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Chronic hyperglycaemia (an abnormally high glucose concentration in the blood) resulting fromdefects in insulin secretion/action,
or both, is the major hallmark of diabetes in which it is known to be involved in the progression of the condition to different
complications that include diabetic neuropathy. Diabetic neuropathy (diabetes-induced nerve damage) is the most common
diabetic complication and can be devastating because it can lead to disability. There is an increasing body of evidence associating
diabetic neuropathy with oxidative stress. Oxidative stress results from the production of oxygen free radicals in the body in excess
of its ability to eliminate them by antioxidant activity. Antioxidants have different mechanisms and sites of actions by which they
exert their biochemical effects and ameliorate nerve dysfunction in diabetes by acting directly against oxidative damage.This review
will examine different strategies for managing diabetic neuropathy which rely on exogenous antioxidants.

1. Introduction

Diabetes refers to a metabolic disorder characterized by
relative or absolute deficiency of insulin secretion and/or
insulin resistance. The disorder presents a major health
problem that currently affects 382 million people around the
world including 316 million patients with impaired glucose
tolerance. This population may double by 2030 [1]. Diabetes
is known to be one of the foremost causes of mortality and
morbidity in the world [2]. It affects the quality of patient’s
life with a variety of symptoms which include pain, weakness,
ataxia, impotence, and sensory loss [3]. It is a complex
and progressive disease that results in multiple complica-
tions which include retinopathy, nephropathy, cardiomyopa-
thy, hepatopathy, and neuropathy [4]. Uncontrolled chronic
hyperglycaemia resulting from absolute insulin deficiency
(type 1 diabetes) or insulin resistance with or without insulin
deficiency (type 2 diabetes) is one of the primary causes
of diabetic complications in a number of organs [5]. Type

1 diabetes mellitus is caused by cell-specific autoimmune
destruction of the insulin producing beta cells in the pancreas
[6]. Type 2 diabetes occurs as a result of the failure of beta
cells to compensate for insulin resistance [7] or selective loss
of pancreatic beta cells due to viral infections or toxic damage
leading to insulin insufficiency.

Hyperglycaemia-induced oxidative and nitrosative stress
has been singled out as one of the major links between dia-
betes and diabetic complications [8]. Hyperglycaemia leads
to generation of free radicals due to autoxidation of glucose
and glycosylation of proteins [9]. The persistent increase in
reactive oxygen species (ROS) and reactive nitrogen species
(RNS) accompanied by a decrease in antioxidant activity
leads to the occurrence of oxidative and nitrosative stress
which can cause endothelial dysfunction, insulin resistance,
and alterations in number and functions of pancreatic 𝛽
cells and eventually leads to diabetic microvascular and
macrovascular complications [10]. Once ROS and RNS are
produced in excess, they cause the structural deterioration of
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macromolecules (carbohydrates, proteins, lipids, and DNA)
leading to their instability and consequently loss of function
[11]. ROS and RNS have also been reported to induce
several cellular signaling cascades that ultimately lead to
the transcription of stress-related genes which promote the
development of diabetic complications [12]. NF-𝜅B (nuclear
factor kappa-light-chain-enhancer of activated B cells), a
nuclear transcription factor, is activated by an elevation
in ROS resulting in the transcription of proinflammatory
proteins that exacerbates the conditions of the disease.
Proinflammatory chemokines and cytokines likemacrophage
chemotactic protein (MCP-1), tumor necrosis factor (TNF-
𝛼), and interleukins (IL-1𝛽 and 6) have been recently impli-
cated in the progression of diabetes to diabetic complications
[12]. Hyperglycaemia-induced elevations of ROS have also
been reported to be capable of inducing apoptosis in tissues.
The Bax-caspase pathway of apoptosis can be activated by
ROS leading to a reduction in the electrochemical gradient
across the mitochondrial membrane causing a leakage of
mitochondrial cytochrome c into cytoplasm that activates
caspases leading to apoptosis [13].

Diabetic neuropathy (DN) seems to be themost common
and least understood complication being present in over
50% of chronic diabetics [14, 15]. In the United States, DN
is the leading cause of diabetes-related hospital admissions
and nontraumatic amputation [16]. It can be found late in
type 1 diabetes but early in type 2 diabetes and the cause of
this occurrence is still not clear [17]. Increased free-radical
formation and/or a defect in antioxidant defenses which
result in oxidative stress have been implicated in the patho-
genesis of diabetic neuropathy [18]. Diabetic neuropathies are
heterogeneous and affect different parts of the nervous system
with various clinical manifestations [16].

