## Weak formulation of mechano-electro-chemical cartilage model

## Discretization and non-linear equations system

For the temporal discretization of the governing equations, we consider the partition $U_{\mathrm{n}=1}^{\mathrm{n}_{\text {step }}{ }^{-1}}\left[t_{\mathrm{n}}, t_{\mathrm{n}+1}\right]$ of the time interval of interest T , and focus on the typical time subinterval $\left[\mathrm{t}_{\mathrm{n}}, \mathrm{t}_{\mathrm{n}+1}\right.$ ] with $\Delta t=t_{\mathrm{n}+1}-t_{\mathrm{n}} \geq 0$ denoting the corresponding increment of time. It is assumed that the primary unknowns and all derivable quantities are known at time $t_{\mathrm{n}}$. The generalized trapezoidal method is applied (Crank and Nicolson 1947), with $\alpha \in(0,1]$, such that $t_{\mathrm{n}+\alpha}=t_{\mathrm{n}}+\alpha \Delta t$. In this method the following scheme is used for the temporal discretization of primary variables (here only $\varepsilon^{\mathrm{w}}$ is shown, while $\varepsilon^{+}$and $\varepsilon^{-}$and $\mathbf{u}$ have the same discretization):

$$
\begin{align*}
& \varepsilon_{n+1}^{w}=\varepsilon_{n}^{w}+\Delta t \dot{\varepsilon}_{n+\alpha}^{w}  \tag{A.1}\\
& \quad \dot{\varepsilon}_{n+\alpha}^{w}=\dot{\varepsilon}_{n}^{w}(1-\alpha)+\dot{\varepsilon}_{n+1}^{w} \alpha, \tag{A.2}
\end{align*}
$$

where $\varepsilon_{n+1}^{w}, \dot{\varepsilon}_{n+\alpha}^{w}$ and $\dot{\varepsilon}_{n+1}^{w}$ are approximations of $\varepsilon^{w}\left(t_{n+1}\right),\left(\frac{\partial \varepsilon^{w}}{\partial t}\right)\left(t_{n+\alpha}\right)$ and $\left(\frac{\partial \varepsilon^{w}}{\partial t}\right)\left(t_{n+1}\right)$, respectively. From a practical standpoint $\tilde{\varepsilon}_{n+1}^{w}$ is introduced as a predictor value of $\varepsilon_{n+1}^{\mathrm{W}}$, which only depends on magnitudes at time $t_{n}$ :

$$
\begin{equation*}
\tilde{\varepsilon}_{n+1}^{w}=\varepsilon_{n}^{w}+(1-\alpha) \Delta t \cdot \dot{\varepsilon}_{n}^{W}, \tag{A.3}
\end{equation*}
$$

$\dot{\varepsilon}_{n+1}^{w}$ can be computed by

$$
\begin{equation*}
\dot{\varepsilon}_{n+1}^{W}=\frac{\varepsilon^{W} W_{n+1}-\tilde{\varepsilon}_{n+1}^{w}}{\alpha \Delta t}, \tag{A.4}
\end{equation*}
$$

Substitution of equations (A.3) and (A.4) in the weak form of the problem yields a semi-discrete set of equations that are discretized in time.

## Spatial discretization of the problem

The semi-discrete system is discretized in space using the finite element method. The domain $\Omega$ is discretized into $n_{\text {el }}$ elements $\Omega^{e}$, with $\Omega=\mathrm{U}_{e=1}^{n_{\text {el }}} \Omega^{e}$. The primary unknown fields are interpolated within a generic element $\Omega^{\mathrm{e}}$ in terms of the nodal values through shape functions, that is,

$$
\begin{gather*}
\left.\varepsilon^{w h}\right|_{\Omega^{e}}=\mathbf{N}_{\varepsilon^{w}} \boldsymbol{\varepsilon}^{w e}, \\
\left.\varepsilon^{+^{h}}\right|_{\Omega^{e}}=\mathbf{N}_{\varepsilon^{+}} \boldsymbol{\varepsilon}^{+^{\mathrm{e}}}  \tag{A.5}\\
\left.\varepsilon^{-h}\right|_{\Omega^{e}}=\mathbf{N}_{\varepsilon^{-}} \boldsymbol{\varepsilon}^{-\mathrm{e}} \\
\left.\mathbf{u}^{h}\right|_{\Omega^{e}}=\mathbf{N}_{\mathbf{u}} \mathbf{u}^{e}
\end{gather*}
$$

