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Checkpoint kinase 2 (Chk2) has a great effect on DNA-damage and plays an important role in response to DNA double-strand
breaks and related lesions. In this study, we will concentrate on Chk2 and the purpose is to find the potential inhibitors by the
pharmacophore hypotheses (PhModels), combinatorial fusion, and virtual screening techniques. Applying combinatorial fusion
into PhModels and virtual screening techniques is a novel design strategy for drug design.We used combinatorial fusion to analyze
the prediction results and then obtained the best correlation coefficient of the testing set (𝑟test) with the value 0.816 by combining
the BesttrainBesttest and FasttrainFasttest prediction results. The potential inhibitors were selected from NCI database by screening
according to BesttrainBesttest + FasttrainFasttest prediction results and molecular docking with CDOCKER docking program. Finally,
the selected compounds have high interaction energy between a ligand and a receptor. Through these approaches, 23 potential
inhibitors for Chk2 are retrieved for further study.

1. Introduction

DNA-damage is induced by ionizing radiation, genotoxic
chemicals, or collapsed replication forks, and when DNA
was damaged or the responses of cells were failure, the
mutation associated with the breast or ovarian cancer of
genes may occur. To prevent and repair the DNA-damage,
mammalian cells will control and stabilize the genome by cell
cycle checkpoint. The checkpoint pathway consists of several
kinases, such as ataxia telangiectasia mutated protein (ATM
[1, 2]), ataxia telangiectasia and Rad3-related protein (ATR
[1, 2]), checkpoint kinase 1 (Chk1 [3, 4]), and checkpoint
kinase 2 (Chk2 [5–8]). ATM and ATR are upstream kinases
passing messages to downstream kinases and phosphorylat-
ing several proteins that initiate the activation of the DNA-
damage checkpoint. Moreover, ATM is a primarily pathway
to activate p53 (protein 53 [9]) by Chk2, and ATR may
influence the phosphorylation of Chk1. Both Chk1 and Chk2
are key components in DNA-damage; however, their cellular

activities are different. Chk1 is involved in S and G2 phases
of the cell cycle with ATR pathway. By contrast, Chk2 is
activated in all phases through ATM-dependent pathway and
plays an important role in response to DNA double-strand
breaks and related lesions. Furthermore, Chk1 is an unstable
protein and lacks the forkhead-associated domain (FHA)
which was involved in several processes that protect against
cancer and can be found in Chk2. Therefore, we concentrate
on Chk2 in this study.

Chk2 is a protein containing 543 amino acid residues
and the structure of Chk2 consists of some functional
elements, including the N-terminal SQ/TQ cluster domain
(SCD), FHA, and the N-terminal serine/threonine kinase
domain (KD) [5–8]. The SCD is known to be the preferred
site with the residue Thr68 for phosphorylation to respond
to DNA-damage by ATM/ATP kinases. The FHA domain
is a phosphopeptide recognition domain found in many
regulatory proteins and thought to bind to the phosphoThr68
segment of SCD [5–8, 10–14]. Hence it is a good candidate
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Figure 1: Two-dimensional chemical structures of known Chk2 inhibitors. The experimental IC
50
of PV1019 and NSC 109555 were 138 nM

and 240 nM, respectively.

for interactions of Chk2 with its upstream regulators or
downstream targets in the cell-cycle-checkpoint signaling.
The KD occupies almost the entire carboxy-terminal half
of Chk2 and has been identified based on their homology
with serine/threonine kinases. Some studies reported that
when DNA was damaged, Chk2 is activated by ATM/ATR
through the phosphorylation of residue Thr68. Moreover,
Chk2 induces transautophosphorylation of residues Thr383
and Thr387 and then cis-phosphorylation of residue Ser516
[5–8, 10–14]. After that, Chk2 will phosphorylate several
downstream substrates, such as BRCA1 (breast cancer 1, early
onset [15, 16]), Cdc25A (cell division cycle 25 homolog A),
Cdc25C, and p53 [7, 8, 10]. Several researches indicated
that Chk2 phosphorylates Cdc25A which is considered an
oncogene on the residue Ser123 in S phase of cell cycle, and
it also phosphorylates Cdc25C on the residue Ser216 in G2
phase helping prevent mitotic entry in cells with damaged
DNA [5]. Furthermore, BRCA1 and p53 are involved in DNA
repair process in the breast or ovarian cancer. BRCA1 is a
human caretaker gene and helps repair damaged DNA or
destroys cells which cannot be repaired. The p53 is a tumor
suppressor protein involved in preventing cancer in human
and plays an important role in the G1 checkpoint in response
to DNA damaging agents. We consider that the sites of the
phosphorylations are important in the drug design for cell
survival when DNA is damaged.

Recently, several studies identified the inhibitors of Chk2
[6–8, 10–14], and they also showed the crystal structures
of Chk2 complex, such as PDB: 1GXC, 2W7X, and, and so
forth. They are selective, reversible, and ATP-competitive
Chk2 inhibitors demonstrating that they effectively restrain
the radiation-induced phosphorylation of Chk2. In addition,
several selective Chk2 inhibitors have been also identified
(two examples were shown in Figure 1) and the researches
indicated that they are potential and selective inhibitors of
Chk2 with chemotherapeutic and radiosensitization poten-
tial. On structure-based drug design, several developments
of Chk2 were published [17, 18]. Quantitative structure-
activity relationship model (QSAR model) is a regression or
classification model and is an important technique in the
rational drug design. It is used to correlate the structure
properties of compounds with their biological activities.
The method to predict the quality by QSAR was improved
by considering the three-dimensional structure QSAR (3D-
QSAR) [19–24] of targeted inhibitor. Therefore, the com-
pound structure can be directly optimized in the 3D space.

