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Tuberculosis (TB) is an infectious disease caused by many strains of mycobacteria, but commonlyMycobacterium tuberculosis. As
a possible method of reducing the drug resistance ofM. tuberculosis, this research investigates the inhibition of Folylpolyglutamate
synthetase, a protein transcript from the resistance association gene folC. Aftermolecular docking to screen the traditional Chinese
medicine (TCM) database, the candidate TCM compounds, with Folylpolyglutamate synthetase, were selected by molecular
dynamics.The 10,000 ps simulation in associationwith RMSDanalysis and total energy and structural variation defined the protein-
ligand interaction.The selected TCMcompounds Saussureamine C,methyl 3-O-feruloylquinate, and Labiatic acid have been found
to inhibit the activity of bacteria and viruses and to regulate immunity. We also suggest the possible pathway in protein for each
ligand. Compared with the control, similar interactions and structural variations indicate that these compounds might have an
effect on Folylpolyglutamate synthetase. Finally, we suggest Saussureamine C is the best candidate compound as the complex has a
high score,maintains its structural composition, and has a larger variation value than the control, thus inhibiting the drug resistance
ability ofMycobacterium tuberculosis.

1. Introduction

Mycobacterium tuberculosis (M. tuberculosis) is the principle
causative agent in the development of tuberculosis (TB). TB
typically attacks the lungs and can be spread from person to
person through the air [1] when patients with an active TB
infection cough, sneeze, spit, or otherwise transmit respira-
tory fluids. The mycobacteria may remain latent, causing the
host to become weak and maybe develop anorexia. When
M. tuberculosis becomes active the patients will develop a
chronic cough with blood-tinged sputum, fever, night sweats,
and weight loss. At this time the disease is infective. In 2012,

there were estimated 8.6 million cases of TB worldwide and
1.3 million dead people from the infection (World Health
Organization).

Due to the development of drug resistance by M. tuber-
culosis, coupled with the necessity for long-term treatment,
it has become difficult to cure this disease by drugs [1, 2].
A recent report in Nature Genetics indicates that the drug
resistance genes gyrA, rpoB, rpoC, rpsL, katG, folC, thyA,
embB, Rv3806c, and rrs are essential forM. tuberculosis. From
the above genes, folC and Rv3806c remain uninvestigated [3].

Computer-aided drug design (CADD) is a popular in
silico simulation technique due to its speed and low cost.
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Figure 1: The disorder region prediction and binding site detection. The green curve is the disorder disposition of each amino acid, and the
red lines are the residues of the important amino acids.

The main investigations for CADD are structure-based and
ligand-based. In this investigation we use molecular docking
and molecular dynamics (MD), two aspects of structure-
based drug design, to analyze protein structural variations
during the complex interactions [4–9].

Personalized medicine and biomedicine have recently
been attracting much attention [10], especially in areas such
as the analysis of regional disease [11], clinical diagnoses,
disease associated mutations [12]. And, as it is well known
throughout the Asian region, traditional Chinese medicine
(TCM) is the main personalized medicine resource.

The TCM Database@Taiwan (http://tcm.cmu.edu.tw/) is
the world’s largest TCM database [13]. In this database the
molecular structure and bioactivity of 61,000 TCM com-
pounds are available for screening and many applications
of TCM have been identified, such as insomnia treatment
[14], pigmentary disorders treatment [15], Parkinson’s disease
prevention [16], EGFR inhibition [17], inflammation inhibi-
tion [18], pain relief [5], and antivirals [19–23]. Today, the
screening of TCM compounds from the database is possible
by cloud-computing web server [24, 25].

Based on the above research, this study uses the CADD
techniques of molecular docking and molecular dynamics to
define the protein-ligand interactions and thus reports puta-
tive compounds for the inhibition of folC.

