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Due to expanding applications of positron emission tomography (PET) there is a demand for developing new techniques to
introduce fluorine-18 (𝑡

1/2
= 109.8min). Considering that most novel PET tracers are sensitive biomolecules and that direct

introduction of fluorine-18 often needs harsh conditions, the insertion of 18F in those molecules poses an exceeding challenge.
Twomajor challenges during 18F-labeling are a regioselective introduction and a fast and high yielding way under mild conditions.
Furthermore, attention has to be paid to functionalities, which are usually present in complex structures of the target molecule.The
Cu-catalyzed azide-alkyne cycloaddition (CuAAC) and several copper-free click reactions represent suchmethods for radiolabeling
of sensitivemolecules under the above-mentioned criteria.Thisminireviewwill provide a quick overview about the development of
novel 18F-labeled prosthetic groups for click cycloadditions and will summarize recent trends in copper-catalyzed and copper-free
click 18F-cycloadditions.

1. Introduction

For the application in positron emission tomography (PET)
[1], fluorine-18 provides ideal nuclear physical characteristics
for in vivo imaging. Fluorine-18 offers a half-life of 110min, a
𝛽
+-branch of 97%, and especially a low 𝛽+-energy of 635 keV,

which is responsible for a very high spatial resolution [2].
The challenges for researchers are to develop convenient 18F-
labeling strategies, which include short reaction times and
applicability for sensitive biomolecules. Especially the harsh
conditions during direct 18F-labeling pose an exceeding chal-
lenge [3, 4]. Therefore, most of the radiolabeling strategies
focus on 18F-containing prosthetic groups, which allow a sen-
sitive and bioorthogonal 18F-labeling to treat themultitude of
functional groups in those bioactive compoundswith respect.

Themost establishedmethod, which fulfills allmentioned
criteria, is given by click reactions. Especially the Cu(I)-
catalyzed variant of the Huisgen 1,3-dipolar cycloaddition
of terminal alkynes and azides offers a very powerful reac-
tion with high specificity and excellent yields under mild
conditions [5]. As a result, numerous PET tracers have
been synthesized using CuAAC in a widespread spectrum
of structural varieties of the prosthetic group within the

last decade. One of the latest investigations deals with a
polar clickable amino acid-based prosthetic group to further
improve the pharmacokinetic properties of radiotracers,
particularly suitable for peptides and proteins [6].

However, the need of cytotoxic copper during CuAAC
has led to the necessity of alternative fast and copper-free
click reaction strategies for radiofluorination and additionally
enabling pretargeting approaches in living systems. Those
so-called strain-promoted click reactions can be carried out
between cyclooctyne derivatives and azides (strain-promoted
azide-alkyne cycloaddition, SPAAC) [7–13] or tetrazines
(tetrazine-trans-cyclooctyne (TTCO) ligation) [14–17] aswell
as between norbornene derivatives and tetrazines [18]. Espe-
cially, the TTCO ligation showed promising reaction rates,
which makes this click reaction concept very suitable for 18F-
labeling and also for in vivo application in living systems.Very
recently, new versions of 18F-click cycloadditions are added
to the range of reactions [19–25]. In this line, the first 18F-
labeled 𝛽-lactame became available via a new radio-Kinugasa
reaction [21].

As a consequence, click cycloaddition is one of the most
frequently applied methods for 18F-labeling of new bioactive
compounds, with or without a catalytic system. This can be
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Figure 1: Lead structures of the most important 18F-prosthetic groups applied for copper-catalyzed click 18F-fluorination.

impressively illustrated by the fact that over 50 original papers
have been published in this research area within the last eight
years.

Tables 1–3 give an overview of the 18F-prosthetic groups,
the reaction conditions and reaction partners applied for
copper-catalyzed, copper-free and other kinds of 18F-click
cycloadditions, respectively. The most important structures
of those prosthetic groups are shown in Figures 1, 3, and 5.