where $\boldsymbol{\varepsilon}^{w e}, \boldsymbol{\varepsilon}^{+^{\mathrm{e}}}, \boldsymbol{\varepsilon}^{-\mathrm{e}}$ and $\mathbf{u}^{\mathrm{e}}$ are column vectors of nodal values of the primary unknowns at element $e$ and $\mathbf{N}_{\varepsilon^{\mathrm{w}}}, \mathbf{N}_{\varepsilon^{+}}, \mathbf{N}_{\varepsilon^{-}}$and $\mathbf{N}_{\mathbf{u}}$ are matrices of element shape functions, that is,

$$
\begin{gather*}
\mathbf{N}_{\varepsilon^{w}}=\left[N_{\varepsilon^{w}}^{1}, \ldots, N_{\varepsilon^{w}}^{n_{e n}}\right], \\
\mathbf{N}_{\varepsilon^{+}}=\left[N_{\varepsilon^{+}}^{1}, \ldots, N_{\varepsilon^{+}}^{n_{e n}}\right],  \tag{A.6}\\
\mathbf{N}_{\varepsilon^{-}}=\left[N_{\varepsilon^{-}}^{1}, \ldots, N_{\varepsilon^{-}}^{n_{e n}}\right], \\
\mathbf{N}_{\mathbf{u}}=\left[\begin{array}{ccc}
N_{u}^{1} & 0 & 0 \\
0 & N_{u}^{1} & 0 \\
0 & 0 & N_{u}^{1}
\end{array}\right] \ldots\left[\begin{array}{ccc}
N_{u}^{n_{e n}} & 0 & 0 \\
0 & N_{u}^{n_{e n}} & 0 \\
0 & 0 & N_{u}^{n_{e n}}
\end{array}\right],
\end{gather*}
$$

where $\mathbf{N}^{i}$ is the shape function associated with element node $i$ and $n_{\text {en }}$ is the number of element nodes. Following a Bubnov-Galerkin scheme, the same shape functions are also applied to interpolate the test functions:

$$
\begin{gather*}
\left.\delta \varepsilon^{w h}\right|_{\Omega^{e}}=\mathbf{N}_{\varepsilon^{w}} \boldsymbol{\delta} \boldsymbol{\varepsilon}^{w^{e}}, \\
\left.\delta \varepsilon^{+\mathrm{h}}\right|_{\Omega^{e}}=\mathbf{N}_{\varepsilon^{+}} \boldsymbol{\delta} \boldsymbol{\varepsilon}^{+^{e}}  \tag{A.7}\\
\left.\delta \varepsilon^{-h}\right|_{\Omega^{e}}=\mathbf{N}_{\varepsilon^{-}} \boldsymbol{\delta} \boldsymbol{\varepsilon}^{-e} \\
\left.\delta \mathbf{u}^{h}\right|_{\Omega^{e}}=\mathbf{N}_{\mathbf{u}} \delta \mathbf{u}^{e}
\end{gather*}
$$

Likewise, the discretization of the related gradients of the test functions and the primary unknowns take the following element wise format:

$$
\begin{gather*}
\left.\nabla \varepsilon^{w h}\right|_{\Omega^{e}}=\left.\nabla \cdot \mathbf{N}_{\varepsilon^{w}} \boldsymbol{\varepsilon}^{w e} \xrightarrow{y i e l d s} \nabla \delta \varepsilon_{h}\right|_{\Omega^{e}}=\nabla \cdot \mathbf{N}_{\varepsilon^{w}} \delta \boldsymbol{\varepsilon}^{w \mathrm{e}}  \tag{A.8}\\
\left.\nabla \varepsilon^{+h}\right|_{\Omega^{e}}=\left.\nabla \cdot \mathbf{N}_{\varepsilon^{+}} \boldsymbol{\varepsilon}^{+\mathrm{e}} \xrightarrow{\text { yields }} \nabla \delta \varepsilon^{+}{ }_{h}\right|_{\Omega^{e}}=\nabla \cdot \mathbf{N}_{\varepsilon^{+}} \delta \boldsymbol{\varepsilon}^{+^{\mathrm{e}}} \\
\left.\nabla \varepsilon^{-h}\right|_{\Omega^{e}}=\left.\nabla \cdot \mathbf{N}_{\varepsilon^{-}} \boldsymbol{\varepsilon}^{-\mathrm{e}} \xrightarrow{\text { yields }} \nabla \delta \varepsilon^{-}{ }_{h}\right|_{\Omega^{e}}=\nabla \cdot \mathbf{N}_{\varepsilon^{-}} \delta \boldsymbol{\varepsilon}^{-\mathrm{e}} .
\end{gather*}
$$