The comparative molecular field analyses (CoMFA) [18, 25–
30] and the comparativemolecular similarity indices analyses
(CoMSIA) [18, 27–32] for Chk2 inhibitors were performed by
ligand-based and receptor-guided alignment. They used the
cocrystal structure fromprotein data bank (PDB code: 2CN8)
[7], and then they identified new plausible binding modes
used as template for 3D-QSAR [18].There is another research
of Chk2 studied in QSAR/QSPR [17] providing structures
that will improve reducing the side effects of Chk2 inhibitors.

Pharmacophore [20–24, 33–35] is a set of structural
features responsible for the biological activity of a molecule.
It allowed compounds with diverse structures to find the
common chemical features by ligand pharmacophore map-
ping, and that is different from CoMFA and CoMSIA with
the common structure constraint. Thus, pharmacophore can
explain how diverse ligands bind to a receptor site by these
features and visualize the feature of potential chemical inter-
actions between ligands and receptors. Moreover, pharma-
cophore can easily and quickly identify candidate inhibitors
for a target protein based on 3D query. Therefore, in this
work, we first used 3D-QSAR study to build pharmacophore
hypotheses (denoted as PhModels) for Chk2 inhibitors by
HypoGen Best, Fast, and Caesar algorithms, respectively.
Then we used the combinatorial fusion to select and combine
prediction results for improving the predictive accuracy
in biological activities of inhibitors. Virtual screening is a
computational technique used in drug discovery research.
There are two categories of screening techniques: ligand-
based and structure-based. In this work, for ligand-based
virtual screening, we used the selected PhModels as 3D
structure query by pharmacophore hypothesis screening that
each compound in National Cancer Institute (NCI) database
will be mapped onto the pharmacophoric features of selected
PhModels. When the chemical features of a compound fit
the generated PhModels, it will be selected. All of feasible
compounds in NCI database were selected in this work.
Finally, the potential inhibitors were retrieved from selected
compounds by using molecular docking program to predict
the conformation and interaction energy between Chk2 and
ligand. Applying combinatorial fusion into PhModels and
virtual screening techniques is a novel design strategy for
drug design and can help medicinal chemists to identify or
design new Chk2 inhibitors. Besides, the potential inhibitors
of Chk2 retrieved in this work can be estimated by biologists
for further study.
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2. Materials and Methods

2.1. Biological Data Collection. In order to construct the
PhModels, at first, we collected the Chk2 inhibitors with
two-dimensional structures and the biological activity values
from the ChEMBL database [36]. Then, according to the
structure variations and chemical differences in the kinase
inhibitor activity, 158 known Chk2 inhibitors were selected
and retrieved. The biological activity of 158 known Chk2
inhibitors was represented as IC

50
(nanomolar, nM). There

are 260,071 compounds from the NCI database (release
version 3, http://cactus.nci.nih.gov/download/nci/) which
were used in the database screening and molecular docking
approach in this work.

2.2. Training and Testing Sets Selection. Before generating
PhModels, we should divide the 158 Chk2 inhibitors into the
training set and testing set, respectively. The rules used to
select training set inhibitors are according to the following
requirements as suggested by the Accelrys Discovery Studio.
(1) All selected inhibitors should have clear and concise
information including structure features and activity range.
(2) At a minimum, 16 diverse inhibitors for training set were
selected to ensure the statistical significance. (3)The training
set should contain the most and the least active inhibitors.
(4) The biological activities of the inhibitors spanned at least
4 orders of magnitude. Based on the above four rules, the
158 Chk2 inhibitors were divided, and the scatter diagram of
training set and testing set inhibitors was shown in Figure 2.
Figure 2 demonstrates the distribution of the inhibitors in
the training set and testing set, and the representative points
of the testing set are close to those of the training set. The
training set with 25 inhibitors is used to construct PhModels,
and the IC

50
values of these 25 inhibitors are ranged from 2.3

to 100,000 nM (Table 1). The testing set with remaining 133
inhibitors is used to test the predictive ability of generated
PhModels, and the IC

50
values of the 133 testing set inhibitors

are ranged from 3.4 to 74,000 nM (Table 2). After selecting
the training set and testing set inhibitors, we established
PhModels at first, and then we used the correlation analysis
to estimate the prediction abilities of PhModels.

2.3. Pharmacophore Generation. The workflow of PhModel
generation for Chk2 inhibitors was shown in Figure 3. In
this study, we used the HypoGen program [37] in Accelrys
Discovery Studio 2.1 to generate PhModels. At the initial step,
3D conformations of the training set inhibitors were gener-
ated by using “3D-QSAR Pharmacophore Generation proto-
col” with the Best, Fast, and Caesar generating algorithms,
respectively, based on the CHARMm-like force field. The
conformational-space energy was constrained ≤20 kcal/mol
which represented the maximum allowed energy above the
global minimum energy. For each training set inhibitor, the
number of the diverse 3D conformations was set to ≤255. All
other parameters were set as default values. Following the
above rules, the 3D conformations were generated, and then
we can construct the PhModel by using “Ligand Pharma-
cophore Mapping protocol.” Each of the ten PhModels using

HypoGen Best, Fast, and Caesar algorithms were generated
in this study.

2.4. Combinatorial Fusion. In this study, we use a combinato-
rial fusion technique to facilitate prediction results selection
and combination for improving predictive accuracy in bio-
logical activities of inhibitors. The combinatorial fusion we
take is analogous to that used in information retrieval [38,
39], pattern recognition [40], molecular similarity searching
and structure-based screening [41], and microarray gene
expression analysis [42]. These works have demonstrated the
following remark [43].