2. Copper-Catalyzed 18F-Click Cycloadditions

In the last decade, the copper-catalyzed azide alkyne cycload-
dition (CuAAC),which has first been reported independently
by Rostovtsev et al. [81] and Tornøe et al. [82] in 2002, has
spread over almost all fields of chemistry [83–87], biology
[88–90], and material science [91, 92]. The great advan-
tage of this method is given by its outstanding efficiency,
its regiospecificity, and fast formation of 1,4-disubstituted
1,2,3-triazoles at ambient temperatures, which is particularly

suitable for 18F-labeling of sensitive biomolecules. In partic-
ular, the CuAAC enables incorporation of fluorine-18 via a
prosthetic group under mild and bioorthogonal conditions
[22–25]. 1,2,3-triazoles were first introduced byMichael, who
described the formation of a 1,2,3-triazole from a phenylazide
in 1893 [93]. Following this pioneeringwork, Dimroth, Fester,
and Huisgen described this type of reaction as a 1,3-dipolar
cycloaddition for the first time in 1963 [5].

In 2006, Marik and Sutcliffe published the application
of the CuAAC as an 18F-labeling strategy for the first time
[26]. They radiolabeled three different alkyne precursors in
radiochemical yields (RCY) of 36–81%. Afterwards they were
reacted them with azido-functionalized peptides in RCY of
54–99% and an overall reaction time of 30min. Thus, they
could show a new, very fast, efficient, and mild 18F-labeling
strategy for complex compounds, especially appropriate for
sensitive biomolecules. Only two years later, the suitability
of this approach was demonstrated for the 18F-labeling of a
folate derivative for in vivo tumor imaging with the same
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prosthetic group, 6-[18F]fluoro-1-hexyne [30].The radiofolate
was obtained in RCY of 25–35% and was applied to KB-
tumor bearing mice. A specific tumor accumulation could be
observed by using the folate receptor (FR) targeting concept.
Furthermore, Kimet al. used 18F-labeled alkynes as prosthetic
groups for the 18F-labeling of 2,3,4,6-tetra-O-acetyl-𝛽-D-
glucopyranosyl azide [27], which in turn was employed to
label the 𝛼V𝛽6 specific peptide A20FMDV2 [28].

Considering all known clickable prosthetic groups for
18F-labeling, [18F]fluoroethyl azide ([18F]FEA) is certainly
one of the most investigated clickable 18F-prosthetic groups.
Until today, about twenty different manuscripts deal with
[18F]FEA to radiolabel a broad variety of biomolecules and
compounds. In 2007, Glaser and Årstad [31] mentioned for
the first time the preparation of [18F]FEA with a RCY of
55% using 2-azidoethyl-4-toluenesulfonate as precursor. As
a proof of concept, they reacted [18F]FEA with different
terminal alkynes in very good to excellent RCY of 61–
98%. With respect to the catalytic system copper sulfate in
combination with ascorbic acid or sodium ascorbate has
mainly been used,whereas only in a few approaches copper(I)
iodide was used [37, 42]. It has been shown that addition
of bathophenanthroline disulfonate (CuI stabilizing agent)
accelerates the 1,3-dipolar cycloaddition [36, 38, 45].The very
good access to [18F]FEA led to the development of a variety
of radiotracers labeled with this prosthetic group, like 18F-
deoxyuridine [37], 18F-fluoro-oxothymidine (18F-FOT), or
18F-fluoro-thiothymidine (18F-FTT) [40] as well as apoptosis
markers [36] and several peptide systems [34, 44, 49]. In
2012, Smith et al. [40] described the reduction of [18F]FEA
using copperwire under acidic conditions, which is a possible
explanation of the poor yields during some click reactions.

