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Glioblastoma multiforme (GBM) is the most malignant and invasive human brain tumor that is difficult to treat and has a very
poor prognosis. Thus, new therapeutic strategies that target GBM are urgently needed. The PI3K/AKT/PTEN signaling pathway
is frequently deregulated in a wide range of cancers. The present study was designed to examine the inhibitory effect of AKT3 or
PI3KCA siRNAs on GBM cell growth, viability, and proliferation.T98G cells were transfected with AKT3 and/or PI3KCA siRNAs.
AKT3 and PI3KCA protein-positive cells were identified using FC and Western blotting. The influence of specific siRNAs on T98G
cell viability, proliferation, cell cycle, and apoptosis was evaluated as well using FC. Alterations in the mRNA expression of AKT3,
PI3KCA, and apoptosis-related genes were analyzed using QRT-PCR. Knockdown of AKT3 and/or PI3KCA genes in T98G cells led
to a significant reduction in cell viability, the accumulation of subGl-phase cells and, a reduced fraction of cells in the S and G2/M
phases. Additionally, statistically significant differences in the BAX/BCL-2 ratio and an increased percentage of apoptotic cells were
found. The siRNA-induced AKT3 and PI3KCA mRNA knockdown may offer a novel therapeutic strategy to control the growth of
human GBM cells.

1. Introduction

Chemotherapy is the most common therapeutic approach
that is used to treat various cancers, but many patients with
different cancers (e.g., glioblastoma multiforme) develop
chemoresistance. Glioblastoma multiforme (GBM; WHO
grade IV) is the most common malignant central nervous
system (CNS) tumor and is also the most aggressive form of
human astrocytoma [1, 2] with a poor survival rate (approxi-
mately 15 months in patients with newly diagnosed cancers
regardless of their treatment methods) [3]. The current
treatment strategies for GBM that use surgery, chemother-
apy, and/or radiotherapy are ineffective and therefore have

triggered great research efforts worldwide for new treatment
modalities that might be applicable to this cancer.

The PI3K/AKT pathway, which is an important factor
for cell proliferation, growth, survival, invasiveness, and
radiation resistance, is critical in the malignant phenotype
of GBM [4]. The constitutive or increased activity of the
PI3 K/AKT-dependent signaling cascade has been observed
in many tumor cells that achieve uncontrolled proliferation.
Among the various survival pathways, the PI3K/AKT signal-
ing pathway is often found to be active and plays an important
role in the development of GBM.

PI3Ks (phosphoinositide 3-kinases) constitute a family of
lipid kinases that are capable of phosphorylating the 3' OH of



the inositol ring in phosphoinositides. PI3Ks are divided into
three classes according to their structure and function. Class
consists of two subclasses—class IA and class IB, respectively.
Class IA includes heterodimers that are composed of a
plI0 catalytic subunit and a p85 regulatory subunit. A p110
subunit has three isoforms (p110«, p1103, and p110y) that are
encoded by the three different genes [5-8]. These isoforms are
involved in the regulation of processes such as proliferation,
cell survival, degranulation, vesicular trafficking, and cell
migration. After activation, the pl10 subunit phosphory-
lates the PIP, (phosphatidylinositol-4,5-biphosphate) into
PIP; (phosphatidylinositol-3,4,5-triphosphate) [9]. Similar
to Class IA, Class IB includes heterodimers that are composed
of a catalytic subunit pl10y and a regulatory subunit p101.
Two new regulatory subunits (p84 and p87PIKAP) have
also been described by some authors [10]. Class II consists
of single catalytic subunits (isoforms PI3KC2a, PI3KC2p,
and PI3KC2y). Finally, class III involves a single catalytic
subunit Vps34. The pl10« catalytic subunit of PI3K is encoded
by the PI3KCA gene (locus 3q26.3) [7, 11]. The activity
of a pll0« subunit of PI3K is regulated by a p85 subunit
[12]. It has been suggested that in cells in which the p110«
isoform of PI3K is predominant or in which both pll10«
and pl10p isoforms are equally important, the knockdown
of PIK3CA (pll0«) interferes with PI3K/AKT signaling [13].
The PI3KCA gene has been found to be amplified and over-
expressed in several types of cancers. It has been suggested
that the point mutations that activate the PI3KCA gene may
represent a novel mechanism for the induction oncogenic
PI3K signaling pathway [14, 15]. Hafsi et al. [15] stressed the
fact that oncogenic PI3KCA mutations play a critical role in
human malignancies and provide evidence that kinases with
cancer-specific mutations such as PI3K may be ideal targets
for small-molecule specific inhibitors that would create the
opportunity to develop new anticancer drugs [15]. PI3KCA
gene mutations have been found in several cancers (e.g., liver,
breast, colorectal, brain, and gastric) and the majority of
these have been shown constitutively to activate the proteins
catalytic subunit [16, 17]. The point mutations that activate
the PIK3CA have been observed in some gliomas [18]. In a
few cases of GBMs, cell proliferation is specifically blocked by
the downregulation of pll0« alone [19]. PI3K recruits AKT
into the cell membrane through the PIP, binding domain
and allows PDKI1 (3-phosphoinositide-dependent kinase) to
activate AKT through the phosphorylation of AKT at T308
position and the activation of its serine/threonine kinase
activity [20].