2. Materials and Methods

2.1. Data Collection. The Accelrys Discovery Studio 2.5 (DS
2.5) was used to perform molecular docking. The folC
sequence ofM. tuberculosis was searched on Uniprot (http://
www.uniprot.org/, O53174) and the 3D crystal structure
(PDB: 2VOS)was download fromPDB (http://www.rcsb.org/
pdb/home/home.do). The docking site was defined as the

dihydropteroate binding site, and thus dihydropteroate was
chosen as the control [26].

2.2. Disorder Protein Detection. A disordered region of a
protein plays an important role in drug design due to the
character of the docking site structure affecting the suitability
of the complex and the drug efficiency. The floC disorder
region could be predicted from the database of protein disor-
der (DisProt, http://www.disprot.org/) [27], and comparisons
between the docking site and the disorder region could help
to define the drug effect on the protein [7, 28].

2.3. Molecular Docking. Accelrys Discovery Studio 2.5
(DS2.5) software was used to process the molecular docking
produced in the CHARMm force field [29] by LigandFit, a
receptor-rigid docking algorithm program [30]. The protein
transcript from folC has shown that Folylpolyglutamate
synthetase, dihydropteroate, and tetrahydrofolate could all
dock with the protein. Based on the calculation of Ligplot
[31, 32], the complexes formed from the control with the
protein product of folC and the top three TCM compounds
with the protein product of folC contained hydrophobic
interactions.

2.4.MolecularDynamics Simulation. After preparation based
on the reference force field [33] of GROMACS 4.5.5 [34]
by using SwissParam (http://www.swissparam.ch/) [35], the
ligands were subjected to molecular dynamics simulation.
The Folylpolyglutamate synthetase with ligands was placed
into a simulation box with appropriate buffer, or other solu-
tions, at a minimum distance of 1.2 Å from the complex. The
solution for simulation was based on the TIP3P water model
in which sodium and chloride ions were added to neutralize
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Table 1: Scoring functions of the top three compounds and the inhibitors of folC.

Compounds Plants -PLP1 -PLP2 Dock score
Saussureamine C Saussurea lappa Clarke 77.12 69.11 134.058
Methyl-3-O-feruloylquinate Phellodendron amurense Rupr. 94.26 93.3 132.524
Labiatic acid Rosmarinus officinalis L. 89.42 89.08 128.436
Dihydropteroate∗ 96.11 79.59 29.675
∗Control.
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Figure 2: The 2D structure of control and candidate TCM compounds. (a) Dihydropteroate, (b) Saussureamine C, (c) methyl 3-O-feru-
loylquinate, and (d) Labiatic acid.

complex charges. The MD of GROMACS 4.5.5 had three
steps: minimization, equilibration, and production. After
minimization with the steepest descent method for 5,000
steps, the structures were transferred forMD simulation.The
electrostatic interactions were based on the particle-mesh

Ewald (PME) method [36] which calculates each time step at
2 fs and the numbers of steps were repeated 5,000,000 times.
Under the 100 ps constant temperature (PER ensemble), the
simulation was equilibrated by the Berendsen weak thermal
coupling method.
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Figure 3: The docking poses of ligands. (a) The crystal structure of Folylpolyglutamate synthetase and the docking site, (b) dihydropteroate,
(c) Saussureamine C, (d) methyl 3-O-feruloylquinate, and (e) Labiatic acid.
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Figure 4: Ligplot illustrations of the hydrophobic interactions. (a) Dihydropteroate, (b) Saussureamine C, (c) methyl 3-O-feruloylquinate,
and (d) Labiatic acid. The deep red color of the hydrophobic interactions indicates a high frequency in all ligand interactions.

After a MD simulation time of 10,000 ps, the protocols in
Gromacs used the MD data to analyze the MD trajectories,
RMSD, energy variations, and pathway analysis.

3. Results and Discussion

3.1. The Detection of Disorder Protein. The disordered pro-
tein is intrinsically an unstructured protein, and therefore

the docking site will consist of a disordered region that will
create challenges for drug docking, and the complex will
stabilize only with difficultly. In recent references [7, 28],
the disordered protein cannot be established as a common
domain; thus a drug docking to a disordered region might
have lower side effects. On the other hand, a commondomain
for a similar structure will allow the drug to dock to the
protein easily butmay have an effect on other tissues and thus
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Figure 5: Measures of the MD trajectories. (a) Complex RMSD, (b) ligand RMSD, and (c) total energy.

create side effects. This disorder for drug design is not a bad
choice and should not be identified as difficult work.

