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Multidrug resistance in pathogens is an increasingly significant threat for human health. Indeed, some strains are resistant to almost
all currently available antibiotics, leaving very limited choices for antimicrobial clinical therapy. In many such cases, polymyxins
are the last option available, although their use increases the risk of developing resistant strains. This review mainly aims to discuss
advances in unraveling the mechanisms of antibacterial activity of polymyxins and bacterial tolerance together with the description
of polymyxin structure, synthesis, and structural modification. These are expected to help researchers not only develop a series
of new polymyxin derivatives necessary for future medical care, but also optimize the clinical use of polymyxins with minimal

resistance development.

1. Introduction

An enormous and growing threat that some bacteria are
becoming resistant to almost all available antibiotics is pro-
posed to the world [1]. So far, there is no breakthrough in
developing new drugs to kill multidrug-resistance (MDR)
microorganisms, and the use of f-lactam, quinolone, or
aminoglycoside is ineffective. The class of polymyxin antibi-
otics is increasingly considered as the final option of antibi-
otic therapy for MDR bacteria that are resistant to almost all
other currently available antibiotics [2, 3]. Polymyxins consist
of polymyxins A~E, of which polymyxin B and polymyxin E
(colistin) are currently used as clinical medicines. In general,
they have a narrow antibacterial spectrum mainly against the
Gram-negatives [4].

Polymyxin is an old class of nonribosomal cyclic lipopep-
tide antibiotics originally discovered in 1947 [5]. Since 1959,
polymyxin E has been used for the treatment of Gram-
negative bacterial infection. However, in the 1970s, clinical
use of polymyxin E and polymyxin B was limited due to their
serious nephrotoxicity and neurotoxicity after parenteral
administration. Together with the emergence of less-toxic
aminoglycosides and other antipseudomonal agents [6], its
parenteral use was almost completely abandoned in the 1980s.

The revival of polymyxin has been coming since the mid-
1990s, due to the lack of novel antibiotics against prevalent
MDR Gram-negative bacteria [7]. However, the concerns on
their nephrotoxicity and neurotoxicity still remain. Accord-
ingly, colistin methanesulfonate (CMS), a prodrug, is typ-
ically applied, from which the active compound is slowly
released in the blood.

Bacteria are usually able to evolve different strategies to
sense, respond, and adapt to bactericidal agents including
polymyxin. Therefore, novel polymyxin derivatives with less
toxicity and higher bactericidal activity are highly desirable.
This communication mainly aims to summarize and discuss
the current understanding of antibacterial mechanisms of
polymyxin and the corresponding bacterial resistance. We
hope that this will serve as an up-to-date reference for
researchers to develop polymyxin analogues with better
antibacterial activity and less adaptable bacterial tolerance.

2. Polymyxin Structure and Synthesis

2.1. Chemical Structure. The structure of polymyxin is usually
described as shown in Figure 1(a) due to the most thorough
investigation on polymyxin B and polymyxin E. Its basic
structure is a cyclic heptapeptide with a tripeptide side chain
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FIGURE 1: Representative polymyxin structure and its biosynthesis based on polymyxin B and polymyxin E [9]: (a) chemical structure; (b)
polymyxin biosynthesis in Paenibacillus polymyxa; (c) gene cluster for polymyxin biosynthesis. Polymyxin is synthesized by three polymyxin
synthetases, PmxA, PmxB, and PmxE, and transported by two membrane transport proteins, PmxC and PmxD. Fatty acid: 6-methyloctanoic
acid or isooctanoic acid; Thr: threonine; Phe: phenylalanine; Leu: leucine; Dab: &, y-diaminobutyric acid. The « and y refer to the respective

-NH, involved in peptide linkage.
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acylated by a fatty acid at amino terminus [8]. Polymyxin
B and polymyxin E (Table 1) share almost identical primary
sequence with major difference present at position 6 where
D-Phe (D-phenylalanine) in polymyxin B is replaced by
D-Leu (D-leucine) in polymyxin E [9]. The intramolecular
cyclic heptapeptide loop is linked between amino group of
side chain on diaminobutyric acid (Dab) residue at position
4 and carboxyl group of C-terminal L-Thr (L-threonine)
residue at position 10. Therefore, its decapeptide sequence
includes three parts, namely, a heptapeptide loop, a tripeptide
side chain, and a fatty acid chain [10]. Polymyxin also
bears other remarkable structural features, including cationic
(L-a-y-Dab) residues, making it polycationic at pH 74,
and two hydrophobic domains (N-terminal fatty acyl chain
and D-Phe®-L-Leu’ segment on polymyxin B or D-Leu®-L-
Leu’” segment on polymyxin E). The mixture of lipophilic
and hydrophilic groups makes it amphipathic [9, 10]. In
addition, three-dimensional NMR analysis has revealed that
polymyxin molecule is folded to form two distinct faces
for polar and hydrophobic domains, thereby conferring
structural amphipathicity that is essential for its antibacterial
activity [9].