In 2007, Sirion et al. [50] reported for the first time
[18F]fluoro-PEGx-derivatives (𝑥 = various polyethylene gly-
col (PEG) ratios) as new 18F-labeled prosthetic click groups.
These compounds showed a reduced volatility and increased
polarity compared with other 18F-labeled prosthetic groups
like [18F]FEA or [18F]fluoroalkynes. These properties ease
their handling as well as improving the in vivo behavior of
the labeled compounds. The compounds showed a longer
circulation time and a reduced renal clearance making them
very suitable for in vivo application. Sirion et al. described
the preparation of different aliphatic and aromatic 18F-PEG-
azides and 18F-labeled alkynes in RCY of 85–94%. As a proof
of concept, they carried out cycloadditions with the 18F-
labeled prosthetic groups and the corresponding alkynes,
respectively, azides in high RCY of 71–99%. Several other
groups continued this work by using the 18F-labeled PEGy-
lated prosthetic groups for labeling cRGDderivatives [51] and
other peptides [53], nanoparticles [52, 54], or folates [55].

To increase the lipophilicity and metabolic stability of
radiotracers, [18F]fluoro-aryl-based prosthetic groups have
been developed and investigated. In 2007, Ramenda et al.
[56] published for the first time a 4-[18F]fluoro-N-methyl-
N-(prop-2-ynyl)-benzenesulfonamide (p-[18F]F-SA), which
was obtained in RCY of 32± 5%. Subsequently, this prosthetic
group was used for radiolabeling an azido-functionalized

neurotensin giving a RCY of 66%. Furthermore, the same
group used the 18F-aryl prosthetic group for the labeling of
human serum albumin (HSA) [57] and other proteins, phos-
phopeptides, and L-RNA [58] in goodRCY. A pyridine-based
18F-prosthetic group was first introduced by Inkster et al.
[59] in 2008 by reacting [18F]FPy5yne with a model peptide
in RCY of 18.7% and an overall reaction time of 160min.
They started from either 2-nitro- or 2-trimethylammonium
pyridine to synthesize [18F]FPy5yne with a RCY of 42%.
Furthermore, [18F]pyridine derivatives have been used to
radiolabel cRGDs [60] and the D-amino acid analog of WT-
pHLIP [61].

In 2009, Vaidyanathan et al. [62] presented a pros-
thetic group based on a 4-[18F]fluorobenzoate. Propargyl-
4-[18F]fluorobenzoate ([18F]PFB), which could be obtained
in RCY of 58 ± 31% within 15min. To investigate the
labeling properties of this new prosthetic group, numerous
compounds have been 18F-labeled using [18F]PFB with RCY
from 37% to 88% and overall reaction times of about
1 h. Another approach was published by Li et al. in 2012
[63], who synthesized 4-[18F]fluoro-3-nitro-N-2-propyn-1-
yl-benzamide ([18F]FNPB) for 18F-labeling of cRGDfK and
a D4 peptide, which was identified as an EGFR targeting
ligand. This approach was followed by the synthesis of 1-
(azidomethyl)-4-[18F]fluorobenzene by Thonon et al. [64].
They did a multistep radiosynthesis (4 steps), where the
fluorine-18 was introduced in the first step. The desired
radiolabeled product could be obtained in a RCY of 34%
within 75min and was used itself to label a 4-ethynyl-
L-phenylalanine-containing peptide. The same prosthetic
groupwas also employed byMercier et al. [65] and Flagothier
et al. [66] for 18F-labeling of siRNA. Other structural analog
prosthetic groups have also been developed by Mercier et al.
[65] and Chun and Pike [67].

To improve the in vivo behavior of peptides with respect
to blood clearance and stability, Maschauer and Prante
developed 18F-gluco-derivatives for CuAAC-radiolabeling of
Fmoc-L-propargylglycine with a RCY of 60% [68]. They
showed that the 18F-click labeling reaction was more con-
venient by using the 𝛽-anomeric derivative of the azides,
respectively, alkynes, giving very high RCY of 71 ± 10%.
One year later, they published the first in vivo evaluation
of an 18F-labeled RGD peptide labeled with [18F]FDG-𝛽-
Az in U87MG-tumor bearing mice showing an improved
blood clearance and stability [65, 66]. Likewise, Fischer et
al. demonstrated in 2012 that a [18F]fluorodeoxyglycosyl
folate could be obtained in RCY of 5–25% and subse-
quent biodistribution and PET-imaging studies showed a
high and specific uptake of the radiotracer in FR-positive
tumors [70]. The variety of new 18F-labeling strategies using
18F-Fluoroglycosylation is the focus of a review article as a
part of this special issue provided by Maschauer and Prante
[94].