Remark 1. For a set of multiple scoring systems, each with
a score function and a rank function, we have that (a) the
combination of multiple scoring systems would improve the
prediction accuracy only if (1) each of the systems has a
relatively high performance, and (2) the individual systems
are distinctive (or diversified), and (b) rank combination
performs better than score combination under certain con-
ditions.

Given an inhibitor and for each prediction result 𝐴, let
𝑠
𝐴
be a function as the predicted biological activity and it

is represented as a real number. We view the function 𝑠
𝐴

as the score function. Since 𝑠
𝐴
only assigns a number not

a set of numbers, in this work, no rank function would be
used for an inhibitor. Therefore, the rank combination and
the rule (b) in Remark 1 are not considered in the study.
Suppose we have𝑚 prediction results (𝑚 scoring functions).
There are combinatorially 2𝑚 − 1 combinations for all 𝑚
individual prediction results (∑𝑚

𝑘=1
(
𝑚

𝑘
) = 2
𝑚
− 1) with score

functions.The total number of combinations to be considered
for predicting biological activity of an inhibitor is 2𝑚 − 1.
This number of combinations can become huge when the
number of prediction results 𝑚 is large. Moreover, we have
to evaluate the predictive power of each combination across
all inhibitors. This study would start with combining only
two prediction results which still retain fairly good prediction
power.

Suppose 𝑚 prediction results 𝐴
𝑖
, 𝑖 = 1, 2, . . . , 𝑚, are

given with score function 𝑠
𝐴𝑖
; there are several different

ways of combination. Among others, there are score com-
bination, voting, linear average combination, and weighted
combination [38–42]. Voting is computationally simple and
better than simple linear combinations when applied to the
situation with large number of prediction results. However,
a better alternative is to reduce the number of prediction
results to a smaller number and then these prediction results
are combined. In this paper, we reduce the set of prediction
results to those which perform relatively well and then use
the rank/score function to decide whether to combine by
score. In this paper, we use the rules (a) (1) and (a) (2) stated
in Remark 1 as our guiding principle to select prediction
results and to decide on the method of combination. After
generating each of the ten PhModels by using HypoGen
Best, Fast, and Caesar algorithms for training set inhibitors,
each of the best PhModel (denoted as Besttrain, Fasttrain, and
Caseartrain) was evaluated by its correlation coefficient of the
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Figure 2: The scatter diagram of training set and testing set inhibitors.
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Figure 3: The workflow of PhModel generation for Chk2 inhibitors.

training set (𝑟train). Then these best PhModels were used to
predict the biological activities of testing set inhibitors by
using HypoGen Best, Fast, and Caesar algorithms.Therefore,
there are nine prediction results (denoted as 𝑍train × 𝑍test,
𝑍 = {Best, Fast,Caesar}, that is, BesttrainBesttest) generated
for testing set inhibitors. Using data fusion, results from
various prediction results are combined to obtain predictions
with larger accuracy rate. The diversity rank/score function
is used to select the most suitable prediction results for
combination. If these three best PhModels were selected,
there are nine prediction results and then there are 29 −
1 = 511 combinations. According to the rule (a) (1) in
Remark 1, the 𝑟train of Caseartrain is far less than those of
Besttrain and Fasttrain (Table 1); then, the Caseartrain was not

considered in the combinations. Therefore, there are six
prediction results (𝑍

1train × 𝑍2test, 𝑍1 = {Best, Fast} and
𝑍
2
= {Best, Fast,Caesar}) and 26 − 1 = 63 combinations. A

special diversity rank/score graphwas used to choose the best
discriminating prediction results for further combination.

For an inhibitor 𝑝
𝑖
in the testing set 𝑃 = {𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑡
}

and the pair of prediction results 𝐴 and 𝐵, the diversity score
function 𝑑

𝑖
(𝐴, 𝐵) is defined as 𝑑

𝑖
(𝐴, 𝐵) = ∑ |𝑠

𝐴
− 𝑠
𝐵
|. When

there are 𝑞 prediction results selected (in this study, 𝑞 =
6), there are ( 𝑞

2
) = 𝑞(𝑞 − 1)/2 (in this study, the number

is 15) diversity score functions. If we let 𝑖 vary and fix the
prediction result pair (𝐴, 𝐵), then 𝑑

𝑖
(𝐴, 𝐵) is the diversity

score function 𝑠
(𝐴,𝐵)

from 𝑃 = {𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑡
}. Sorting

𝑠
(𝐴,𝐵)

into descending order would lead to the diversity
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Table 1: Experimental and estimated IC50 values of training set inhibitors.

CHEMBL ID Experimental IC50 (nM) Estimated IC50 (nM)
Besttrain Fasttrain Caesartrain

CHEMBL195041 2.3 15 9.9 1129
CHEMBL193990 6.6 6.8 6.2 942
CHEMBL248935 14 20 20 833
CHEMBL195320 18 8.5 6.2 942
CHEMBL176164 23 19 23 1151
CHEMBL250765 37 30 22 950
CHEMBL362677 47 23 23 1153
CHEMBL249959 70 110 20 1000
CHEMBL250992 72 47 6.9 72
CHEMBL251155 110 220 23 756
CHEMBL588536 270 670 790 78578
CHEMBL400772 470 2200 268 231
CHEMBL367390 640 2000 2237 1028
CHEMBL608262 830 1200 1456 94262
CHEMBL401105 900 1000 235 20
CHEMBL176115 1100 970 1044 1449
CHEMBL253542 1200 1100 189 3.8
CHEMBL592490 1800 860 1275 93360
CHEMBL589090 6700 1700 1419 3561
CHEMBL199299 15000 22000 233 1745
CHEMBL251629 19000 3600 615 411
CHEMBL259084 28000 6800 31827 5300
CHEMBL251628 37000 63000 1360 24786
CHEMBL438485 50000 16000 320 243
CHEMBL589501 100000 160000 48276 96926
Correlation coefficient (𝑟train) 0.955 0.840 0.238

rank function 𝑟
(𝐴,𝐵)