2.2. Polymyxin Biosynthesis. Different from ribosomal pep-
tides that are synthesized by translation of mRNA, polymyxin
is produced by nonribosomal peptide synthetase system
(NRPS), a multienzyme complex with modular structures
[11]. The typical module of NRPS mainly consists of three core
domains: adenylation (A) domain, thiolation (T) domain
(phosphopantetheine attachment site or peptidyl carrier pro-
tein), and condensation (C) domain. The A-domain plays
a role in specific recognition and activation of amino acid
or hydroxy acid through the formation of an aminoacyl
adenylate. Then, the activated amino acid will be covalently
bonded to 4'-phosphopantetheinyl (4'PPant) cofactor on
T-domain via thioester formation. The T-domain mainly
functions as transportation of substrate and elongation of
intermediate to catalytic centers. Subsequently, the C-domain
will catalyze the elongation of peptidyl chain by attaching
thioesterified amino acid on phosphopantetheinyl arm at the
upstream of T-domain to amino acid at the downstream of
T-domain [12]. It is worth noting that NRPS can also include
additional modules, such as epimerization and termination
domains.

The modules and domains can orderly get together to
form gene cluster. The biosynthetic gene cluster of polymyxin
is called pmx cluster, including five open reading frames,
namely, pmxA, pmxB, pmxC, pmxD, and pmxE (Figures 1(b)
and 1(c)). Accordingly, they encode three polymyxin syn-
thetases, PmxA, PmxB, and PmxE, and two membrane trans-
port proteins, PmxC and PmxD [13]. PmxA comprises four
modules whose amino acid substrates are Leu on polymyxin
E or Phe on polymyxin B, Thr, Dab and Dab, and a C-
domain. PmxB, responsible for the termination of polymyxin
synthesis, composes only one module with Thr as its amino
acid substrate. PmxE has five modules whose amino acid
substrates are Dab, Thr, Dab, Dab, and Dab, and a C-domain.
Based on the polymyxin structure, the order of modules
for amino acid assembly during polymyxin synthesis should

TaBLE 1: The structural differences between polymyxin B and poly-
myxin E.

Polymyxin Fatty acid® R6"

Polymyxin Bl MOA D-Phe
Polymyxin B2 I0A D-Phe
Polymyxin E1 (colistin A) MOA D-Leu

Polymyxin E2 (colistin B) I0A D-Leu

¥MOA: 6-methyloctanoic acid; IOA: isooctanoic acid; Phe: phenylalanine;
Leu: leucine.
R6 means amino acid residue at position 6 on polymyxin.

be PmxE-PmxA-PmxB [14], consistent with the order of ten
amino acid groups on polymyxin molecule.

3. Polymyxin Derivatives

As mentioned earlier, novel polymyxin derivatives with either
higher antimicrobial activity or lower toxicity are highly
promising. So far, researches on modification of polymyxin
are mainly focused on the change of N-terminal fatty acyl
chain length and hydrophobic domain of D-Phe®-L-Leu’
(polymyxin B) or D-Leu®-L-Leu’ (polymyxin E) and substi-
tution of Dab side chains and amino acids [9].

The polymyxin toxicity is partly attributed to N-terminal
fatty acyl segment [15]. The derivatives of polymyxin E with
C9-Cl14 unbranched fatty acyl chains showed higher activity
against polymyxin-resistant strains and Gram-positive bac-
teria with longer fatty acyl chain, whereas the derivatives
with C10 and CI2 fatty acyl chain were more effective against
polymyxin-susceptible strains [16, 17]. The derivatives of
polymyxin B with modified N-terminal fatty acyl chain
have also been investigated to show that the analogue with
intermediate length of N-terminal fatty acyl chain (octanoyl,
C8) was optimal [18], while the ones with either longer
(myristoyl, C14) [19] or shorter (acetyl, C2) [11, 20] chains
displayed poorer antimicrobial activity. Moreover, the smaller
acetyl nonapeptide analogues showed decreased antimicro-
bial activity against Escherichia coli and Salmonella enterica.
Recently, it was revealed that, compared to polymyxin B
with octanoyl (C8) fatty acyl chain [21], the analogues
with N-terminal fatty acyl chains > C8 or 6-methyl moiety
yielded decreased antimicrobial activity, due to the sterically
hindered outer membrane (OM) insertion by fatty acyl
moiety [22]. In addition, the substitution of N-terminus of
polymyxin B with hydrophobic Fmoc group can significantly
enhance antimicrobial activity and reduce toxicity [23].