It was also found that GBM often upregulates the PI3K
signaling pathway through the loss of PTEN or through the
activation of receptor tyrosine kinases (RTKs) [21]. The AKT
kinase plays an important role in the PI3K signaling pathway
as it is one of the major downstream effectors. The activity of
AKT is induced following PI3K activation in various growth
factor receptor-mediated signaling cascades [22]. AKT (PKB,
RAC-PK) is a serine/threonine protein kinase that is involved
in the regulation of many cellular processes such as growth,
intermediate metabolism, survival, proliferation, invasive-
ness, and the regulation of tumor angiogenesis. AKT is the
key regulator of different cellular functions acting via the
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phosphorylation of a variety of substrates. For example, AKT
inhibits apoptosis through the inactivation of BAD, which is
a proapoptotic member of the BCL-2 protein family [23, 24],
as well as by the phosphorylation of caspase-9 [25] or by
inhibiting the Forkhead transcription factors [26, 27]. AKT
is also involved in the regulation of the cell cycle and cell
proliferation [28]. There are three isoforms of AKT (AKT],
AKT?2, and AKT3), which are encoded by three different
genes. The AKT2 and AKT3 (but not AKT1) isoforms are
pathologically amplified in human cancers [29, 30]. AKT3
tissue distribution is more restricted than AKT1 and AKT?2;
it is primarily expressed in the brain and testis [31]. An
increase in the AKT3 mRNA level has been found in breast
and prostate cancers [29]. It is also known that AKT2 and
AKTS3 are overexpressed in glioma cells and play a pivotal
role in malignant gliomas [4]. The activation of AKT has been
found in approximately 80% of human GBMs [32-37]. The
increased AKT activity in tumors may be a result of PI3K
gene amplification. As was mentioned earlier, AKT is acti-
vated via the receptor tyrosine kinases in a PI3K-dependent
manner. Several studies have suggested that AKT activation
correlates with a resistance to radio- and chemotherapy
[6].

The current knowledge concerning the molecular mech-
anisms of GBM development indicates that PI3K kinase is a
very promising target for therapy. Some authors have sug-
gested that PI3K activation is associated with the chemore-
sistance of GBM cells, that is, with the lack of sensitivity to
various chemotherapeutic agents [15]. Therefore, it is very
important to discover the exact mechanisms that determine
the PI3K/AKT signaling activity and to understand how
the inhibition of this pathway influences the main cellular
processes. We hope that our research will help find a way to
inhibit PI3K/AKT signaling so that it can be used in routine
clinical practice.

In the present study, AKT3 (PKBy) and PI3KCA (pl10«)
were targeted with siRNAs in order to examine the inhi-
bition of their signaling cascade on the growth, viability,
proliferation of glioblastoma multiforme, and the induction
of apoptosis. We decided to knockdown only the gene that
encodes the pll0x subunit because it plays a crucial role
in tumorigenesis. All analyses were conducted using the
T98G cell line. This particular cell line was chosen because
it is less sensitive to BCNU (bis-chloroethylnitrosourea;
carmustine) and etoposide than the U87-MG cell line [38].
Moreover, the T98G cell line shows an increased resistance
to temozolomide, compared to other cell lines such as U373-
MG, U251-MG, GB-1, U87-MG, or A-172 [39]. Thus, it seems
reasonable to use this particular cell line when searching
for new potential therapeutic methods of glioma therapy.
We also investigated whether the knockdown of AKT3 and
PI3KCA genes plays a role in the induction of apoptosis and
the reduction of cell viability and proliferation.

Our findings demonstrate for the first time that the
siRNAs that target AKT3 and PI3KCA reduce cell viability
and induce apoptosis in T98G cells. Thus, the knockdown of
AKT3 and PI3KCA genes may offer a potential therapeutic
solution for controlling the growth of human glioblastoma
multiforme cells.
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2. Material and Methods

2.1. Cell Cultures. The T98G cell line, which was derived
from a 61-year-old male [27] and purchased from American
Type Culture Collection (ATCC, Manassas, VA, USA), was
cultured in modified Eagle’s minimum Essential Medium
(ATCC) supplemented with heat-inactivated 10% fetal bovine
serum (ATCC) and 10 ug/mL gentamicin (Invitrogen). The
cell line was maintained at 37°C in a humidified atmosphere
of 5% CO, in air.