. Consequently, the diversity rank/score
function 𝑓

(𝐴,𝐵)
is defined as 𝑓

(𝐴,𝐵)
= (𝑠
(𝐴,𝐵)
∘ 𝑟
−1

(𝐴,𝐵)
)(𝑗) =

𝑠
(𝐴,𝐵)
(𝑟
−1

(𝐴,𝐵)
(𝑗)), where 𝑗 is in 𝑇 = {1, 2, 3, . . . , 𝑡}. We note that

the set 𝑇 is different from the set 𝑃 which is the testing set
considered.The set 𝑇 is used as the index set for the diversity
rank function value and |𝑇| = 𝑡 is indeed the cardinality
of 𝑃. The diversity rank/score function 𝑓

(𝐴,𝐵)
so defined

exhibits the diversity trend of the prediction result pair (𝐴, 𝐵)
across the whole spectrum of input set of 𝑡 inhibitors and
is independent of the specific inhibitor under study. For
two prediction results 𝐴 and 𝐵, the graph of the diversity
rank/score function𝑓

(𝐴,𝐵)
(𝑗) is called the diversity rank/score

graph. This study aims to examine all the 𝑞(𝑞 − 1)/2 diversity
rank/score graphs to see which pair of prediction results
would give the larger diversity measurement according to the
rule (a) (2) in Remark 1.

2.5. Database Screen. After examining 15 diversity rank/score
graphs, the PhModels 𝐴 and 𝐵 determined from the best
prediction result pair were used to screen the NCI database
for new Chk2 inhibitor candidates. Under the PhModel,
pharmacophore hypothesis screening can be used to screen
small molecule database to retrieve the compounds as
potential inhibitors that fit the pharmacophoric features.

In this study, the “Search 3D Database protocol” with the
Best/Fast/Casear Search option in Accelrys Discovery Studio
2.1 was employed to search the NCI database with 260,071
compounds. We could filter out and select the compounds
in the NCI database based on the estimated activity and
chemical features of PhModel.

2.6. Molecular Docking. After the database screening
approach, the selected compounds can be further estimated
according to the interaction energy between a receptor and
a ligand through the molecular docking approach. In this
study, selected compounds in the NCI database were docked
into Chk2 active sites by CDOCKER docking program, and
then their CDOCKER interaction energies were estimated.
Finally, new potential candidates were retrieved from the
NCI database with high interaction energy. The workflow
of database screening and molecular docking approach was
shown in Figure 4.

3. Results

3.1. PhModel Generation Results. Each of the ten PhModels
using 25 training set inhibitors and HypoGen Best, Fast, and
Caesar algorithms was generated by selecting hydrogen bond
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Figure 4: The workflow of database screening and molecular docking approach for new Chk2 inhibitor candidates.
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Figure 5: The diversity rank/score graphs for 15 combinations of prediction results.

acceptor (A), hydrogen bond donor (D), and hydrophobic
(H) and hydrophobic aromatic (HYAR) features. Each of
the best PhModels, Besttrain, Fasttrain, and Caseartrain, was
evaluated with the best 𝑟train, and the predicted biological
activities of training set inhibitors and 𝑟train were listed in
Table 1, respectively. FromTable 1, the Besttrain obtained better
𝑟train of value 0.955 than those by Fasttrain and Caseartrain.
Moreover, the 𝑟train of Caseartrain is far less than those of
Besttrain and Fasttrain. Hence, HypoGen Best algorithm was
used individually to generate the PhModels for most of target
genes in the past. According to rule (a) (1) in Remark 1, the
Caseartrain was not considered to be used for the prediction
of testing set inhibitors.

3.2. Correlation Analysis of Testing Set Inhibitors. The testing
set inhibitors were predicted by Besttrain and Fasttrain with
HypoGen Best, Fast, and Caesar algorithms. Therefore, there

are six prediction results, BesttrainBesttest (denoted as BB),
BesttrainFasttest (denoted as BF), BesttrainCaseartest (denoted as
BC), FasrtrainBesttest (denoted as FB), FasttrainFasttest (denoted
as FF), and FasttrainCaseartest (denoted as FC), for testing set
inhibitors. The predicted biological activities of testing set
inhibitors and 𝑟test by these six prediction results were listed
in Table 2, respectively. From Table 2, for the Besttrain, the
best 𝑟test of value 0.81 was achieved by the BesttrainBesttest;
for the Fasttrain, the best 𝑟test of value 0.728 was achieved by
the FasttrainFasttest. However, the BesttrainBesttest obtained the
best 𝑟test in overall; moreover, the prediction results in the
Besttrain all outperform those in the Fasttrain.

3.3. Combinatorial Fusion Analysis. Under the six prediction
results, the diversity score function 𝑑

𝑖
(𝐴, 𝐵) was calculated

for each testing set inhibitor by a pair of prediction results
(𝐴, 𝐵). There are 15 diversity score functions 𝑠

(𝐴,𝐵)
that were
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Table 2: Experimental and estimated IC50 values of testing set inhibitors.