Antioxidants are available endogenously as a normal
defense mechanism of the cell or obtained exogenously
from diet. Examples include enzymatic antioxidants like
superoxide dismutase (SOD), catalase (CAT), glutathione S-
transferase (GST), glutathione peroxidase (GPx), and nonen-
zymatic antioxidants like reduced glutathione (GSH), uric
acid, carotenoids, flavonoids, lipoic acid, and vitamins A,
C, and E. SOD dismutates superoxide anion (∙O

2

−) to form
hydrogen peroxide which is acted upon by CAT and GPx
to produce water. GST converts reactive electrophilic species
to hydrophilic forms that are easily excretable products as
a result of their conjugation with GSH. Vitamins C and
E and lipoic acid are involved in the termination of the
lipid peroxidation process [19]. The abilities of flavonoids to
scavenge free radicals have also been reported [20]. Some
specialized proteins also function as antioxidants such as
peroxiredoxins, thioredoxins, and glutaredoxins [21]. This
review focuses on the various ways by which exogenous
antioxidants exhibit their antidiabetic effects on diabetes and
its complications especially diabetic neuropathy.

2. Overview of Oxidative Stress and Diabetes

Oxidative stress occurs when the rate of production of
reactive oxygen and nitrogen species in a cell far exceeds their

rate of utilization and conversion to more stable products
leading to cellular and tissue damage. The imbalance of
prooxidants/antioxidant ratio favouring the former causes an
alteration in the normal redox signaling of the cell triggering
impairment in several pathways of the cell’s metabolism,
a critical feature in diabetes [13]. Reactive oxygen and
nitrogen species are highly unstable species which are free
radical or non-free radical compounds that can be either
useful or harmful to the cell. Examples of ROS include free
radicals such as superoxide (∙O

2

−), hydroxyl (∙HO), peroxyl
(∙RO
2

−), hydroperoxyl (∙HRO
2

−), and nonradical species
such as hydrogen peroxide (H

2

O
2

) and hydrochlorous acid
(HOCl). RNS include free radicals like nitric oxide (∙NO−)
and nitrogen dioxide (∙NO

2

−) and nonradicals species such
as peroxynitrite (ONOO), nitrous oxide (HNO

2

), and alkyl
peroxynitrates (RONOO) [19].

Increases in biomarkers of oxidative stress related to
lipid (thiobarbituric acid reactive substances (TBARS), mal-
ondialdehydes (MDA), and isoprostanes), protein (protein
carbonyls andnitrosylated proteins), carbohydrate (advanced
glycated end-products (AGEs)), and DNA (8-hydroxy-
deoxyguanine (8-OHdG)) together with inhibition of the
synthesis of endogenous antioxidants have been observed in
several in vitro and in vivo experimental models of diabetes
[22–24]. Hyperglycemia-induced oxidative stress has been
reported to inhibit the secretion of insulin in pancreatic beta
cell through the activation of an uncoupling protein-2 (UCP-
2) which lowers the ATP/ADP ratio by leaking protons in the
𝛽 cell [25]. ROS has been shown to leak into cell membranes
and damage pancreatic 𝛽 cells [26, 27]. Overproduction of
free radicals like superoxide anion in 𝛽 cells can also lead
to the activation of stress-signaling pathways that can induce
downstream effectors like NF-𝜅B leading to 𝛽 cell apoptosis
and dysfunction ultimately reducing insulin secretion [28,
29].

An experimental study to confirm the effects of high
glucose-induced oxidative stress on the pancreatic 𝛽 cells
and insulin secretion showed that concentrations of insulin
mRNA, insulin content, and insulin release were signifi-
cantly reduced upon exposure to high glucose [30]. One
of the mechanisms of insulin resistance is altered insulin
signaling. Insulin signaling is initiated by the activation
of a specific insulin receptor. Upon binding of the insulin
molecule to 𝛼 subunit of the receptor, the inhibition of
tyrosine autophosphorylation by the 𝛽 subunit is released.
The activated insulin receptor directly phosphorylates insulin
receptor substrates (IRS-1-4) on multiple tyrosine residues.
Tyrosine phosphorylated IRS proteins then act as a binding
site for a variety of signaling molecules that eventually medi-
ate the release and activation of insulin [31–33]. However,
in conditions of increased oxidative stress, stress-responsive
signaling cascades are activated leading to themodification of
IRS proteins by increased serine/threonine phosphorylation
which are subsequently degraded contributing to insulin
resistance [34]. High concentrations of hydrogen peroxide
(H
2

O
2

) have been shown to directly induce insulin signaling
(phosphatidylinositol-3-kinase dependent pathway) leading
to insulin resistance prior to the onset of diabetes [34, 35].
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ROS have been reported in several studies as performing an
important role in insulin resistance in type 2 diabetes and
obesity experimental models [36, 37].

Hyperlipidaemia (abnormal increase in lipid levels) in
the presence of hyperglycaemia generates additional ROS
that are also implicated in 𝛽 cell dysfunction [38]. Excess
free fatty acids have previously been shown to cause ROS
overproduction leading to mitochondrial DNA damage and
pancreatic 𝛽 cell malfunctioning [39]. Mitochondria play a
critical role in regulating the metabolic imbalance seen in
diabetes-induced oxidative stress since it is the organelle
responsible for maintaining the transfer of electrons through
the electron transport chain to molecular oxygen during aer-
obic respiration in cells. This becomes a potential site for the
overproduction of reactive species like H

2

O
2

and ONOO–
which can cross mitochondria membranes and damage
macromolecules in other cellular regions [40]. Also, ∙O

2

−

levels have been reported to increase in the mitochondrial
electron transport chain (ETC) as a result of hyperglycaemia
during diabetes leading to an increase in oxidative stress [41].
Other pathways like synthesis of metabolites (through xan-
thine oxidase pathway), production of neurotransmitters and
serotonin, and detoxification of xenobiotics via cytochrome
P450 system and NADPH oxidase utilize oxygen molecules
with the possibility of ROS formation which add to the
burden of oxidative stress in diabetes [42].

