+1] , (A.19)
exte __ ext,e ext,e ext,e ext,e
fn+1 [fs n+1’ fg +n+1’ f n+1r un+1] (A.20)

The element contributions to the internal force reads as:

int,e
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where D, is the elastic constitutive matrix:

1 —v v v ~ T
v 1—v v 0
v v 1—v
1-2v
Deias = ¢ > 0 0 |, (A.22)
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Wlthf=m.

In the case of the external force vector the element contributions have the following

expressions:
exte __ T _*
funi1 = fNua n+1 dV,

fonrn = — SN, v v, (A.23)

xh _«h
fne = f (0 e ) ) AV

t, T xh _x
fsxnil = ng+ (]+ +] n+1) dv.