As another promising approach, Li et al. presented in
2013 an alkyne-functionalized aryltri-[18F]fluoroborate for
radiolabeling azido-bombesin and azido-RGD. The major
advantage of this method is the two-step, one-pot procedure
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providing a water-soluble and noncoordinating aryltri-
[18F]fluoroborate anion, which provided specific activities up
to 555GBq/𝜇mol [75, 76, 95].

Two new piperazine-based prosthetic groups, 1-(but-3-
ynyl)-4-(3-[18F]fluoropropyl)piperazine ([18F]BFP) and 1-(3-
azidopropyl)-4-(3-[18F]fluoropropyl)piperazine ([18F]AFP),
have recently been developed by Pretze and Mamat [78].
Spiro salts were used as precursors, facilitating purification
by using solid phase extractions (RP-18 or SiO

2
-cartridges).

Both prosthetic groups could be obtained in RCY of about
30% using an automated synthesis module. To avoid Glaser
coupling, which has been observed by using [18F]BFP for
radiolabeling of peptides, [18F]AFP was used instead. An
important observation was the fact that the applied peptide
formed very strong complexeswith the copper catalyst, which
required the use of bispidine as a strong chelating agent to
remove cytotoxic copper species.

One of the latest developments describes the synthesis
of an 18F-labeled alanine derivative as a new prosthetic click
group, reported by Schieferstein and Ross [6]. In this case,
an amino acid-based prosthetic group has been developed
to improve the pharmacokinetic profile of 18F-click-labeled
biomolecules. The prosthetic group was obtained in good
RCY of 28 ± 5% from a two-step reaction as described in
Figure 2. The final 18F-labeled prosthetic group was subse-
quently reacted with an azido-RGD as model system in RCY
of 75% within 20min.

Considering the above-mentioned prosthetic groups for
radiolabeling with fluorine-18, Table 1 summarizes important
properties of those components. It has been shown that the
integration of an 18F-propyl, 18F-ethyl, or 18F-aryl moiety
can provide an improved metabolic profile and that the
glycosylation or PEGylation can further improve the in
vivo behavior. Furthermore, for in vivo application a total
removal of the copper catalyst is essential. This could be very
challenging in the case where peptides or proteins are able to
complex copper species from the catalytic system.

3. Copper-Free 18F-Click Cycloadditions

Even though a large number of novel radiotracers using click
chemistry have been developed, none of them has entered

clinical routine to date, apart from 18F-RGD-K5, which is
already used in clinical trials in US. This can be explained
by the need of cytotoxic copper during radiotracer syntheses
by using copper-catalyzed 1,3-dipolarHuisgen cycloadditions
[96]. Thus, there is still a demand for facile (metal-free) and
robust 18F-labeling reactions for the syntheses of radiotracers
for imaging ofmalignancies in vivo.This leads to the develop-
ment of catalyst-free click-labeling approaches, which spare
copper species during labeling steps and even enable in
vivo pretargeting concept. Recent developments deal with
biocompatible strain-promoted copper-free versions of the
alkyne-azide cycloaddition (SPAAC), where the focus has
been set on derivatives of cyclooctynes and dibenzocyclooc-
tynes. First approaches focus on the reaction of 18F-labeled
cyclooctynes with azide-bearing biomolecules. On the other
hand, in further approaches cyclooctyne-carrying bioactive
compounds are used, which can be labeled with different 18F-
labeled azides. In the beginning, only a few studies have been
reported due to the complex and low yielding syntheses of
strained cyclooctynes [10, 12, 14]. However, nowadays lots
of cyclooctyne derivatives are commercially available, which
facilitates the precursor syntheses and opens a wide range of
applications.