The cationic Dab residue on polymyxin, particularly
within the cyclic heptapeptide, plays a key role in polymyxin’s
antimicrobial activity through electrostatic interaction with
phosphates of lipid A on bacterial member. The Dab on
polymyxin has three important features, including cationic
character of side chain groups, two-methylene group of Dab
side chain, and specific order of Dab residues within the
primary sequence that gives the proper spatial distribution
of positive charge [9]. Various synthetic or semisynthetic
modifications have been applied to Dab in order to increase
antimicrobial activity or minimize potential toxicity [24, 25].



The N”-benzyl derivatives of polymyxin B and polymyxin E
were synthesized by substituting Dab sides with lipophilic
groups. Because of the reduced cationic character, the N”-
benzyl derivatives appeared to have higher activity against
Gram-positive Staphylococcus aureus and lower activity
against Gram-negative E. coli [24]. The polymyxin B deriva-
tives with positively charged or polar side chain on modified
Dab showed better antimicrobial activity than polymyxin
B and broadened the antibacterial spectrum [25]. It has
been found thatthe Dabs within the heptapeptide ring on
polymyxin B were more critical than the ones in linear
tripeptide segment for antimicrobial activity [26]. As a kind
of aminoglycoside, polymyxin carries 5 positive charges.
Its nephrotoxicity is due to the highly cationic nature of
molecule. Recently, it was reported that the polymyxin ana-
logue with substitution of Dabs at positions 1 and 3 with Thr,
Ser, or aminobutyryl group reduced its nephrotoxicity [27].

The hydrophobic domain of D-Phe®-L-Leu” (polymyxin
B) or D-Leu®-L-Leu’ (polymyxin E) can also affect its
antibacterial activity through insertion with bacterial OM
[26]. The hydrophobic domain of polymyxin B was evaluated
by replacing D-Phe® with D-Trp or D-Tyr and substituting
L-Leu’ with L-Phe or L-Ala. The substitution of D-Phe®
and L-Leu’ with D-Tyr and L-Ala, respectively, significantly
reduced LPS affinity and OM permeabilizing activity of
polymyxin. The substitution of D-Phe® with D-Trp, despite
the similar affinity to LPS, displayed marginally reduced OM
permeabilizing activity. The substitution of D-Phe® with L-
Phe resulted in an almost complete loss of OM permeabilizing
activit;r [28]. It was reported that the replacement of D-Phe®-
L-Leu’ segment with dipeptide mimics caused the loss of
activity against E. coli [29].

Besides the above modifications, the size of cyclic peptide
ring [30], the length of N-terminal linear tripeptide segment
[31], and the generation of mimetic compounds [32] are also
involved in polymyxin modification. A series of polymyxin B
nonapeptide analogs with a cyclic peptide ring in size from
20 to 26 atoms were synthesized [30]. It was found that,
among them, the one with native 23 atoms displayed the
best OM permeabilizing activity and provided the most ideal
structural configuration for potent antimicrobial activity. The
analogues with a tripeptide linear tail of Met-Leu-Phe at N-
terminus exhibited 8 to 10 times less toxicity than parent
molecules [31]. The analogs of polymyxin B were designed to
form amphipathic structure when they bind to LPS through
tandemly repeated sequences of alternating cationic (Lys)
and nonpolar (Val or Phe) residues [32]. It was found that
the new analogs had strong antimicrobial effects but lacked
hemolytic activity, highlighting the importance of peptide
amphipathicity.