3. Diabetic Neuropathy (DN) and
Oxidative Stress

Severalmicrovascular andmacrovascular complications arise
as a result of the onset and progression of diabetes [43].
These complications affect the eyes (retinopathy), kidneys
(nephropathy), nerves (neuropathy), or heart (cardiovascular
diseases) and are mainly responsible for the increase in mor-
bidity and mortality of diabetics worldwide [44]. DN results
from peripheral nerve dysfunctions involving different parts
of the somatic and autonomic nervous systems which are
the basis for many classifications of the disease [45]. Dia-
betic peripheral neuropathy (DPN) generally encompasses
polyneuropathies and some rare varieties which can be
further subdivided based on differences in onset, duration,
clinical manifestations, and pathophysiology [16, 46].

Oxidative stress (Figure 1) has been implicated in causing
nerve damage in several animal, human, and experimental
models of diabetes [47–51]. The mechanisms involved in
oxidative stress-induced nerve dysfunctions include gener-
ation of reactive oxygen species, increased reactive nitro-
gen species, lipid peroxidation [52, 53], DNA damage, and
reduction in cellular antioxidants [48, 54]. Increased reactive
oxygen and nitrogen species are capable of damaging lipids
present in the myelinated structures of nerves resulting in
the loss of axons and disruption of the microvasculature
in the peripheral nervous system [45]. Oxidative damage
to peripheral nerves causes hyperexcitability in the afferent
nociceptors and central neurons leading to the generation
of spontaneous impulses within the axons and dorsal root
ganglions of the nerves contributing to the neuropathic

pain associated with diabetic neuropathy [55]. Recent find-
ings implicate free radicals in the development of diabetic
neuropathy in addition to the impairment of antioxidant
defense system in type 2 diabetes mellitus patients [15].

High glucose was shown to cause an increase in super-
oxide anion and peroxynitrite ion, which can damage nerves
in diabetic neuropathy [18]. Experimental studies revealed
that high glucose induces apoptosis via a mitochondria-
dependent route in embryonic sensory neurons [56]. Hyper-
glycaemia has been postulated to generate oxidative stress
via several well-studied, interconnected pathways which
ultimately lead to nerve dysfunction essentially by the acti-
vation of downstream signaling pathways involving NF-𝜅B,
mitogen activated protein kinases (MAPK), proinflammatory
cytokines, and gene transcriptions [11]. Some of the pathways
of hyperglycaemia-induced oxidative stress include glucose
autoxidation, advanced glycation end-products (AGEs) over-
production, increased hexosamine flux, activation of dia-
cylglycerol and protein kinase C, and activation of polyol
pathway [11, 57].

3.1. Polyol Pathway. Most of the glucose that enters a cell is
metabolized via glycolysis to give pyruvate; only about 3% is
converted to sorbitol through the polyol pathway. However,
in hyperglycaemic conditions such as diabetes, there is an
increased flux of glucose into the nerves. Whenever glucose
becomes excess, it leads to the saturation of the glycolytic
pathway which subsequently increases the activity of the
polyol pathway to about 30%. The catalytic actions of aldose
reductase and sorbitol dehydrogenase convert the extra
glucose to sorbitol and fructose (Figure 2). Since sorbitol
cannot cross cell membranes, it accumulates in cells causing
hyperosmolarity and concomitant efflux of taurine, myoinos-
itol, and adenosine. This inhibits the biosynthesis of ATP
resulting in reduced activity of Na+/K+ ATPase and protein
kinase C (PKC), impaired axonal transport, and structural
breakdown of nerves. Also, induction of aldose reductase
enzyme depletes NADPH, a requirement for the regeneration
of the cellular antioxidant, reduced glutathione, contributing
to oxidative stress [11, 46, 58, 59]. Ho and colleagues reported
that the peripheral nerves of diabetic mice deficient in aldose
reductase showed reduced oxidative stress when compared
to diabetic mice possessing the enzyme thus verifying the
importance of the polyol pathway in the pathogenesis of
acute diabetic neuropathy [54]. Increased sorbitol path-
way activity also leads to impaired neurotrophic support
[60].