In 2011 Bouvet et al. [7] published the first example
of a SPAAC with 18F-labeled aza-dibenzocyclooctyne,
[18F]FB-DBCO, and a plethora of azides. The 18F-
labeled building block was synthesized via acylation of
commercially available N-(3-aminopropionyl)-5,6-dihydro-
11,12-didehydrodibenzo[b,f ]azocine with N-succinimidyl-4-
[18F]fluorobenzoate ([18F]SFB), which can be easily prepared
in an automated synthesis module [97]. The 18F-labeled
cyclooctyne could be obtained in a RCY of 85% and a purity
>95% within 60min. The evaluation of this building block
in healthy Balb/C mice showed 60% of intact compound at
60min p.i. and had a blood clearance half-life of 53 s. Besides,
the compound was stable in methanol and phosphate buffer
over 60min. Subsequently, [18F]FB-DBCO was reacted
with various azides as proof of principle showing different
structural complexities. In all reactions, the formation of
two regioisomers (1,4- and 1,5-triazole) has been observed
and in some cases a separation of the regioisomers by HPLC
was impossible. All 18F-labeled radiotracers were obtained
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in good to excellent RCY of 69–98% within an overall
reaction time of about 2 h. However, the reaction rates in
these cases were much slower compared to other examples
of bioorthogonal reactions, limiting this new approach for in
vivo pretargeting applications.

A cyclooctyne derivative has been conjugated to
bombesin (aza-DBCO-BN, 9 steps) with an overall yield of
17% by Campbell-Verduyn et al. [8].The aza-DBCO-BNwas
reacted with various 18F-azides giving RCY of 19–37% within
30min. In 2011, Arumugam et al. [9] investigated the direct
18F-labeling of azadibenzocyclooctyne (DBCO) yielding the
18F-labeled prosthetic group (RCY = 36%).The radiolabeling
was followed by a click reaction with an azido-octreotide
leading to the 18F-labeled octreotide in a RCY of 95% within
a total reaction time of 1.5 h. In contrast, other working
groups used 18F-cyclooctynes for labeling RDG-derivatives
[11] as well as further integrin-specific peptides [10, 13].

Another possibility to perform copper-free click reac-
tions is given by the inverse electron demand of the Diels
Alder cycloaddition between a cyclooctene and a tetrazine
under the release of nitrogen. The so-called tetrazine-trans-
cyclooctene ligation (TTCO ligation)was first published by Li
et al. in 2010 [14]. Concerning the instability of the tetrazines,
it is more practical to functionalize the biomolecule with
a tetrazine followed by the reaction with an 18F-labeled
cyclooctene. The latter are much more suitable for direct
18F-labeling than tetrazines. For this purpose a nosylate pre-
cursor was used for 18F-labeling of the cyclooctene providing
RCY of 71% within 15min. To investigate the suitability
of the 18F-prosthetic group in click reactions, the 18F-
cyclooctene was reacted with a 3,6-di(2-pyridyl)-S-tetrazine
in an excellent RCY of 98% within 10 s, showing its outstand-
ing feasibility for in vivo pretargeting approaches. These fast

reaction rates made this approach very attractive that even
11C-labeling reaction was explored using the inverse electron
demand Diels Alder cycloaddition between a cyclooctene
and a tetrazine [98]. In 2011, 18F-labeled cyclooctene was
linked to a tetrazine-RGD derivative by Selvaraj et al. [15]
with a RCY of 90% within 5min at room temperature. The
resulting 18F-labeled tracer was tested in in vivo experiments
showing a high tumor accumulation, which could selectively
be blocked. In 2012, the group of Devaraj et al. [80] published
for the first time the in vivo click reaction of [18F]trans-
cyclooctene and a polymer-modified tetrazine (PMT). The
radiolabeled peptide 18F-PMT10 could be obtained in a RCY
of 89.2%. Whole body animal PET scans were carried out
3 h p.i., showing renal clearance and a widespread tissue
distribution as can be seen in Figure 4. Previously, the same
group described the synthesis of an 18F-labeled cyclooctene
with a RCY of 46.1 ± 12.2%. Subsequently, this prosthetic
group was clicked with a tetrazine-modified exendin-4 in
RCY of 46.7 ± 17.3% [16].

