Supplement 1: SITVIT Rules used in KBBN.

The following rules, based on presence and absence of spacers in a spoligotype, are used to determine the SITVIT clade.

No.	Description
1	If presence of spacer 40, absence of spacers 8, 9, 39, then AFRI.
2	If presence of spacers 6, 10, 38, 40, absence of spacers 7-9, 39 , then AFRI_1.
3	If presence of spacers $7,13,20,25,36,40$, absence of spacers $8-12,21-24,37-39$, then AFRI_2.
4	If presence of spacers 7, 13, 36, 40, absence of spacers 8-12, 37-39, then AFRI_3.
5	If absence of spacers 1-34, then Beijing.
6	If absence of spacers 3, 9, 39-43, then BOV.
7	If presence of spacers $2,8,10,15,17$, absence of spacers $3,9,16,39-42$, then BOV_1.
8	If presence of spacers $2,4,5,7,13-15,17$, absence of spacers $3,6,8-12,16,39-$ 43, then BOV_2.
9	If presence of spacers2, $4,15,17$, absence of spacers $3,5-14,16,39-43$, then BOV_3.
10	If absence of spacers 1, 3, 16, 28, 39-43, then BOV_4-Caprae.
11	If presence of spacer 3, absence of spacers 4-7, 23 to 34, 20-22 35, then CAS.
12	If presence of spacers $3,8,22,35$, absence of spacers 4-7, 23-34, then CAS1Delhi.
13	If presence of spacers 8-9, 11-12, 19 absence of spacers 4-7, 20-35, then CAS1Kili.

14	If presence of spacers 3, 22, 35, absence of spacers 4-10, 23-34, then CAS2.
15	If presence of spacers 33,39 and 41, absence of spacers 29-32, 34, 40, then EAI1SOM.
16	If presence of spacers $2,4,19,22,33$, absence of spacers $3,20-21,29-32,34$, then EAI2-Manila.
17	If presence of spacers $1,2,4,33$, absence of spacer $3,8-25,29-32,34$, then EAI2-Nonthaburi.
18	If presence of spacers $33,36,40$, absence of spacers $2,3,29-32,37-39$, then EAI3-IND.
19	If presence of spacers $25,28,33$, absence of spacers 26-27, 29-32, 34 , then EAI4VNM.
20	If presence of spacer 33, absence of 29-32, 34, then EAI.
21	If presence of spacers 22, 28, 33, absence of spacers 23, 29-32, 34, then EAI6BGD1.
22	If presence of 24, 35-36, 38, absence of 25-34, 37, then EAI7-BGD2.
23	If presence of spacers $4,18,20,33$, absence of spacers 2-3, 19, 29-32, 34 , then EAI8-MDG.
24	If absence of 31, 33-36, presence of spacer 32, then \mathbf{H}.
25	If absence of 26-31 and 33-36, presence of 25,32 , then $\mathbf{H 1}$.
26	If presence of spacers 25,32 , absence of spacers 1-24, 26-31, 33-36, then $\mathbf{H 2}$.
27	If presence of spacer32, absence of spacer 31, 33-36, then H3.
28	If presence of spacers 2, 28, 32, absence of spacers $29-31,33-36$, then H3-URAL-1
29	If presence of spacers 19, 22, 31-32, absence of spacers 20-21, 33-36, then H37Rv.
30	If presence of spacers 28, 32, absence of spacers 2, 29-31, 33-36, then H4-URAL2.
31	If absence of spacers 21-24, 33-36, then LAM.
32	If presence of 25, 31, absence 3, 21-24, 33-36, then LAM1.

33	If presence of spacer $22,26,31$, absence of spacers $23-25,33-36$, then Cameroon.
34	If presence of spacers $25,26,31,32$, absence of spacers 21-24, 27-30, 33-36, then LAM11-ZWE.
35	If presence of spacers $8,15,25,31$, absence of spacers $9-14,21-24,33-36$, then LAM12-Madrid1.
36	If presence of spacers 25,31 , absence of spacers 3, 13, 21-24, 33-36, then LAM2.
37	If presence of spacers 25,31 , absence of spacers 9-11, 21-24, 33-36, then LAM3.
38	If presence of spacers 25,31 , absence of spacers 21-24, 33-36, 40, then LAM4.
39	If presence of spacers 25,31 , absence of spacers 13, 21-24, 33-36, then LAM5.
40	If presence of spacers $25,28,30,31,32$, absence of spacers $21-24,29,33-36$, then LAM6.
41	If presence of spacer $25,28,31$, absence of spacers $20-24,26,27,33-36$, then Turkey.
42	If because of presence of spacers $25,26,28,31$, absence of spacers 21-24, 33-36, then LAM8.
43	If absence of 21 to 24,33 to 36 , presence of 25 and 31, then LAM.
44	If presence of spacers 1-43, then Manu-ancestor.
45	If presence of spacers 33, 35, absence of spacer 34, then Manu1.
46	If presence of spacers 32, 35, absence of spacers 33, 34, then Manu2.
47	If presence of spacer 33, 37, absence of spacers 34-36, then Manu3.
48	If presence of 37, 38, absence of spacers 1-36, absence of spacers 39-43, then Microti.
49	If absence of spacers 1-3, 8-22, 39-43, then PINI.
50	If presence of spacers 7, 23, absence of spacers 1-3, 8-22, 39-43, then PINI1.
51	If presence of spacer25, absence of spacers 1-24 and 39-43, then PINI2.
52	If presence of spacers 30, 36, absence the rest of spacers, then Canetti.