The strains are interpolated in the following form:

$$
\begin{equation*}
\left.\epsilon^{h}\right|_{\Omega^{e}}=\mathbf{B}_{\mathbf{u}} \mathbf{u}^{e}, \tag{A.9}
\end{equation*}
$$

where $\mathbf{B}_{\mathbf{u}}$ is a matrix of derivatives of shape functions:

$$
\mathbf{B}_{\mathbf{u}}=\mathbf{H N}_{\mathbf{u}}
$$

(A.10)

$$
\mathbf{H}=\left[\begin{array}{ccc}
\frac{\partial}{\partial \mathrm{x}} & 0 & 0  \tag{A.11}\\
0 & \frac{\partial}{\partial y} & 0 \\
0 & 0 & \frac{\partial}{\partial z} \\
\frac{1}{2} \frac{\partial}{\partial y} & \frac{1}{2} \frac{\partial}{\partial \mathrm{x}} & 0 \\
\frac{1}{2} \frac{\partial}{\partial y} & 0 & \frac{1}{2} \frac{\partial}{\partial y} \\
0 & \frac{1}{2} \frac{\partial}{\partial \mathrm{z}} & \frac{1}{2} \frac{\partial}{\partial y}
\end{array}\right] .
$$

Substituting the equations (A.5), (A.7) and (A.10) into the semi-discrete system and choosing appropriately arbitrary coefficients $\delta \boldsymbol{\varepsilon}^{w e}, \delta \boldsymbol{\varepsilon}^{+e}, \delta \boldsymbol{\varepsilon}^{-e}$ and $\delta \mathbf{u}^{e}$ of the test functions, one can finally arrive at a set of non-linear algebraic equations which is sufficient to determine the nodal values of the primary unknowns that can be written in the form:

$$
\begin{equation*}
\mathbf{F}^{\text {int }}=\left(\mathbb{Z}_{n+1}, \frac{\mathbb{Z}_{n+1}-\widetilde{\mathbb{Z}}_{n+1}}{\alpha \Delta t}\right)=\mathbf{F}^{\mathrm{ext}}\left(\mathbb{Z}_{n+1}\right) \tag{A.12}
\end{equation*}
$$

where $\mathbb{Z}_{n+1}$ and $\widetilde{\mathbb{Z}}_{n+1}$ are the global column vector of nodal values of the primary unknown fields at time $t_{\mathrm{n}+1}$ and the corresponding predictor value, respectively. This vector can be obtained as follow:

$$
\begin{align*}
& \mathbb{Z}_{n+1}=\mathcal{R}_{e=1}^{n_{\mathrm{en}}} \mathbf{d}_{n+1}^{e}  \tag{A.13}\\
& \widetilde{\mathbb{Z}}_{n+1}=\mathcal{R}_{e=1}^{n_{\mathrm{en}}} \tilde{\mathbf{d}}_{n+1}^{e} \tag{A.14}
\end{align*}
$$

where $\mathcal{R}$ denotes the standard finite element assembly operator and $\mathbf{d}_{n+1}^{e}$ and $\tilde{\mathbf{d}}_{n+1}^{e}$ can be defined by

$$
\begin{align*}
& \mathbf{d}_{n+1}^{e}=\left[\varepsilon_{n+1}^{w^{e}}, \varepsilon_{n+1}^{+e}, \varepsilon_{n+1}^{-e}, \mathbf{u}_{n+1}^{e}\right]^{\mathrm{T}},  \tag{A.15}\\
& \tilde{\mathbf{d}}_{n+1}^{e}=\left[\tilde{\boldsymbol{\varepsilon}}_{n+1}^{w^{e}}, \tilde{\varepsilon}_{n+1}^{+^{e}}, \tilde{\varepsilon}_{n+1}^{-e}, \widetilde{\mathbf{u}}_{n+1}^{e}\right]^{\mathrm{T}} . \tag{A.16}
\end{align*}
$$