CHEMBL ID Experimental
IC50 (nM)

Estimated IC50 (nM)
Besttrain Fasttrain BesttrainBesttest +

FasttrainFasttestBesttest Fasttest Caesartest Besttest Fasttest Caesartest
CHEMBL195177 3.4 3.9 5.2 5.1 14.8 6.2 12.3 6.2
CHEMBL359881 4.4 12.0 46.1 42.3 17.3 22.5 29.4 22.5
CHEMBL179717 4.5 9.0 42.1 43.2 14.3 21.9 29.3 21.9
CHEMBL175553 5.5 11.2 57.8 43.1 17.6 20.5 29.1 20.5
CHEMBL192161 7 183.4 74.6 36.7 258.7 253.9 291.4 253.9
CHEMBL191969 8.2 6.4 15.3 14.3 10.5 9.4 13.5 9.4
CHEMBL175472 9.8 7.9 48.4 9.9 12.4 22.5 29.1 22.5
CHEMBL361378 12 9.9 48.1 43.7 14.7 21.7 29.3 21.7
CHEMBL362255 12 11.9 55.4 42.3 15.5 22.9 29.4 22.9
CHEMBL369254 12 70.2 51.3 45.6 38.0 23.7 31.5 23.7
CHEMBL364978 13 4.8 4.9 5.1 13.5 6.5 12.3 6.5
CHEMBL195846 14 3.9 5.0 5.1 12.8 6.2 12.3 6.2
CHEMBL179583 16 12.2 48.5 43.1 13.4 23.2 28.9 23.2
CHEMBL178972 17 15.9 52.5 43.1 18.0 23.3 29.1 23.3
CHEMBL250360 23 19.8 46.8 43.7 17.6 21.7 29.4 21.7
CHEMBL175879 24 21.6 57.0 42.3 24.0 23.2 29.2 23.2
CHEMBL179267 31 7.4 63.5 42.8 20.5 21.2 29.4 21.2
CHEMBL192022 32 20.3 47.5 42.6 23.9 22.4 29.4 22.4
CHEMBL250158 39 10.1 20.4 43.7 19.1 21.5 29.3 21.5
CHEMBL363339 41 10.1 59.8 42.2 18.1 24.0 29.5 24.0
CHEMBL250555 45 26.3 48.2 42.9 24.5 22.7 29.4 22.7
CHEMBL250359 52 3.7 5.2 3.5 20.6 7.0 28.8 7.0
CHEMBL251585 52 4.5 3.0 3.1 11.9 4.9 10.7 4.9
CHEMBL398529 53 23.0 48.4 43.5 21.4 22.4 29.4 22.4
CHEMBL178971 55 62.4 44.9 43.1 41.7 22.1 29.3 22.1
CHEMBL427879 55 13.7 45.4 42.4 16.9 19.9 29.5 19.9
CHEMBL250963 57 8.6 44.1 42.9 17.8 21.5 27.2 21.5
CHEMBL251170 60 51.3 45.3 43.1 26.3 21.5 29.4 21.5
CHEMBL250759 61 45.6 47.4 43.3 36.6 23.2 29.5 23.2
CHEMBL367263 61 19.7 50.3 9.6 17.3 23.9 29.1 23.9
CHEMBL250159 67 55.7 45.3 43.1 25.7 17.2 29.4 17.2
CHEMBL398467 70 11.4 46.5 42.7 21.0 20.4 29.4 20.4
CHEMBL250796 73 3.3 3.4 4.2 14.7 6.0 14.4 6.0
CHEMBL250957 74 36.1 44.9 43.7 30.5 20.4 29.5 20.4
CHEMBL206609 77 25.9 51.0 44.0 9.6 16.3 17.8 16.3
CHEMBL400755 78 8.8 26.6 43.0 12.9 22.5 29.4 22.5
CHEMBL249569 80 11.1 48.3 43.3 17.0 22.9 28.0 22.9
CHEMBL193397 81 9.9 43.8 42.8 14.5 21.2 28.4 21.2
CHEMBL438868 82 18.9 42.0 43.1 13.1 19.0 29.3 19.0
CHEMBL249566 86 17.6 48.8 43.1 23.5 22.8 29.6 22.8
CHEMBL249345 90 23.2 47.6 43.0 20.9 20.0 25.0 20.0
CHEMBL399146 90 29.8 47.9 42.7 28.4 22.1 29.3 22.1
CHEMBL602931 92 483.6 560.1 506.8 645.9 594.0 588.2 594.0
CHEMBL249347 95 10.1 46.3 43.1 27.2 20.1 29.2 20.1
CHEMBL193476 100 951.1 914.5 925.8 2435.2 1027.4 1981.9 1027.4
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Table 2: Continued.

CHEMBL ID Experimental
IC50 (nM)