53	If presence of spacers $8,11,31$. absence of spacers $9,10,33-36$, then \mathbf{S}.
54	If presence of spacer 31, absence of spacers 33-36, then T.
55	If presence of spacers 6, 19, 31, absence of spacers 7-18, 33-36, then T1-RUS2.
56	If presence of spacers $31,39,41$, absence of spacers $33-36,40$, then $\mathbf{T} \mathbf{2}$.
57	If absence of spacers $33-36,40,43$, and presence of spacers $41-42$, then T2Uganda.
58	If presence of spacer $12,14,31$, absence of spacers $13,33-36$, then T3.
59	If presence of spacers 9, 2031 , absence of spacers 10-19, 33-36, then T3-ETH.
60	If presence of spacers $4,9,12,14,31$, absence of spacers 5-8, 13, 33-36, then T3OSA.
61	If presence of spacers $18,20,31$, absence of spacers 19, $33-36$, then T 4 .
62	If presence of spacers $18,20,22,25,31,37,40$, absence of $19,23,24,33-36,38$ 39, then T4-CEU1.
63	If absence of spacer $23,33-36$, presence of spacers $22,24,31$, then $\mathbf{T} 5$.
64	If presence of spacers $19,21,22,24,31$, absence of spacers $20,23,33-36$, then T5-Madrid2.
65	If presence of spacers 14, 31, absence of spacers 15-24, 33-36, then T5-RUS1.
66	If presence of spacers 17, 19, 31, absence of spacers 18, 33-36, then $\mathbf{X} \mathbf{1}$.
67	If presence of spacers 17, 19, 31, absence of spacers 18, 33-36, 39-42, then X2.
68	If presence of spacers $3,17,19$, absence of spacers 4-12, 18, $33-36$, then $\mathbf{X} 3$.
69	If presence of spacers 18, 42, absence of spacers 19-41, then ZERO.

Supplement 2: CDC Rules used in KBBN.

The following rules, based on presence and absence of spacers in a spoligotype, are used to determine the CDC sublineage. The notation sum(sp33-36) > 0 means that the sum of spacers 33 to 36 are greater than 0 . This is equivalent to saying that at least one of the spacers from 33 to 36 is greater than 0 .

No.	Description
1	If absence of spacers $3,20,21,29-32,34$, sum(sp33-36) >0, and presence of spacers 2, 4, 19, 22, then Indo-Oceanic - Manila.
2	If absence of spacers 2, 3, 29-32, 34, sum(sp33-36) >0, and presence of spacers 1, 4, then Indo-Oceanic - India.
3	If absence of spacers $26,27,29-32,34$, sum(sp33-36) >0, and presence of spacers 25,28 , then Indo-Oceanic - Vietnam.
4	If absence of spacers 2-13, 29-32, 34, sum(sp33-36) >0, and presence of spacers 1, 14, then Indo-Oceanic - Mexico.
5	If sum(sp29-32) >0 and absence of spacers $33-36,18$, and presence of spacers 17,19 , then \mathbf{X}.
6	If sum(sp29-32) >0, absence of $21-24,33-36$ and presence of spacers 20,25 , then LAM.
7	If sum(sp29-32) >0, absence of spacers $22-31,33-36$ and $(\mathrm{sp} 30=1, \mathrm{sp} 31=0, \mathrm{sp} 32=1)$, or $(\mathrm{sp} 25=1, \mathrm{sp} 22-31=0, \mathrm{sp} 32=1)$, then Haarlem.
8	If sum(sp29-32) >0 and absence of spacers $9,10,33-36$ and presence of spacers 8,11 , then S.