3.2. The AGEs Concept. Under hyperglycaemic conditions,
the primary amino group of protein reacts nonenzymatically
with the carbonyl group of glucose forming Schiff base inter-
mediates through the Maillard reaction. The rearrangements
of these intermediates yieldAmadori products. Further intra-
and intermolecular cross-linking reactions with proteins,
lipids, or DNA lead to the formation of stable, covalent,
and irreversible adducts collectively referred to as advanced
glucose end-products (AGEs) that accumulate within cells
with age [11, 57]. Increased formation of AGEs leads to
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Figure 1: A simplified scheme showing the roles of reactive species and antioxidants in the progression of diabetic neuropathy. AGEs:
advanced glucose end-products; PKC: protein kinase C; PARP: poly-ADP ribose polymerase; ARIs: aldose reductase inhibitors; ROS:
reactive oxygen species; RNS: reactive nitrogen species; ∙O
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−: superoxide radical; ∙HO: hydroxyl radical; ∙RO
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Figure 2: Polyol pathway of hyperglycaemia-induced neuropathy.

the elevation of oxidative stress and subsequently damage
to cells and tissues, an occurrence that has been found
in experimental animals and in humans [61–63]. AGEs
have also been shown to decrease axonal transport within
neurons leading to their degeneration [64]. Similarly, AGEs

can bind to RAGE (receptor for advanced glycated end-
products) activating it and triggering several downstream sig-
naling and inflammatory pathways ultimately contributing to
oxidative stress. AGEs-RAGE interaction elevates oxidative
stress through NADPH oxidase activation, NF𝜅B gene
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expression, and the induction of proinflammatory cytokines
activities [13]. This affects the structural integrity of the
neurons and disturbs nerve blood flow and hence nerve
dysfunction in diabetic neuropathy [46, 65].

3.3. Glucose Autoxidation. The first evidence of the role
of glucose autoxidation in diabetes was reported by Wolff
and Dean [66]. In an environment where hyperglycaemia is
prevalent, excess glucose can undergo enediol rearrangement
to form an enediol radical which is capable of reducing
molecular oxygen to form superoxide anion, a potent radical
implicated in the pathogenesis of diabetes. The enediol
radical can also form AGEs directly by modifying lysine
or arginine amino residues in proteins through the help
of transition metal-catalyzed autoxidation. Glucose can also
generate ∙HO radicals which also contribute to the elevation
of prooxidants that can attack DNA forming stable covalent
adducts that are damaging to the cell [67].

3.4. Hexosamine Flux. Fructose-6-phosphate is an inter-
mediate of the glycolytic pathway which is formed from
glucose-6-phosphate by the enzyme phosphoglucoisomerase.
However, in the presence of high glucose, fructose-6-
phosphate can accumulate, and it is utilized by the hex-
osamine pathway. Here, fructose-6-phosphate is converted to
glucosamine-6-phosphate by catalytic action of the enzyme
glutamine-fructose-6-phosphate aminotransferase (GFAT).
Glucosamine is well documented to increase oxidative stress
in cells via the production of H

2

O
2

[68]. Glucosamine-6-
phosphate is further processed via conjugation reactions with
uridine triphosphate (UTP) to yield uridine diphosphate-N-
acetylglucosamine (UDPGlcNAc). UDPGlcNAc thus formed
can attach to the amino group of serine and threonine
residues of proteins relevant to the elevation of transcription
factor SpI which in turn activates the transcription of growth
factors like TGF𝛼 and TGF𝛽1 and plasminogen activator
inhibitor-1 (PAI-1) [69]. These proteins are involved in
the pathogenesis of diabetes-induced vascular complications
especially in the nerve [46, 70]. Similarly, GFAT enzyme has
been implicated in insulin resistance and hyperinsulinaemia
in type 2 diabetes mellitus [51].

3.5. PKC Activation. Excess glucose in the intracellular
medium results in the accumulation of an intermediate of the
glycolytic pathway, dihydroxyacetone phosphate (Figure 3).
This leads to the formation of glycerol-3-phosphate which
upon conjugation with fatty acids yields diacylglycerol
(DAG). DAG is the most important activator of 9 isoforms
out of 11 of protein kinase C (PKC) although AGE-RAGE
interaction has also been shown to activate it [71]. PKC
activation is relevant to nerve function and the pathogen-
esis of diabetic neuropathy probably through triggering an
intracellular signaling cascade resulting in the elevation of
the expression of transcription factors like NF-𝜅B, proinflam-
matory cytokines like transforming growth activator beta
(TGF𝛽), blood clotting inhibitors like plasminogen activator
inhibitor (PAI), and extracellular matrix proteins [72, 73].
PKC has been reported to promote vascular endothelial

Hyperglycaemia

Dihydroxyacetone 
phosphate

Diacylglycerol

Protein kinase C activation

Activation of ROS
producing reactions

Activation of pro-
inflammation factors

Nerve dysfunction

Figure 3: Hyperglycaemia-induced overactivation of protein kinase
c leads to nerve dysfunction.

cell proliferation by activating phospholipase A
2

and sta-
bilizing vascular endothelial growth factor (VEGF) mRNA
expression [72, 73]. The activation of PKC also induces the
overproduction of ROS and AGEs by the NADPH oxidase
system causing deleterious effects to the cell [74]. PKC can
be structurally regulated depending on the redox status of
the cell; increased oxidants bind to the regulatory domain
promoting its activity while elevated reductants bind to the
catalytic domain inhibiting its activity [46]. PKC activation
has been suggested to play dual roles in diabetic neuropathy,
altering nerve conduction by restricting blood flow when its
activity is low or causing impairment of nerve functions by
affecting the activity of neurochemicals when its own activity
is high [51].