4. Antibacterial Mechanism of Polymyxins

4.1. Membrane Lysis Death Pathway. In Gram-negative bac-
teria, OM acts as a permeability barrier. The initial target
of polymyxin is LPS of OM. Polymyxin can selectively bind
to LPS, coincident with its narrow spectrum of antibacterial
activity against Gram-negative bacteria [9]. LPS is composed
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of three domains: innermost lipid A, central core oligosac-
charide region, and outermost O-antigen chain [33]. Among
them, the most important domain is lipid A which serves as a
hydrophobic anchor with tight packing of fatty acyl chains to
stabilize overall OM structure. Some divalent cations such as
Ca?* and Mg?* usually serve as a bridge between the adjacent
LPS molecules to stabilize monolayer [34, 35].

It is generally believed that the polymyxin kills bacteria
through membrane lysis, as shown in Figure 2(a) (left).
Firstly, the protonation of free y-amines present on positively
charged Dab residues provides a means of electrostatic attrac-
tion to negatively charged phosphate headgroups of lipid
A, resulting in displacement of divalent cations (Ca2+ and
Mg“) [9, 10]. After this initial electrostatic interaction, the
polymyxin molecule will insert its hydrophobic N-terminal
fatty acyl chain and D-Phe®-L-Leu’ (polymyxin B) or D-
Leu®-L-Leu’ (polymyxin E) segment into OM. This insertion
will weaken the packing of adjacent lipid A, thus inducing
the expansion of OM monolayer [10, 36]. Eventually, this
facilitates the formation of destabilized areas through which
polymyxin will cross OM [37, 38]. Finally, polymyxin will
destroy the physical integrity of phospholipid bilayer of inner
membrane (IM) through membrane thinning by straddling
the interface of hydrophilic headgroups and fatty acyl chains
[9], leading to IM lysis and cell death.

4.2. Vesicle-Vesicle Contact Pathway. An alternative mecha-
nism, called vesicle-vesicle contact, has also been proposed
[39, 40]. It is believed that polymyxin can mediate the
contacts between periplasmic leaflets of IM and OM. The
complex structure of OM consists of an inner phospholipid
leaflet and an outer leaflet that predominantly contains LPS,
proteins, and lipoproteins [10]. As shown in Figure 2(b)
(right), polymyxin can bind to both anionic phospholipid
vesicles, namely, inner phospholipid leaflets of OM and IM,
and promote the exchange of phospholipids between vesicles.
In brief, with the help of electrostatic interaction and two
hydrophobic domains, the polymyxin molecule can enter
into and cross OM. Then, polymyxin will induce the lipid
exchange between leaflets of IM and OM, triggering the loss
of specificity of phospholipid composition. This can poten-
tially cause an osmotic imbalance, leading to cell lysis [39, 40].
It was reported that an analogue of polymyxin B with an
intervening Dab residue in D-Phe®-L-Leu” domain was much
more effective in inducing lipid exchange through vesicle-
vesicle contact and gave higher permeabilizing activity [41].
Another analogue of polymyxin B with substitution of D-
Phe® with D-Trp can bind to bacterial vesicles and induce the
formation of vesicle-vesicle contact [42].

4.3. Hydroxyl Radical Death Pathway. A new report showed
that polymyxin can possibly induce rapid cell death through
the accumulation of hydroxyl radical ("OH) (Figure 3). This
hypothesis is based on the oxidative stress due to polymyxin-
induced formation of reactive oxygen species (ROS), includ-
ing superoxide (O, ), hydrogen peroxide (H,0,), and "OH in
Gram-negative bacterial cells [43]. It has been hypothesized
that O, will be induced when polymyxin molecules enter
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into and cross OM and IM [44, 45]. Then, O,  will be
converted to H,0, by superoxide dismutases (SOD) present
in cells. Subsequently, H,0, will oxidize ferrous iron (Fe**)
to ferric iron (Fe3"), along with the formation of *OH, which
is called Fenton reaction [44, 45]. When the concentration of
*OH reaches an uncontrollable level, it will result in oxidative
damage of DNA, lipids, and proteins and eventually cause cell
death [44, 46]. In this process, the damage and resynthesis
of Fe-S dependent proteins, especially Fe-S dependent dehy-
dratase, such as dihydroxy-acid dehydratase (DHAD), are
important. The exposed Fe-S cluster will be oxidized by O,
to an unstable species with H,0, formation and Fe*" release.
Similar to O, ", H, O, can also destroy the Fe-S cluster, leading
to the loss of Fe** and inactivation of Fe-S dependent protein
[43]. After damage by either O, or H,0,, the inactive Fe-
S cluster can be repaired by protein YggX (a member of the
SoxRS regulon) and a di-iron protein YtfE in the presence of
Fe’* [43], whose uptake will be strongly triggered by ferric
uptake regulator. It has been demonstrated that the "OH
production will increase in polymyxin B- or polymyxin E-
treated Acinetobacter baumannii, leading to rapid cell death
[47]. Moreover, the killing of A. baumannii by polymyxins
was delayed in the presence of inhibitors that can both
directly and indirectly block the ROS production.