The internal and external global force vector represented by $\mathrm{F}^{\text {int }}$ and $\mathrm{F}^{\text {ext }}$ also come from the assembly of element contributions:

$$
\begin{align*}
& F_{n+1}^{i n t}=\mathcal{R}_{e=1}^{n_{e n}} \mathbf{f}_{n+1}^{i n t, e},  \tag{A.17}\\
& F_{n+1}^{e x t}=\mathcal{R}_{e=1}^{n_{e n}} \mathbf{f}_{n+1}^{e x t, e}, \tag{A.18}
\end{align*}
$$

where

$$
\begin{align*}
& \mathbf{f}_{n+1}^{\text {int,e }}=\left[\mathbf{f}_{\varepsilon^{w}, n+1}^{i n t, e} ; \mathbf{f}_{\varepsilon^{+}, n+1}^{i n t, e} ; \mathbf{f}_{\varepsilon^{-}, n+1}^{i n t, e} ; \mathbf{f}_{\mathbf{u}, n+1}^{\text {int,e}}\right]^{T},  \tag{A.19}\\
& \mathbf{f}_{n+1}^{e x t, e}=\left[\mathbf{f}_{\varepsilon^{w}, n+1}^{e x t, e} ; \mathbf{f}_{\varepsilon^{+}, n+1}^{e x t, e} ; \mathbf{f}_{\varepsilon^{-}, n+1}^{e x t, e} ; \mathbf{f}_{u, n+1}^{e x t, e}\right]^{T} . \tag{A.20}
\end{align*}
$$

The element contributions to the internal force reads as:
$\mathbf{f}_{\varepsilon^{w}, n+1}^{i n t, e}=$
$\int \nabla \cdot \mathbf{N}_{\varepsilon^{w}}^{T}\left[\frac{\mathbf{u}_{n+1}^{h}-\widetilde{\mathbf{u}}_{n+1}^{h}}{\alpha \Delta t}+\frac{R T}{\alpha} \Phi^{w} \nabla \varepsilon^{w h}+\frac{R T}{\alpha} \Phi^{w} \frac{c^{+}}{\varepsilon^{+^{h}}} \nabla \varepsilon^{+^{h}}+\frac{R T}{\alpha} \Phi^{w} \frac{c^{-}}{\varepsilon^{-h}} \nabla \varepsilon^{-h}\right]_{n+1} d V$,
$\mathbf{f}_{\varepsilon^{+}, n+1}^{i n t, e}=$
$\int_{\Omega} \nabla \cdot \mathbf{N}_{\varepsilon^{+}}^{T}\left[-\frac{R T}{\alpha} \Phi^{w} C^{F} \nabla \cdot \mathbf{N}_{\varepsilon^{w}} \varepsilon^{w}-\left(\frac{\Phi^{w} c^{+} D^{+}}{\varepsilon^{{ }^{h}}}+\frac{R T}{\alpha} \Phi^{w} \frac{\left(c^{+}\right)^{2}}{\varepsilon^{\dagger^{h}}}-\frac{R T}{\alpha} \Phi^{w} \frac{c^{+} c^{-}}{\varepsilon^{+^{h}}}\right) \nabla \varepsilon^{+^{h}}+\right.$ $\left.\left(\frac{\Phi^{w} c^{-} D^{-}}{\varepsilon^{-h}}+\frac{R T}{\alpha} \Phi^{w} \frac{\left(c^{-}\right)^{2}}{\varepsilon^{-h}}-\frac{R T}{\alpha} \Phi^{w} \frac{c^{+} c^{-}}{\varepsilon^{-h}}\right) \nabla \varepsilon^{+^{h}}\right]_{n+1} d V$,
(A.21)
$\mathbf{f}_{\varepsilon^{-}, n+1}^{i n t, e}=$
$\int_{\Omega} \nabla \cdot \mathbf{N}_{\varepsilon^{-}}^{T}\left[-\frac{R T}{\alpha} \Phi^{w} C^{F} \nabla \cdot \mathbf{N}_{\varepsilon^{w}} \varepsilon^{w}+\left(\frac{\phi^{w} c^{+} D^{+}}{\varepsilon^{+^{h}}}+\frac{R T}{\alpha} \Phi^{w} \frac{\left(c^{+}\right)^{2}}{\varepsilon^{\dagger^{h}}}+\frac{R T}{\alpha} \Phi^{w} \frac{c^{+} c^{-}}{\varepsilon^{+^{h}}}\right) \nabla \varepsilon^{+^{h}}+\right.$