3.6. Other Pathways of Hyperglycemia-Induced Oxidative
Stress. In addition to the aforementioned pathways,
hyperglycaemia-induced oxidative stress also triggers other
multiple, interconnected signal transduction cascades
including poly-ADP ribose polymerase (PARP) induction
[75, 76], mitogen activated protein kinase (MAPK)
overactivation [77, 78], calcium signaling [79], growth factors
induction, phosphoinositide pathway, and stimulating the
enzymes of arachidonic acid metabolism [80–82] which
are all involved in the pathogenesis of diabetic neuropathy.
The different pathways all seem to have a central recurring
effect of oxidative stress in diabetes. Increased ROS and
RNS together with significant reductions in the antioxidant
defense mechanisms within the neurons contribute to the
manifestations of diabetic neuropathy which include nerve
blood flow impairment, endoneurial hypoxia, motor and
sensory nerve conduction impairment, peripheral nerve
degeneration, increased vibration and thermal perception,
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sensory loss, axonal atrophy of large myelinated fibers, and
neuropathic pain.

4. Antioxidants and Diabetic Neuropathy

The important roles played by oxidative stress in mediating
diabetic neuropathy (DN) cannot be overemphasized and
hence it is not surprising to note that antioxidants have
occupied the mainstream in the search for an efficient and
efficacious treatment of nerve dysfunction in diabetes within
the past decade. An increasingly large number of antioxidants
and antioxidant-mimicking agents have been tested in vivo
and in vitro in animal experimental models [83–89]. Exam-
ples of antioxidants noteworthy ofmention are vitamins A, C,
and E, curcumin,𝛼-lipoic acid,melatonin, acetyl-L-carnitine,
and flavonoids. Among antioxidants that have progressed to
human clinical trials, few are currently at different stages of
evaluation while others have been withdrawn from the study
due to lack of efficacy or safety concerns [11]. At present, no
antioxidant treatment has been approved by theUnited States
Food and Drug Administration for DN although 𝛼-lipoic
acid, which seems to be the leading antioxidant in clinical
trials, has been approved in some European countries [11, 90–
92].

5. Antioxidant Strategies in
Diabetic Neuropathy

Generally, antioxidants work to achieve two main goals:
reduce the harmful effects of free radicals either by preventing
their formation or by scavenging and inactivating them or
boost the natural defense systems by inducing the activities
of antioxidant enzymes and regenerating other proteins
involved in antioxidant pathways. However, there are several
strategies employed in the use of different antioxidants to
combat nerve dysfunction in diabetes. The choice of strategy
depends on the type, structure, and concentration of the
antioxidants. Also, the stage, severity, prevalence, and pri-
mary causes of the disease are equally important. Some of the
strategies are summarized below.

5.1. Strategies Targeted Directly against ROS and RNS.
Diabetes-induced nerve dysfunction is established to be
caused by an increase in the overproduction of ROS andRNS.
Themechanisms involved have been discussed in detail in the
previous sections.Themain proof of oxidative stress involve-
ment in DN was the discovery that excess free radicals were
produced in DN experimental animal models and that there
was a reduction in the activities of endogenous antioxidant
enzymes, and these effects were ameliorated upon treatment
with antioxidant correlating with the alleviation of symptoms
of DN [83, 84, 93, 94]. It was therefore hypothesized that
antioxidants or agents that directly scavenge free radicals
can reduce the formation or progression of ROS reactions
which in turn decreases oxidative stress thereby improving
DN conditions. Based on these preclinical studies, clinical
trials were embarked on to test some novel antioxidants in
humans.However, there have been disparities between results

obtained from animal and human studies, as majority of
the antioxidants performed inadequately in clinical trials.
Some of themost important antioxidants include alpha-lipoic
acid, vitamins A, C, and E, acetyl L-carnitine, taurine, and
melatonin.

5.1.1. Alpha-Lipoic Acid (ALA). Alpha-lipoic acid (ALA) is
thought to be the most successful antioxidant in clinical
trials. It is the only antioxidant capable of dissolving in both
water and fats [95]. ALA can be biosynthesized in plants
and animals where it is metabolized to dihydrolipoic acid
(DHLA) upon uptake into cells. Both ALA and DHLA are
potent free radical scavengers that are also involved in the
regeneration of vitamins C and E and oxidized glutathione
within the cell [95, 96]. ALA is also a cofactor for a number of
mitochondrial enzymes [96]. In experimental models, ALA
was reported to decrease lipid peroxidation, reduce oxidative
stress, and improve nerve blood flow and distal, sensory, and
motor nerve conduction in diabetic animals [97, 98]. The
role of ALA in ameliorating the symptoms of DN has been
demonstrated in several clinical trials [18, 90–92, 95, 99–
103]. ALA is known to reduce oxidative stress by inhibiting
hexosamine and AGEs pathways [101]. In a recent report,
ALA600SOD (an oral formulation of ALA and superoxide
dismutase) improved symptoms and electroneurographic
parameters among subjects with DN [104]. These evidences
facilitated the licensed use of ALA (600mg/day) in Germany
to treat symptomatic DN [105].