A similar strategy was published by Knight et al. in
2013, where an 18F-labeled amino-functionalized norbornene
was reacted with a tetrazine-modified peptide [18]. The 18F-
labeled norbornene was obtained using N-succinimicyl-4-
[18F]fluorobenzoate ([18F]SFB) in RCY of 60 ± 17% within
52min. As a proof of concept, two different tetrazines, an
asymmetric dipyridyl tetrazine, and a tetrazine-modified
bombesin peptide were labeled with 18F-labeled norbornene
derivative ([18F]NFB) in 46–97% RCY within 82min.

Considering the copper-free click labeling of bioac-
tive compounds with fluorine-18, both the strain-promoted
alkyne-azide cycloaddition (SPAAC) and the tetrazine-trans-
cyclooctyne ligation (TTCO ligation) showpromising results.
Regarding in vivo pretargeting approaches, only the TTCO
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(a) (b)

(c) (d)

Figure 4: PET and autoradiography using 18F-tetrazine agents. (a) PET/CT fusion of LS174T tumor xenograft labeled using either trans-
cyclooctene (TCO) monoclonal antibodies (mAb TCO) or control unlabeled antibodies (mAb) followed by 18F-PMT10 (polymer-modified
tetrazine). Arrows indicate location of the tumor xenograft.The bladder was omitted for clarity. (b) Imaging using autoradiography (left side)
and fluorescence slices after targetingwith fluorescence TCOmonoclonal antibody and 18F-PMT10. (c) PET/CT fusion ofmouse bearingA431
and LS174T tumors after targeting with anti-A33 TCO monoclonal antibodies followed by 18F-PMT10. Arrows indicate location of tumors
and the liver was omitted for clarity. (d) Autoradiography of representative 1mm LS174T and A431 tumor slices after multistep targeting
(reprinted with permission from [80]; Copyright 2012 National Academy of Sciences of the United States of America).

ligation showed favorable results and reaction rates, which are
suitable for this application [80]. Table 2 summarizes reaction
conditions, radiochemical yields, and reaction partners of
those components.

4. New Developments in
18F-Click Cycloadditions

The latest developments in metal-free 18F-click cycload-
ditions have been reported by Zlatopolskiy et al. [19–21]
(Table 3). In a first approach, the 18F-labeled building block
C-(4-[18F]fluorophenyl)-N-phenyl nitrone was developed to
form 18F-isoxazolidines via high-yielding [3+2]cycloaddi-
tions with various maleimides [19]. C-(4-[18F]fluorophenyl)-
N-phenyl nitrone was obtained from the reaction of 4-
[18F]fluorobenzaldehyde and N-phenylhydroxylamine in
high RCY of 74% with 10min. In the subsequent click
cycloaddition step, differently substituted maleimides as
model dipolarophiles were used to form the corresponding

isoxazolidines as endo-/exoisomers in high yields of up to
>90% within 10min. A one-pot strategy with in situ gener-
ation of C-(4-[18F]fluorophenyl)-N-phenyl nitrone provided
the desired 18F-isoxazolidines only in moderate yields of
25% and only after heating to 110∘C. Under optimized
conditions, 18F-isoxazolidines were obtained from fast 18F-
click [3+2]cycloadditions.