5. Mechanisms of Bacterial
Resistance to Polymyxins

5.1. PhoP-PhoQ Two-Component System. It is becoming
increasingly clear that polymyxin resistance in Gram-
negative bacteria involves the multitier upregulation of a
number of regulatory systems [48, 49]. The OM usually
serves as a permeability barrier to protect Gram-negative
bacteria from various antibiotics and chemicals [34]. The
critical step of bactericidal activity of polymyxin is the elec-
trostatic interaction between positively charged Dab residues
on polymyxin and negatively charged phosphate groups on
lipid A of LPS [9]. The bacterial cell is able to reduce
the initial electrostatic attraction by reducing net negative
charge of OM via lipid A modification, thereby increasing
resistance to polymyxin. The most common polymyxin-
resistance mechanism inbacteriais attributed to the shielding
of phosphates on lipid A with positively charged groups, such
as phosphoethanolamine (pEtN) and L-4-aminoarabinose
(L-Ara4N) [50-53], which is mediated by PhoP-PhoQ regu-
latory system encoded by phoP locus (Figure 4).

Activated by PhoP-PhoQ, the PmrA-PmrB encoded by
pmrCAB operon is the major regulator to mediate the
LPS modification in Gram-negative bacteria [54]. PmrA-
dependent modification can occur on each of the three
distinct LPS domains, namely, lipid A, core polysaccharide,
and O-antigen chain. In the innermost lipid A, the interaction
of either pEtN or L-Ara4N with lipid A will neutralize lipid
A phosphates and confer resistance to polymyxin B [33, 55].
The ugd gene encoding UDP-glucose dehydrogenase and pbg
gene encoding L-Ara4N transferase are both activated by
PmrA. They are necessary for biosynthesis and incorporation
of L-Ara4N [55]. On the other hand, an IM PmrC protein
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encoded by PmrA-activated pmrC gene is needed for pEtN
incorporation into lipid A. In the central core polysaccharide
region, the decoration of heptose (I) phosphate with pEtN
can further increase the resistance to polymyxin B [56]. The
PmrA-activated cptA gene encoding for pEtN phosphotrans-
ferase specific for the core is responsible for the modification
of heptose (I) phosphate with pEtN. Moreover, the PmrA-
activated PmrG protein which is normally introduced by
RfaY protein is a phosphatase for removing the phosphate
from heptose (II) phosphate [33]. In the outermost O-
antigen chain, the increase of O-antigen length will result
in the heightened resistance to polymyxin B, which can be
boosted up by iron. The O-antigen synthesis of S. enterica
is controlled by the products of wzz,, and wzzj,,; genes that
are controlled by PmrA-PmrB regulatory system [57, 58].
The transcriptional induction of wzz,, and wzzy,,; is activated
by PmrA through directly binding to their promoter, conse-
quently increasing the amount of O-antigen in LPS and finally
increasing resistance [57, 58].

The PhoP-PhoQ two-component system in S. enterica has
been well characterized [54]. It acts as a master regulator
of virulence and evasion of killing by polymyxin [59]. In
response to sublethal concentrations of polymyxin, PhoQ,
an IM sensor kinase, will phosphorylate the cytoplasmic
regulator PhoP, leading to activation of PmrA-PmrB via
PhoP-activated PmrD protein whose product affects the
phosphorylation of PmrA [54, 60-63]. Under extracytoplas-
mic Fe** or AI** and acidic pH [64, 65], the sensor PmrB
promotes phosphorylation of its cognate regulator PmrA,
resulting in the transcription of PmrA-activated genes [66]
and repression of PmrA-repressed genes [67]. Consequently,
the PmrA-PmrB system activates the expression of PmrC
or Ugd/PbgP, necessary for the covalent modification of
phosphate groups on lipid A [68]. In addition, the PmrA-
PmrB system will use PmrR to inhibit the activity of LpxT, a
constitutively synthesized IM enzyme that generates diphos-
phorylated lipid A at I-position (1-PP) [69]. All these PmrA-
regulated modifications will decrease the overall negative
charge of LPS, thereby avoiding the interaction with posi-
tively charged Dab residues of polymyxin. Upon the removal
of stress from polymyxin, the phosphorylated PmrA (PmrA-
P) in cells will be downregulated to appropriate level through
three ways. Firstly, the PmrA-P protein can be positively
downregulated through transcription of pmrCAB operon
[70]; secondly, the PhoP-PhoQ two-component system can
control the expression of pmrD gene to repress PmrA-P
protein [71]; thirdly, as an intrinsic feedback mechanism,
PmrB will dephosphorylate PmrA-P [67].