The important amino acids around the docking site of
the synthetase protein are Asn75, Gly76, Lys77, Thr78, Ser79,
His299, Asn303, Arg340, Ala354, Ala355, and His356 and
are defined as a nondisordered region (Figure 1). From this
result, and the understanding of disorder, the compounds
and Folylpolyglutamate synthetase could combine as a stable
complex.

3.2. Molecular Docking. The top three TCM compounds
based on the ranking of docking byDiscovery Studio 2.5 were
selected as candidate compounds for molecular dynamics
investigation. These compounds and their botanical sources
are listed in Table 1.

The structures of the control drug and the selected
compounds Saussureamine C, methyl 3-O-feruloylquinate,
and Labiatic acid are presented in Figure 2. The compound
with the highest docking score, Saussureamine C, which
is extracted from Saussurea lappa Clark, is also known as
an antiulcer medication [37] and has been used to pre-
vent breast cancer cell migration [38], represses inflamma-
tory responses [39], has antihepatotoxic activity [40], and
regulates immunity [41]. The compound ranked second,
methyl 3-O-feruloylquinate, derived from Phellodendron
amurense Rupr., has been assessed for antiviral treatment
of H5N1 infections [42], the regulation of fatty acids [43],
its role in the protection of human osteoarthritic cartilage
[44], the treatment of Alzheimer’s disease [45], as an anti-
inflammatory [46] and as an antimicrobial, activity against

herpes simplex virus type 1 [47], and its effect on the human
immune response [48, 49]. The compound ranked third,
Labiatic acid, which is derived from Rosmarinus officinalis
L., has been shown to improve memory impairment [50], as
well as having anti-inflammatory activity [51], being able to
attenuate oxidative stress and reduce blood cholesterol [52],
and having hypoglycemic and hepatoprotective activity [53].
The preceding references indicate these compounds could
regulate immunity, be antimicrobial and antiviral and thus
may be successful candidate compounds for the inhibition of
the activity of bacteria and viruses, and may have the ability
to modify drug resistance.

The docking poses (Figure 3) and hydrophobic interac-
tions (Figure 4) could help with the identification of impor-
tant amino acids. The results in Figure 3 show the docking
poses and the amino acids around docking site that interact
with the ligands.The amino acidsAsn75, Gly76, Lys 77,Thr78,
Ser79, Asn303, Arg340, and Asp353 have been defined in
Uniprot as important binding sites. These amino acids are
always present during interactions with ligands, not only in
docking possess but also in hydrophobic interactions. This
result confirms that the docking site is correctly defined as
the functional domain of the protein.

3.3. Molecular Dynamics Simulation. Variation in the com-
plex RMSD, ligand RMSD, and total energy can help ana-
lyze the situation during MD simulation (Figure 5). From
Figure 5 it can be seen that the RMSD of the complex and
ligand is around, or lower than, 0.2 nm. This result indicates
that the protein, ligand, and their complex are stable and
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Figure 6: The clustering of RMSD. (a) Dihydropteroate, (b) Saussureamine C, (c) methyl 3-O-feruloylquinate, and (d) Labiatic acid. In the
upper triangle the color indicates the RMSD difference between time on the 𝑥-axis and 𝑦-axis. Within the lower triangle the red triangles
indicate the same group based on similar RMSD.
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for methyl 3-O-feruloylquinate and then turning 180∘ from the front to the back is presented in right.

that their position and structural variations are not too
large. The total energy tends to the range between −254.5
and −255.5 103 kcal/mol. From these results we suggest this
simulation will balance quickly according to the stability
characteristics of the protein.