5.1.2. Vitamins A, C, and E. Dietary antioxidant vitamins
such as vitamins A, C, and E detoxify free radicals directly
and also interact with recycling processes to create reduced
forms of the vitamins [106]. Antioxidant vitamins have a
number of biological activities such as immune stimulation
and prevention of genetic changes by inhibitingDNAdamage
induced by the reactive oxygen metabolites [107]. Over the
past decade, a lot of attention has been given to vitamins
C and E because of their free radical scavenging proper-
ties. There are several reports on their important roles in
protecting cells from oxidative damage [19, 21]. Vitamin E
(tocopherols) reacts with hydroxyl radical to form a stabi-
lized phenolic radical which is reduced back to the phenol
by ascorbate and NAD(P)H dependent reductase enzymes
[19]. Vitamin E has been reported to alleviate symptoms
of diabetes and diabetes-induced complications in animals
through reduction in oxidative stress biomarkers [108–111].
Niedowicz and Daleke [112] reported that the preventive
effect of vitamin E supplementation in diabetic complications
is possibly through a decrease in lipid peroxidation.

In clinical trials, vitamin E did not however show a
significant relief of the symptoms of microvascular and
macrovascular complications despite reducing oxidative
stress biomarkers in the subjects [113–117].The lack of perfor-
mance of vitamin E may not however be unconnected to the
fact that the design of each study was not targeted directly at
diabetes end-points such as<7%glycated haemoglobin levels,
<130/180 blood pressure, avoiding hypoglycaemic events,
and maintaining weights [118] but rather at complications
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that may have multiple causal factors. Emphasis must there-
fore be directed at DN to realize its immense benefits.
In streptozotocin-induced diabetic rats, vitamin E reduces
neuropathic pain by the modulation of oxidative stress in the
dorsal root ganglia [119]. There is paucity of information on
the role of vitamin C in DN despite evidence that it normal-
izes sorbitol concentration in the blood [117], scavenges lipid
peroxides, and regenerates reduced glutathione in diabetes
[120–124]. Similarly, from available literature, there is little
information on the role of vitamin A in the management
of DN. More research is needed to ascertain the effects of
vitamins A, C, and E in diabetes and DN.

5.1.3. Flavonoids. Flavonoids are the largest and the most
important group of polyphenolic compounds in plants [125]
and are found in fruits, vegetables, grains, bark, roots, stems,
flowers, tea, and wine [126]. Flavonoids are made up of
several subclasses that can scavenge free radicals and chelate
metals [127, 128]. Flavonoids such as proanthocyanidin [129],
luteolin [130], hesperidin [131], fisetin [132], epigallocatechin-
gallate [133], rutin [134], and quercetin [135] have been
shown to possess antioxidant activities which protect against
diabetic nephropathy. Other antioxidants are taurine, acetyl
L-carnitine, and N-acetylcysteine which have been demon-
strated to reduce the progression of DN [11, 46, 105, 130].

5.2. Strategies Targeted against Hyperglycemia. Glycaemic
control may likely be the most effective treatment to delay
the onset and slow the progress of DN [105]. Once glucose
levels are returned to normal in the blood, hyperglycemia-
induced overproduction of ROS is brought to a halt, ame-
liorating the deleterious consequences of oxidative stress in
neurons. Vitamin E supplementation reduced blood glucose
and glycated haemoglobin levels significantly [136, 137] and
had a neuroprotective effect on the total myenteric popu-
lation, without affecting intestinal area or thickness of the
intestinal wall or muscular tunic [137]. Flavonoids such as
epigallocatechin gallate [138], rutin [139], aspalathin [140],
naringerin [141], quercetin and chrysin [130, 142], and dios-
min [143] have been reported to have blood glucose lowering
effects. Several natural occurring plants and herbal-based
products with antioxidant properties have been reported
to normalize glucose parameters in experimental models.
Nadiq and colleagues have reported the antihyperglycemic
property of Tinospora cordifolia in animals and also pre-
vention of hyperalgesia in experimental DN probably by
reducing oxidative stress and inhibiting the aldose reductase
enzyme [144]. Momordica charantia, a naturally occurring
antioxidant and antihyperglycaemic plant, has been reported
to prevent neuronal damage in diabetic mice as well as
ameliorate DN [145]. Other plants with known antioxidant
and antihyperglycaemic properties in traditional folklore are
Allium sativum [146], Artemesia afra [147, 148], Prosopis
glandulosa [149], Aloe vera, Camellia sinensis, and Ocimum
sanctum [150]. Research should be conducted to select and
screen plant-based nutraceuticals in order to isolate the active
constituents that can be further processed to find a potent
remedy for DN.This approach can actually reduce treatment

costs because traditional medicinal plants are believed to be
more affordable when compared to their orthodox counter-
parts.

5.3. Strategies Targeted against Individual Oxidative Stress
Pathways. The pathways of hyperglycaemia-induced oxida-
tive stress discussed earlier are potential therapeutic targets
in DN. Some of the interventions have resulted in specific
therapies, for example, aldose reductase inhibitors, PKC
inhibitors, and anti-AGE agents.