5.2. Species-Specific Resistance Mechanisms. Besides the LPS-
binding pathway regulated by PhoP-PhoQ system, there
are other unique and often species-specific mechanisms
in polymyxin resistance. Multidrug efflux pumps play an
important role of polymyxin resistance in Gram-negative and
Gram-positive pathogens. The MexAB-OprM efflux pump
in Pseudomonas aeruginosa has been proposed to confer
tolerance towards polymyxin E, due to the increase of
mexAB-oprM expression in P. aeruginosa upon polymyxin
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E exposure [72,73]. The AcrAB efflux pump encoded by
acrAB operon can give Klebsiella pneumoniae resistance to
polymyxin B [74]. Moreover, the AcrAB efflux pump is
also associated with polymyxin resistance in E. coli [75]. A
multidrug efflux pump NorM in Burkholderia vietnamien has
been shown to contribute to polymyxin resistance [76]. All
these efflux pumps are thought to transport and pump out
polymyxins present in cells.

In addition, polymyxin resistance is also thought to be
associated with the expression of OM proteins in bacte-
ria. It has been believed that the OM protein OprH, a
membrane stabilization protein, can promote resistance to
polymyxin B in P. aeruginosa [77]. The OM protein OmpA
in K. pneumoniae can help to clearinfections, conferring
resistance to antimicrobial peptides [78]. It has been found
that the absence of OmpA decreases the expression of
capsule polysaccharide, thereby increasing susceptibility to
polymyxin B [79]. The capsule polysaccharide could increase
resistance of K. pneumoniae to polymyxins [80]. Since the
capsule polysaccharides are anionic whereas polymyxins are
cationic, the capsule polysaccharides can bind to polymyxin
to reduce the amount of peptides reaching bacterial surface.
This will neutralize the bactericidal activity of polymyxin,

at last enhancing electrostatic interaction between capsule
polysaccharide and polymyxin [81].

Recently, It was found that the complete loss of LPS could
lead to high-level polymyxin E resistance in A. baumannii,
clearly indicating that the interaction of polymyxin E with
LPS is critical for bactericidal action against A. baumannii
[82, 83]. It is believed that the complete loss of LPS will
decrease the target ability of polymyxin to cell, thereby
causing high-level polymyxin resistance.

6. Future Perspective

The usefulness of polymyxin B and polymyxin E has been
clearly demonstrated by optimizing their clinical use and
developing their derivatives with less nephrotoxicity than
earlier believed and they have been used as bactericidal agents
for around 5 decades. Though polymyxins are mainly applied
to killing Gram-negative pathogens, there are increasing
reports showing their anti-Gram-positive bacteria activity.
This needs to be further investigated for better understand-
ing, because much higher concentration of polymyxin is
needed against Gram-positive bacteria than the one against
Gram-negative bacteria.



Different from traditional membrane lysis mechanism
in bacteria, the "OH accumulation is a newly proposed
mechanism for polymyxin-induced cell death. However,
the pathway to induce "“OH generation in cells exposed to
polymyxin is still unclear. Since Fenton reaction is considered
as the possible pathway for "“OH formation, it is very desirable
to carry out detailed characterization on the key components
such as SOD, H,0,, and Fe-S cluster in this reaction to fully
understand this new mechanism.

Different mechanisms of polymyxin-resistance have been
found in bacteria. Resistance to the current polymyxins
could become a big global health challenge, because this
means that virtually no antibiotics will be available for
treatment of serious infections caused by polymyxin-resistant
“superbugs” Therefore, development of a next generation
of polymyxin is urgently required. In order to achieve this
goal, deeper understanding of the mechanisms of polymyxin
antibacterial activity and bacterial resistance is the first and
most crucial step.
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