Estimated IC50 (nM)
Besttrain Fasttrain BesttrainBesttest +

FasttrainFasttestBesttest Fasttest Caesartest Besttest Fasttest Caesartest
CHEMBL250361 100 14.2 6.6 14.5 14.9 20.9 29.6 20.9
CHEMBL248934 109 20.0 52.5 43.3 14.0 22.4 29.4 22.4
CHEMBL249750 110 12.7 49.3 43.5 20.7 21.6 29.3 21.6
CHEMBL208463 133 10.4 46.0 41.0 968.6 2768.3 2670.7 2768.3
CHEMBL250566 140 5.2 17.3 26.3 18.4 20.9 29.6 20.9
CHEMBL251256 140 936.4 2453.5 2240.6 192.6 215.1 215.5 215.1
CHEMBL437331 142 471.8 521.6 450.6 64.2 222.1 60.7 222.1
CHEMBL249541 157 23.8 42.5 43.0 16.0 18.8 29.3 18.8
CHEMBL249776 158 13.9 47.2 43.7 16.7 20.9 29.4 20.9
CHEMBL249350 174 30.6 51.2 43.4 22.5 23.3 29.4 23.3
CHEMBL249546 176 10.6 47.3 42.8 17.9 21.0 29.4 21.0
CHEMBL251364 176 21.7 43.9 43.1 17.8 19.7 29.1 19.7
CHEMBL399933 180 14.8 45.0 43.5 20.8 18.9 29.4 18.9
CHEMBL400287 180 19.3 45.5 43.5 21.5 19.8 29.4 19.8
CHEMBL175780 200 61.7 47.5 42.3 36.0 21.9 29.5 21.9
CHEMBL176326 200 935.6 926.3 913.6 1896.0 986.2 1980.7 986.2
CHEMBL590335 210 791.5 721.8 807.4 616.3 639.0 644.7 639.0
CHEMBL398561 220 575.1 926.2 571.5 209.1 278.3 287.9 278.3
CHEMBL249777 231 15.0 45.7 42.5 25.5 21.7 29.4 21.7
CHEMBL442282 233 13.9 46.9 42.3 21.5 22.5 29.4 22.5
CHEMBL195599 250 981.5 908.0 925.8 2266.7 1057.6 1981.9 1057.6
CHEMBL176015 290 54.1 52.8 54.4 24.0 29.3 28.0 29.3
CHEMBL251284 310 484.8 429.7 533.7 189.6 196.8 217.4 196.8
CHEMBL600441 310 454.6 559.9 516.5 300.5 513.5 254.1 513.5
CHEMBL599581 410 594.7 496.6 509.1 506.1 252.9 299.2 252.9
CHEMBL592784 420 462.2 492.0 475.1 216.7 203.8 198.3 203.8
CHEMBL1197465 580 2492.8 8163.9 5925.9 995.1 896.8 488.9 896.8
CHEMBL590809 600 492.4 539.0 534.3 816.4 536.2 549.3 536.2
CHEMBL1197456 610 2871.8 7537.6 6733.2 615.7 4139.2 3514.6 4139.2
CHEMBL590637 610 1251.9 1786.7 1121.1 2379.0 1650.9 1262.3 1650.9
CHEMBL591518 680 1797.9 1804.0 1516.5 6075.0 4714.4 2726.5 4714.4
CHEMBL598973 700 12585.6 151896.0 84151.4 1047.3 396.5 1318.1 396.5
CHEMBL251368 710 27.7 45.9 43.8 13.4 21.2 29.1 21.2
CHEMBL1197303 800 5153.6 36481.1 6594.4 1277.8 681.9 4077.9 681.9
CHEMBL1197320 890 2537.8 7191.1 6002.7 1559.4 517.5 420.0 517.5
CHEMBL1197528 960 2752.7 7737.1 5925.9 765.7 654.9 559.0 654.9
CHEMBL215803 1000 3760.6 140257.0 74847.0 9672.7 50053.5 49263.9 50053.5
CHEMBL253324 1000 996.2 2416.5 603.1 264.7 553.1 272.4 553.1
CHEMBL589347 1100 458.3 560.2 482.3 209.7 299.1 196.7 299.1
CHEMBL604784 1100 1188.4 1365.6 1205.7 2305.3 1962.3 1307.9 1962.3
CHEMBL1197529 1120 2047.4 11678.5 8090.0 3368.8 3648.8 3659.9 3648.8
CHEMBL1197326 1130 12645.5 45428.8 7432.7 1138.2 465.0 416.0 465.0
CHEMBL176041 1200 925.0 906.8 913.6 1933.6 1040.0 1980.7 1040.0
CHEMBL590079 1350 548.9 548.5 550.6 1000.9 860.3 855.1 860.3
CHEMBL605083 1400 489.2 613.8 554.4 1224.9 1401.0 1345.6 1401.0
CHEMBL175481 1500 69.2 57.7 49.2 1853.9 1526.1 1852.1 1526.1
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Table 2: Continued.

CHEMBL ID Experimental
IC50 (nM)