5.3.1. Aldose Reductase Inhibitors. In the preceding sections
wehave discussed the importance of aldose reductase enzyme
in the accumulation of sorbitol and fructose. Therefore,
aldose reductase inhibitors (ARIs) are agents that reduce the
flux of glucose into the polyol pathway thereby preventing
the harmful effects of excess sorbitol and fructose in neurons.
Results from in vivo and in vitro animal studies highlighted
the positive effect of inhibiting aldose reductase on DN [151,
152]. These studies have been the foundation for embarking
on several clinical trials with ARIs with antioxidant activities
such as Fidarestat (SNK-860) [153], Epalrestat [154, 155], and
Ranirestat (AS-3201) [156, 157]. Among the ARIs that have
made it to clinical trials, Epalrestat was licensed in Japan
while others (e.g., Tolrestat (AY-2773), Zenarestat (FK-366;
FR-74366), andPonalrestat) werewithdrawndue to inefficacy
or safety concerns [45, 158]. ARIs prevent the progression of
DN [159], enhance suralmotor and sensory nerve conduction
velocities (NCV) [156, 157, 160], and improve wrist and ankle
F-wave latency together with alleviating neuropathic pain
[154].

5.3.2. PKC Inhibitors. PKC is involved in the activation of
key regulatory proteins responsible for nerve function and
synthesis of neurotransmitters. Inhibiting PKC was reported
to suppress neuropathic pain [161, 162]. Ruboxistaurin, a
specific inhibitor of PKC-1b that possesses antioxidant effects,
improves nerve conduction velocity (NCV) and endoneurial
blood flow in diabetic rats [163]. In clinical trials, Ruboxistau-
rin reduces the progression of DN [164] but fails to achieve
its primary end-points, vibration detection threshold (VDT)
and symptoms reduction.

5.3.3. Anti-AGE Agents. Anti-AGE agents prevent the for-
mation and accumulation of AGEs. They also counter-
act the AGE-RAGE interactions that might aggravate the
oxidative stress damage in DN. Examples are Benfotiamine,
Aminoguanidine, and Aspirin which are known for their
antioxidant properties through the inhibition of AGE forma-
tion [58, 165].

Benfotiamine has been reported to increase transketo-
lase enzyme activity which directs AGE substrates to the
pentose phosphate pathway resulting in the reduction of
hyperglycaemic damage. It also inhibits the increase in
UDP-N-acetylglucosamine (UDP-GlcNAc) that induces the
hexosamine pathway activity ultimately reducing tissueAGEs
[166, 167]. Benfotiamine improves NCV and endoneurial
blood flow in diabetic rats [168]. In combination with
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pyridoxamine and cyanocobalamin, Benfotiamine improves
the vibration perception threshold, motor function, and
symptom score [169]. Aminoguanidine has been reported to
react with 3-deoxyglucosone, a precursor of AGE, thereby
trapping the reactive carbonyls and preventing the formation
of AGEs although it has been withdrawn from clinical trial
as a result of toxicity [170]. Aspirin has been reported to
inhibit the production of pentosidine, a cross-linking AGE,
by scavenging free radicals and chelating metal ions in
collagen incubatedwith glucose in vitro [171]. 𝛾-linolenic acid
also showed some improvements in neuropathy tests [45].

5.4. Strategies Targeted at Mitochondria. It has been demon-
strated that excess superoxide anion radicals (∙O

2

−), hydroxyl
radicals (∙HO), and hydrogen peroxide (H

2

O
2

) are produced
during the generation of ATP in mitochondria under hyper-
glycaemic conditions contributing to increased oxidative
damage [172, 173]. In the oxidative phosphorylation process,
electrons are transferred by electron carriers NADH and
FADH

2

through four complexes in the inner mitochondrial
membrane to oxygen which is then reduced to water; up
to 4% of the oxygen can be converted to ∙O

2

− [29]. In a
diabetic state, the rate of glycolysis is increased and ∙O

2

− is
generated continuously at complex II in the mitochondria
respiratory chain [174]. It has been postulated that the
excess generation of ∙O

2

− may be the initiation process of
oxidative stress-induced diabetic complications like diabetic
neuropathy through the overactivation of MAPK, PKC,
and NAD(P)H oxidase [42]. In vitro studies on sensory
neurons have revealed that high concentrations of glucose
promote the mitochondrial-dependent pathway of apoptosis
and oxidative stress [56]. Hyperglycaemia has been reported
to cause mitochondrial dysfunction in the sensory neurons
of streptozotocin-diabetic rats [175, 176]. Also, the mitochon-
drial electron transport chain activity is altered in the dorsal
root ganglion of diabetic rats [44].