Clustering assists in grouping the data based on RMSD
and thus defines similar structures as belonging to the same
group (Figure 6). These results demonstrate that there are
some groups which are larger than the primary candidate.
This implies that as the simulations tend to balance and thus
the complexes have lower variation and similar structure,
they become part of the same group. In our previous research
we found there were commonly a lot of small groups under
5,000 ps. This interesting situation indicates this protein is
stable enough during interactions.

The RMSF calculates the average RMSD focus of each
amino acid in the completeMD simulation (Figure 7). In this
result, we find the amino acid regions 24, 139–142, 203–208,
and 455–460 have large variations. That the defined docking
site is not in these regions means that the docking poses will
not change significantly while the protein-ligand interactions
are mobile. If the RMSF is similar, then the efficacy of com-
pounds may be the same as the control.

Next we discuss the structural variations between pro-
tein-control interaction and protein-compound interaction
(Figures 8–11). Figure 8(a) shows that Arg340 formed an H-
bond with the ligand (distance <0.3 nm) at 200 ps. This sug-
gestsArg340mayhave function in protein-ligand interaction.
From Figure 8(b) we can see that the variable region of the
protein upper subunit will rotate counterclockwise, while
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the other subunit rotates clockwise. In the complete protein,
there is only positional variation to transform the receptor
site for ligand interaction.

In Figure 9(a), His299 produces H-bonds at an early
time while Gly360 produces H-bonds at a later time. We
suggest His299 might have an effect on the ligand target and
Gly360might have a protein function after the ligand interac-
tion. Similar to the control, the primary candidate compound
has the same variation in that the upper subunit rotates
counterclockwise and the other subunit rotates clockwise.
The variation value in the complex is larger than the control
and thus our suggestion is that Saussureamine C might have
a stronger effect on the protein.

In Figure 10(a), it is interesting that both Asn303 and
Asp353 produce H-bonds during the MD simulation but
one of the differences is that the H-bond of Asn303 does
not change but the H-bond of Asn303 will exchange two
atoms. We think the function of Asn303 may have an effect
on the target ligand and that Asp353 may have an effect on
the interaction. This complex also has a similar positional
variation as the control, but in variation 1 the loop becomes a
short helix that might make the protein different.

In Figure 11(a), the H-bond frequency is greater than in
other compounds, indicating that Labiatic acid may have
a higher activity in this protein. The variation of Arg340
in the MD simulation and Glu298 produce H-bonds from
1,500 ps, indicating that these two amino acids may have a
great effect on the protein function. In Figure 10(b), besides
the positional variation being similar, variation 1 is present as
a short helix loss.

Pathway definition is based on the calculation of caver
3.0 to find out the path interprotein during MD [54]. These
results indicate the different pathways deined form the ligand
structure and protein variation caused by interaction (Figures
12 to 14). In Figure 12, this result indicates the top 4 length
pathways for dihydropteroate. But in these pathways, the
third and fourth are in protein structure not in docking
site. Actually, the ligand could not move through protein
structure even the range of path could allow ligand pass;
thus we suggest pathways 1 and 2 are the true pathways for
dihydropteroate. In Figure 13, we also find out the top 4 length
pathways in folC for Saussureamine C but we suggest only
the first and the fourth are possible pathways. Finally, we can
define the first and the third pathways as possible pathways
for methyl 3-O-feruloylquinate (Figure 14). In the pathway
calculation, there is no pathway for Labiatic acid. We suggest
the Labiatic acid makes protein variation; then the path is not
larger or longer enough for ligand.

4. Conclusion

In the analysis of docking, this research indicates that the
docking site and the ligand dock to protein are correct based
on the amino acids interactions. The RMSD, energy, cluster-
ing, and RMSF show that Folylpolyglutamate synthetase is a
stable protein according to low variation during interaction,
with H-bonding providing appropriate assistance. We sug-
gest Glu298, Asn303, Arg340, and Asp353 are important in

the interaction based on the high frequency and stability dur-
ing MD simulation. The structural variation shows that the
conformation variation is focused on the protein character
rather than the ligand affection. Finally, although the selected
compounds are similar to the control in docking, hydropho-
bic interactions, and structural variations, we suggest that
Saussureamine C is the best candidate for the complex as it
has a high score, maintains its structural composition, and
has a greater variation value than the control.