Estimated IC50 (nM)
Besttrain Fasttrain BesttrainBesttest +

FasttrainFasttestBesttest Fasttest Caesartest Besttest Fasttest Caesartest
CHEMBL205906 1540 1696.1 1109.3 1153.0 980.6 17655.5 937.5 17655.5
CHEMBL590808 1600 1662.5 1799.1 1709.4 51882.2 48813.2 48302.3 48813.2
CHEMBL1170748 1700 1974.2 1940.4 1652.8 3251.4 2734.9 407.6 2734.9
CHEMBL253541 1800 43066.9 42831.1 79622.8 1255.9 1099.1 15566.3 1099.1
CHEMBL176554 1900 572.3 7226.3 9126.2 1096.1 3352.6 3926.3 3352.6
CHEMBL377597 2000 938.5 6719.7 5644.6 50.4 116.9 105.4 116.9
CHEMBL1170749 2200 10874.0 30873.8 3995.6 5835.1 25044.3 1090.5 25044.3
CHEMBL590336 2200 507.8 594.0 516.4 568.9 544.3 521.1 544.3
CHEMBL590807 2200 52944.6 70480.3 52639.4 44898.4 49196.7 36195.2 49196.7
CHEMBL600868 2200 1342.8 1603.8 1312.9 7373.6 5797.7 4864.3 5797.7
CHEMBL398759 2300 666.0 2847.2 1010.2 447.2 924.3 309.0 924.3
CHEMBL604459 2300 1176.9 2299.2 1369.3 614.2 877.8 682.5 877.8
CHEMBL179383 2400 15724.9 14621.7 14257.4 4508.5 4132.8 4023.9 4132.8
CHEMBL592489 2400 469.2 494.6 486.9 204.7 240.5 208.4 240.5
CHEMBL425904 2800 605.0 651.0 534.9 478.1 451.9 488.6 451.9
CHEMBL150894 3000 537.8 844.9 797.6 186.8 600.2 289.0 600.2
CHEMBL590793 3000 475.4 2480.4 1251.5 192.0 251.7 205.4 251.7
CHEMBL600865 4400 796.9 2072.3 1223.3 198.1 261.3 228.1 261.3
CHEMBL249253 5000 659.8 503.6 499.5 406.6 227.9 309.5 227.9
CHEMBL587506 5200 1050.8 1293.3 1083.2 2201.3 2162.7 1656.0 2162.7
CHEMBL204930 5800 755.5 1260.7 1105.5 47881.6 47912.3 47868.0 47912.3
CHEMBL554900 5900 6722.8 580526.0 807309.0 745.4 428.2 47897.1 428.2
CHEMBL176276 6000 3360.2 8955.9 8476.6 2075.6 2054.0 1970.7 2054.0
CHEMBL589091 6100 1319.5 1308.4 1172.0 579.2 603.1 600.9 603.1
CHEMBL559781 7400 91783.7 822917.0 1230010.0 414.5 6865.5 47911.9 6865.5
CHEMBL249252 8000 100671.0 38586.8 31129.8 590.5 491.6 467.9 491.6
CHEMBL589089 9800 1070.7 1321.5 1002.7 38589.3 48136.2 41143.2 48136.2
CHEMBL217090 10000 628.8 1010.9 1548.5 390.6 451.8 910.1 451.8
CHEMBL217092 10000 1030.2 1199.3 1908.8 379.9 625.6 707.2 625.6
CHEMBL382588 10000 1365.2 5880.3 5488.7 2560.7 3993.4 3649.4 3993.4
CHEMBL590581 10000 145206.0 149922.0 108067.0 50609.5 49348.5 48302.3 49348.5
CHEMBL242753 10300 1742.5 3393.1 1941.1 1202.5 2613.0 1297.3 2613.0
CHEMBL398758 11000 1582.8 187965.0 1573.6 237.0 4333.9 369.0 4333.9
CHEMBL399151 11000 812.1 1263.5 2069.9 334.5 1193.9 1271.6 1193.9
CHEMBL395080 13450 513.5 484.0 458.6 198.5 188.9 183.3 188.9
CHEMBL1171533 15000 349604.0 296515.0 159368.0 26784.5 26699.3 45506.4 26699.3
CHEMBL602729 17000 148756.0 149052.0 139465.0 224.1 324.7 229.4 324.7
CHEMBL249255 19000 182486.0 42615.8 41578.3 1698.2 616.1 683.9 616.1
CHEMBL202930 21730 12828.4 11945.6 12145.8 213.3 219.7 217.6 219.7
CHEMBL589986 22000 1167.1 1337.4 1143.5 53747.5 49155.6 49316.8 49155.6
CHEMBL251471 40000 3358.9 1946.2 2075.7 512.2 423.7 3427.4 423.7
CHEMBL560056 74000 152006.0 156723.0 208466.0 223.2 208.1 190.4 208.1
Correlation
coefficient (𝑟test)

0.810 0.771 0.783 0.710 0.728 0.714 0.816
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Figure 6: The 𝑟test for all of 63 combinations from six prediction results.

performed at first and then these diversity score functions
were sorted to become the diversity rank function 𝑟

(𝐴,𝐵)
,

respectively. Finally, 15 diversity rank/score functions 𝑓
(𝐴,𝐵)

were represented as diversity rank/score graphs shown in
Figure 5. Among 15 diversity rank/score graphs, there are
several combinations (gray color) that have less diversity
scores than those by others, such as BB + BC, BB + BF, and
FB + FB, shown in Figure 5. It means that these combinations
may have less 𝑟test than those by others according to rule (a)
(2) in Remark 1. In other words, several combinations, such
as BB + FC (purple color), BB + FF (blue color), and BF + FF
(orange color), may have larger 𝑟test than those by others due
to larger diversity scores. For the six prediction results, all of
the 63 combinations were preformed and evaluated by its 𝑟test,
respectively, as shown in Figure 6. In Figure 6, for 15 pairs of
two prediction results, the combinations BB + FB, BB + FC,
and BB + FF have larger 𝑟test than those by others. Moreover,
the combination BB + FF has best 𝑟test of value 0.816 among
15 combinations, even for 63 combinations. Besides, the
average 𝑟test by the combinations is larger than the individual
prediction results. It means that the predictive accuracy for
Chk2 inhibitors may be improved by considering the Besttrain
and Fasttrain concurrently.

3.4. Database Screen Results. The best PhModels, Besttrain
and Fasttrain, were used to screen the NCI database with
260,071 compounds for new Chk2 inhibitor candidates by
using HypoGen Best and Fast algorithms, respectively. The
BesttrainBesttest and FasttrainFasttest prediction results for NCI
database were combined in order to filter out possible
false positive candidates. Of the 260,071 compounds, 191,505
passed the screening and best fitted to the chemical features in
3D space. 23 drug-like compounds that had an estimated IC

50

Table 3: The 21 drug-like compounds with their estimated
IC50 values and CDOCKER interaction energy greater than 37.786
(kal/mol).