The mitochondrion houses the highest concentration
of antioxidants in cells emphasizing its importance
to the redox status in the human body [177]. The
overexpression of endogenous antioxidants like SOD2 [178],
peroxiredoxin-3 [179], and peroxiredoxin-5 [180] protected
against mitochondrial oxidative damage and myocardial
dysfunction. Ernster and colleagues reported that exogenous
administration of alpha tocopherol and N-acetylcysteine
reduces mitochondrial oxidative damage in vitro [181]. In
diabetes, coenzyme Q10 (a mitochondrial antioxidant) has
been reported to show promising therapeutic potential
[182]. However, low bioavailability of these antioxidants
in mitochondria in vivo has been a problem [183, 184].
To overcome this challenge, antioxidant agents have been
developed to target the mitochondria by conjugation
to lipophilic cations exploiting the negative membrane
potential (about −140mV) of the organelle [177]. This
strategy has been successful using lipophilic cations like
triphenylmethylphosphonium (TPMP) conjugated with
coenzyme Q10 as MitoQ10 [11, 183, 184] or with vitamin E
as MitovitE [185, 186]. Also, TEMPOL (4-hydroxy-2,2,6,6-
tetramethylpiperidine-1-oxy radical) as MitoTEMPOL,

a potent antioxidant that scavenge ∙O
2

−, has been reported to
concentrate in the mitochondria (about 1000-fold) [187, 188]
similar to PBN (alpha-phenyl N-tertiary-butyl nitrone) as
MitoPBN [189].

Szeto-Schiller (SS) peptides, a novel class of peptides,
have the capacity to selectively enter the inner mitochondrial
membrane and have been investigated for their antioxidant
properties in neurodegenerative diseases [190, 191]. Uncou-
pler proteins (UCPs) are normally lipophilic weak acids that
are capable of lowering the membrane potential gradient and
may reduce the production of ∙O

2

− from the mitochondria.
Therefore, agents that induce the activities of endogenous
uncouplers (UCPs) or administration of low dose artifi-
cial uncouplers may become important therapeutics against
mitochondria-derived ROS [172, 192].

NADPH oxidase complex mainly catalyses the transfer
of electrons from NADPH to molecular oxygen but also
generates ∙O

2

− and H
2

O
2

targeted at destroying pathogens
and bacteria [193]. Under hyperglycaemic environment,
NADPH oxidase produces elevated levels of ROS that can
cause mitochondrial dysfunction leading to more generation
of ROS thereby forming a cycle of ROS production [177].
NADPH oxidase together with nitric oxide synthase has been
reported to increase ∙O

2

− levels in the blood vessels of type
2 diabetes subjects [194]. High glucose increases ROS via
the upregulation of NADPH oxidases in the diabetic kidney
vasculature [195].

6. Conclusion

There has been lack of a comprehensive review that covers
all the current antioxidant strategies used to manage diabetic
neuropathy and which includes recent advances in these
strategies. This review therefore gives a comprehensive treat-
ment of recent advances in these antioxidant strategies and
includes those that have dual antihyperglycaemic/antioxidant
end-points.The potential of these strategies in managing DN
is also assessed by a review of the results of experimentswhere
such strategies have been employed. These results show the
success of different strategies in ameliorating oxidative stress
by scavenging oxidants or inhibiting pathways that generate
them. Such studies have generally focused on particular end-
points; thus, they are not holistic in the end-points they
explore for each strategy. Secondly there is little combina-
tional application of strategies although some attempts have
been made, this approach seems essential since diabetes
mellitus is a heterogeneous disease with multiple aetiologies.
Thirdly the progression of these strategies to clinical trials
has been limited despite evidence from nonclinical studies
showing beneficial effects.

A major characteristic of diabetes is hyperglycaemia
which underlies several mechanisms involved in the genera-
tion of oxidative stress that eventually leads to DN. Oxidative
stress has been implicated in the onset and development of
impaired insulin secretion and insulin resistance, the two
main mechanisms involved in diabetes. Hyperglycaemia-
induced oxidative stress remains the most understoodmeans
of progression of diabetes to diabetic neuropathy. Therefore,



BioMed Research International 9

therapies based on combating hyperglycaemia and oxidative
stressmay serve as safe, cost-effective solutions in the preven-
tion/treatment of diabetes and diabetic neuropathy.

This may be an opportune time to holistically explore
the use of antioxidants in solving the lingering problem of
diabetic neuropathy. Two antioxidant strategies may hold the
key. First is the administration of traditional antioxidants,
for example, vitamins A, C, and E and alpha lipoic acid,
that have the capacity to rapidly scavenge a variety of
free radicals in animal models and human clinical trials of
diabetic neuropathy. Combinational approaches including
such components as vitamins A, C, and E, alpha lipoic acid,
and medicinal plant products with antihyperglycaemic and
antioxidant properties need to be explored. The advantages
of such combinations include multiplicity of effects targeting
different stages in the progression to DN, natural occurrence
with some components being dietary constituents, and a
generally low toxic potential. Another important advantage
of such a strategy is that a more complete range of end-points
can be assessed and for this reason, this strategy should be
the focus of clinical trials. Second is the effective delivery of
therapeutic doses of antioxidant agents into mitochondria,
the most important site for the production of ROS in cells.
This strategymay either drastically reduce the concentrations
of ∙O
2

−, ∙HO, andH
2

O
2

thatmay initiate oxidative damage to
cells or induce the activities of the mitochondria antioxidants
to “mop up” the ROS and RNS produced.
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