Conflict of Interests

The authors declared that there is no conflict of interests.

Authors’ Contribution

Tzu-Chieh Hung, Kuen-Bao Chen, and Wen-Yuan Lee con-
tributed equally.

Acknowledgments

The research was supported by Grants from the National
Science Council of Taiwan (NSC102-2325-B039-001 and
NSC102-2221-E-468-027-), Asia University (ASIA100-CMU-
2, ASIA101-CMU-2, and 102-Asia-07), and China Medi-
cal University Hospital (DMR-103-058, DMR-103-001, and
DMR-103-096).This study is also supported in part byTaiwan
Department of Health Clinical Trial and Research Center of
Excellence (DOH102-TD-B-111-004), Taiwan Department of
Health Cancer Research Center of Excellence (MOHW103-
TD-B-111-03), and CMU under the Aim for Top University
Plan of the Ministry of Education, Taiwan. Finally, our grati-
tude goes to Dr. TimWilliams, Asia University.

References

[1] R. Uppuluri and I. Shah, “Partial extensively drug-resistant
tuberculosis in an HIV-infected child: a case report and review
of literature,” Journal of the InternationalAssociation of Providers
of AIDS Care, vol. 13, no. 2, pp. 117–119, 2014.

[2] J. L. Dos Santos,M.M. Lima, A. B. Trindade, F. Carnavalli, A. C.
Melchior, and C.M. Chin, “Tuberculosis: challenges to improve
the treatment,” Current Clinical Pharmacology, 2013.

[3] H. Zhang, D. Li, L. Zhao et al., “Genome sequencing of 161
Mycobacterium tuberculosis isolates fromChina identifies genes
and intergenic regions associated with drug resistance,” Nature
Genetics, vol. 45, no. 10, pp. 1255–1260, 2013.

[4] H.-J. Huang, H. W. Yu, C.-Y. Chen et al., “Current develop-
ments of computer-aided drug design,” Journal of the Taiwan
Institute of Chemical Engineers, vol. 41, no. 6, pp. 623–635,
2010.

[5] W. I. Tou, S.-S. Chang, C.-C. Lee, and C. Y.-C. Chen, “Drug
design for neuropathic pain regulation from traditional Chinese
medicine,” Scientific Reports, vol. 3, p. 844, 2013.

[6] C. Y.-C. Chen, “A novel integrated framework and improved
methodology of computer-aided drug design,” Current Top-
ics in Medicinal Chemistry, vol. 13, no. 9, pp. 965–988,
2013.



BioMed Research International 13

[7] C. Y.-C. Chen and W. I. Tou, “How to design a drug for the
disordered proteins?” Drug Discovery Today, vol. 18, no. 19-20,
pp. 910–915, 2013.

[8] S. C. Basak, “Recent developments and future directions at
current computer aided drug design,” Current Computer-Aided
Drug Design, vol. 9, no. 1, p. 1, 2013.

[9] C. Y.-C. Chen, “Weighted equation and rules—a novel concept
for evaluating protein-ligand interaction,” Journal of Biomolec-
ular Structure & Dynamics, vol. 27, no. 3, pp. 271–282, 2009.

[10] W.-L. Liao and F.-J. Tsai, “Personalized medicine: a paradigm
shift in healthcare,” BioMedicine, vol. 3, no. 2, pp. 66–72, 2013.

[11] C.-C. Lee, C.-H. Tsai, L. Wan et al., “Increased incidence of
Parkinsonism among Chinese with 𝛽-glucosidase mutation in
central Taiwan,” BioMedicine, vol. 3, no. 2, pp. 92–94, 2013.

[12] I.-C. Chou, W.-D. Lin, C.-H. Wang et al., “Möbius syndrome in
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