In further studies, the same group used 4-[18F]flu-
orobenzonitrile oxide instead of C-(4-[18F]fluorophenyl)-
N-phenyl nitrone as 1,3-dipol for milder reaction con-
ditions [20] (Table 3). 4-[18F]fluorobenzonitrile oxide was
obtained in 92% RCY within 10min from the reaction of 4-
[18F]fluorobenzaldehyde (RCY: 30–50%, 50min [99]) with
hydroxylamine and subsequent treatment with phenyl iodine
bis(trifluoroacetate).

After the click [3+2]cycloaddition to various 18F-labeled
model 2-isoxazolines and isoxazoles was successfully tested,
the novel method was applied to three different COX-2
inhibitors (indomethacin conjugates) carrying dipolarophilic
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Figure 5: Lead structures of new 18F-prosthetic groups applied for click 18F-fluorination.

moieties of cyclononyne, maleimide, and propyne. The
resulting products were obtained in moderate to excellent
RCY of 81%, 55%, and 35%, respectively. It is notewor-
thy that, for the propyne derivative, the milder oxidant
[bis(acetoxy)iodo]benzene was used to avoid decomposi-
tion. Finally, the method was successfully adapted for 18F-
labeling of two model dipeptide conjugates, cyclononyne-
and norbornene-𝛽-Ala-Phe-OMe. However, the original
cycloaddition using 4-[18F]fluorobenzonitrile oxide did only
provide traces of the desired products. Consequently, 4-
[18F]fluorobenzonitrile oxide was further treated with chlo-
ramine T (CAT) in situ forming the more stable building
block N-hydroxy-4-[18F]fluorobenzimidoyl chloride. With
the use of high precursor (peptides) amounts, the latter
enabled excellent RCY of the 18F-labeled dipeptides of up
to 88% within 10min at room temperature [20]. Under
optimized conditions low precursor amounts of 5 nmol
(cyclononyne) and 50 nmol (norbornene-𝛽-Ala-Phe-OMe)
still allowed RCY of 56% and 47%, respectively.

In a very recent report, Zlatopolskiy and coworkers
applied their 18F-labeled nitrone, C-(4-[18F]fluorophenyl)-
N-phenyl nitrone, for the first formation of 18F-labeled
𝛽-lactames via the CuI-catalyzed Kinugasa reaction [21]
(Table 3). The optimized reactions went smooth under very
mild conditions to give the 18F-labeled model 𝛽-lactames in
high RCY and various isomeric mixtures of the trans- and
cis-product. In dependency on the reactivity of the terminal
alkynes, the reaction parameters needed (individual) opti-
mization regarding catalyst system, solvent, temperature, and
CuI-stabilizing ligands. As a biologically relevant molecule
the 18Flabeled nucleobase chimera was synthesized as poten-
tial PET-imaging agent for bacterial infections.

Moreover, the dipeptide 𝛽-Ala-Phe-OMewas propiolated
and used in this radio-Kinugasa reaction to give excel-
lent RCY of 85% of the 18F-labeled dipeptide under very

mild conditions (aqueous solution, room temperature) [21].
Similarly, this newmethodwas successfully transferred to the
18F-labeling of proteins. Bovine serum albumin (BSA) was
conjugated with 3-propiolamidopropyl chloroformate. This
propiolated BSA was successfully radiolabeled with fluorine-
18 in the radio-Kinugasa reaction.

5. Conclusions

The field of click cycloadditions had and still has a major
impact in 18F-labeling chemistry. The very mild reaction
conditions mostly applicable and the excellent efficiency of
all types of these reactions are particularly suitable for 18F-
labeling. Especially, complex and sensitive biomolecules ben-
efit from this methodology. No protection group chemistry is
needed and the 18F-click cycloaddition step provides the final
radiotracer.

Besides several new 18F-labeled radiotracers are available
via click cycloadditions, and the metal-free versions even
enabled pretargeting concepts by in vivo click. The latest
development of a radio-Kinugasa reaction towards the first
18F-𝛽-lactames demonstrates the highly active field and the
broad applicability of 18F-click cycloadditions.
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