Name Estimated IC50 (nM) Interaction energy (kal/mol)
NSC 136954 1.989 61.239
NSC 70804 1.682 58.967
NSC 158029 1.885 57.944
NSC 603427 1.87 56.963
NSC 57782 1.6855 56.54
NSC 16739 1.5385 56.342
NSC 720227 1.914 55.839
NSC 618702 1.862 55.196
NSC 195178 1.7015 51.351
NSC 653142 1.557 51.19
NSC 653143 1.577 50.055
NSC 32200 1.901 49.439
NSC 342015 1.6515 47.327
NSC 343685 1.7615 46.436
NSC 205750 1.875 45.542
NSC 96538 1.705 44.344
NSC 210455 1.7935 42.258
NSC 314654 1.947 42.082
NSC 179894 1.6135 41.707
NSC 91710 1.701 40.533
NSC 370907 1.8785 40.502

value of less than 2 nM were studied in a molecular docking
study (Figure 4).

3.5. Molecular Docking Results. 23 drug-like compounds
along with the training set compounds were docked into the
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Table 4: The structures and characteristics of the top 2 compounds.

NSC 136954 NSC 70804

Structure

Superposition

Binding sites

ALA247
VAL234

LEU226

LEU303

LYS249

305MET304
GLY307

GLY306 GLU308
LEU354

LEU301 ILE288

ILE299ILE251

ILE274

GLU273

LEU277GLY370

PHE569ASP368ILE286
THR367

GLU351

ASN352

ASP368
THR367

GLU308

GLY307

GLY227

ILE248
ILE299

ILE251
ALA247

VAL234
LEU226

LEU324
LYS249

LEU277
GLU273

LEU354

LEU303

MET304

Docking results

active sites that were defined based on the bound inhibitor,
PV1019, in a crystal structure of Chk2 (PDB: 2W7X).We used
CDOCKER program to confirm that inhibitor candidates
bind to the receptor. CDOCKER uses molecular dynamics
(MD) in conjunction with the CHARMm force field to
individually dock the compounds into the binding sites.
The coordinates of Chk2 from the Chk2/PV1019 crystal
structure were used after removing PV1019 and solvent
molecules and adding protein hydrogen atoms. After docking
each screened compound, its interaction energy value was
calculated. The PV1019 was redocked into the Chk2 binding
site by the CDOCKER program. Its-CDOCKER interaction
energy was calculated by CDOCKER and determined to be

37.786 (kal/mol). The 23 drug-like compounds were docked
into the Chk2 binding sites. Finally, there are 21 drug-like
compounds with CDOCKER interaction energies greater
than 37.786 (kal/mol). In addition, 11 drug-like compounds
had high interaction value greater than 50 (kal/mol) (Fig-
ure 4) and the top 2 are NSC136954 with 61.239 (kal/mol) and
NSC70804with 58.967 (kal/mol), respectively, kept for future
characterization as inhibitors. The 21 drug-like compounds
with their estimated IC

50
values and CDOCKER interaction

energy greater than 37.786 (kal/mol) were shown in Table 3.
The structures and characteristics of the top 2 compounds

are given in Table 4, and we can find that some active
site residues were identified from the Chk2 complex. The
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interaction sites of NSC136954 were Leu226, Val234, Ala247,
Lys249, Ile251, Glu273, Ile274, Leu277, Ile286, Ile288, Ile299,
Leu301, Leu303, Met304, Glu305, Gly306, Gly307, Glu308,
Leu354, Thr367, Asp368, Phe369, and Gly370. On the other
hand, the interaction sites ofNSC70804were Leu226, Leu227,
Val234, Ala247, Ile248, Lys249, Ile251, Glu273, Leu277, Ile299,
Leu301, Leu303, Met304, Gly307, Glu308, Glu351, Asn352,
Leu354, Thr367, and Asp368. Several studies indicated that
they are involved in hydrophobic interactions with Val234,
Ile251, Leu354, Ile299, and the aliphatic portions of the side
chains of Lys249, Thr367, and Asp368, in addition to several
interactions of van der Waals or hydrophobic with Leu226,
Val234, Leu303, Gly307, Leu354, and the aliphatic portions
the side chains of Met304 and Glu308 [10, 11]. Furthermore,
the quinazoline was sandwiched between the lipophilic side
chains of Val234 and Leu354, with the side chains of Ala247,
Leu301, and Leu303 also contributing to a hydrophobic
surface surrounding the core and an interaction between the
pyrazole and Lys249 is likely to account for the increase in
Chk2 potency [12]. And residueThr367 of Chk2 is a serine in
Chk1. Portions of the glycine-rich P-loop in Chk2, which is
located directly above the inhibitor, are disordered (residues
229–231), whereas this loop is well defined in the structure of
Chk1, and Leu301 in Chk2 corresponds to the “gatekeeper”
residue in many kinases, which has been found to form
contacts with bound inhibitors and is poorly conserved [44].

4. Conclusions

In this study, a novel design strategy for drug design
was proposed to apply combinatorial fusion into PhModels
and virtual screening techniques. 158 Chk2 inhibitors were
divided into the training set and testing set, respectively.
For 25 training set inhibitors, three best PhModels, Besttrain,
Fasttrain, and Caseartrain, were generated at first, and then
six prediction results for 133 testing set inhibitors were used
for calculating 15 diversity rank/score functions. Finally, the
combination BesttrainBesttest and FasttrainFasttest prediction
results achieved the best 𝑟test of value 0.816 among 63
combinations. Through these approaches, 23 potential Chk2
inhibitors with IC

50
value less than 2 nM and interaction

energy value larger than 37.786 (kal/mol) are retrieved from
NCI database. This study can help medicinal chemists to
identify or design new Chk2 inhibitors. Besides, the potential
inhibitors of Chk2 retrieved in this work can be estimated by
biologists for further study.
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