$$
\begin{aligned}
& \left.\left(\frac{\Phi^{w} c^{-} D^{-}}{\varepsilon^{-h}}+\frac{R T}{\alpha} \Phi^{w} \frac{\left(c^{-}\right)^{2}}{\varepsilon^{-h}}+\frac{R T}{\alpha} \Phi^{w} \frac{c^{+} c^{-}}{\varepsilon^{-h}}\right) \nabla \varepsilon^{-h}\right]_{n+1} d V+ \\
& \int \nabla \cdot \mathbf{N}_{\varepsilon^{-}}^{T}\left(\Phi^{w} c^{k^{h}} \frac{\mathbf{u}_{n+1}^{h}-\widetilde{\mathbf{u}}_{n+1}^{h}}{\alpha \Delta t}\right) d V+\int \mathbf{N}_{\varepsilon^{-}}^{T}\left(\Phi^{w} \frac{c_{n+1}^{k_{n}^{h}-\tilde{c}^{k^{h}}}}{\alpha \Delta t}\right) d V \\
& \quad \mathbf{f}_{\mathbf{u}, n+1}^{i n t, e}=\int \mathbf{B}_{\mathbf{u}}^{T}\left[\mathbf{D}_{\text {elas }} \mathbf{H} \mathbf{u}^{h}-R T \varepsilon^{w h} \mathbf{I}+R T \Phi c^{k^{h}} \mathbf{I}-B_{w} \mathbf{H} \mathbf{u}^{h}\right]_{n+1} d V,
\end{aligned}
$$

where $\mathbf{D}_{\text {elas }}$ is the elastic constitutive matrix:

$$
D_{\text {elas }}=\xi\left[\begin{array}{cccccc}
1-v & v & v & & \tilde{0} &  \tag{A.22}\\
v & 1-v & v & & 0 & \\
v & v & 1-v & & & \\
& & & \frac{1-2 v}{2} & 0 & 0 \\
& \tilde{0} & & 0 & \frac{1-2 v}{2} & 0 \\
& & & 0 & 0 & \frac{1-2 v}{2}
\end{array}\right] \text {, }
$$

with $\xi=\frac{E}{(1+v)(1-2 v)}$.

In the case of the external force vector the element contributions have the following expressions:

$$
\begin{gather*}
\mathbf{f}_{\mathbf{u}, n+1}^{e x t, e}=\int \mathbf{N}_{\mathbf{u}}^{T} \boldsymbol{\sigma}_{n+1}^{* h} d V \\
\mathbf{f}_{\varepsilon^{w}, n+1}^{e x t, e}=-\int \mathbf{N}_{\varepsilon^{w^{h}}}^{T} \mathbf{J}_{n+1}^{w^{* h}} d V  \tag{A.23}\\
\mathbf{f}_{\varepsilon^{+}, n+1}^{e x t, e}=\int \mathbf{N}_{\varepsilon^{+}}^{T}\left(\mathbf{J}^{+^{* h}}-\mathbf{J}_{n+1}^{-* h}\right) d V \\
\mathbf{f}_{\varepsilon^{-}, n+1}^{e x t, e}=-\int \mathbf{N}_{\varepsilon^{+}}^{T}\left(\mathbf{J}^{+^{* h}}{ }_{n+1}+\mathbf{J}_{n+1}^{-* h}\right) d V .
\end{gather*}
$$