2.2. siRNA Transfection. T98G cells were seeded at 1.6 x 10*
cells per well in 6-well plates and incubated for 24 h. Next, the
T98G cell line was transfected with specific siRNAs that target
AKT3 or PI3KCA mRNA. Transfection was performed using
the FlexiTube siRNA Premix (Qiagen, Italy) according to the
manufacturer’s protocol. The following target sequences were
used: 5° AACTGTTGGCTTTGGATTAAA 3’ (for AKT3)
and 5 CTGAGTCAGTATAAGTATATA 3’ (for PI3KCA).
The knockdown of AKT3 and PI3KCA was provided with
specific siRNAs without affecting AKTI and AKT2 mRNAs.
Optimum transfection conditions were established by using
various amounts of the FlexiTube siRNA Premix (25nM,
10nM, 5nM, 1nM, and 0.5nM) and the number of cells
(1-4 x 10* cells per well in 6-well plates). The optimal
conditions were 1nM siRNA for AKT3 and PIK3CA and a
48 h incubation time. After transfection, prior to performing
assays, the cells were washed with PBS, trypsinized, and
centrifuged (125 g/5 min) at 4°C (listed below). Transfection
efficiency was checked using flow cytometry (Figures 1(a) and
1(b)) and fluorescence microscopy using siRNA labeled with
AlexaFluor488. The results are representative of at least three
independent experiments.

The average transfection 99.2%
(Figure 1(b)).

AllStars Negative Control siRNA was also tested (Qia-
gen, Italy). This siRNA has no homology to any known
mammalian gene and a variety of cell-based assays have
shown its minimal nonspecific effect on gene expression and

phenotype.

efficiency was

2.3. RNA Extraction. Total RNA was isolated from cultured
cells using the TRIzol reagent (Life Technologies, Inc., Grand
Island, NY, USA) according to the manufacturer’s protocol.
The integrity of total RNA was checked using electrophoresis
in 1% agarose gel stained with ethidium bromide. All RNA
extracts were treated with DNAse I to avoid genomic DNA
contamination and were assessed qualitatively and quantita-
tively.

2.4. The Evaluation of Transcriptional Activity of AKT3,
PI3KCA, BCL-2, and BAX Using QRT-PCR. QRT-PCR assays
were performed using an ABI Prism7700 (Applied Biosys-
tems, Foster City, USA). Real-time fluorescent RT-PCR was
performed using a TagMan Gene Expression Assay (manu-
facturer does not provide the primers’ sequence) and a Taq-
Man One-Step RT-PCR Master Mix Reagents Kit (Applied
Biosystems) according to the manufacturer’s protocol under

the following conditions: 48°C for 30 min and 95°C for
10 min, followed by 40 cycles of 15sec at 95°C and 1 min
at 60°C. RNA for human glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) was used as an endogenous control.
The copy numbers for each sample were calculated using
the C-based calibrated standard curve method. Data were
normalized to f-actin. Each data point is the average of
duplicates.

2.5. The Evaluation of AKT3 and PI3KCA Protein Expressions
Using Flow Cytometry. AKT3 protein-positive cells were
identified using indirect labeling with a specific anti-AKT3
antibody and flow cytometry. After the AKT3 knockdown,
cells were harvested, washed twice in PBS, and fixed in PBS
with 4% paraformaldehyde and 10% goat serum. The cells
were then washed twice in PBS with 1% BSA, permeabilized
with 0.1% saponin/1% BSA/PBS with 10% goat serum for
45 min, and incubated with 10 gg/mL of an anti-AKT3 mon-
oclonal antibody (isotype IgG,,, R&D Systems, Inc.) in 1%
BSA/PBS overnight at 4°C. Subsequently, cells were washed
followed by the addition of antimouse secondary antibodies
conjugated with FITC for 45 min and analyzed quickly using
flow cytometry.

PI3KCA protein-positive cells were identified using direct
labeling with a specific anti-PI3KCA antibody and flow
cytometry. After PI3KCA knockdown, cells were harvested,
washed twice in PBS, and fixed in PBS with 4% paraformalde-
hyde. Then, the cells were washed twice in PBS with 1% BSA,
permeabilized with 0.1% saponin/1% BSA/PBS for 45 min,
and incubated overnight at 4°C with 10 yg/mL of an anti-
PI3KCA polyclonal antibody conjugated with PE (Bioss)
in 1% BSA/PBS. An isotype-matched monoclonal antibody
(isotype control) was used to determine nonspecific binding.
Subsequently, the cells were washed and analyzed using a
FACSAria (BD Biosciences) equipped with Diva Software.

2.6. Western Blot Analysis of AKT3 and PI3KCA Proteins. Six-
well plates with both transfected and untransfected T98G
cells were placed on ice, washed with ice-cold PBS, harvested
by scraping, and stored in a cold RIPA buffer 1x PBS, 1%
Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS, 1mM
Na,VO,, ImM NaF, 1yM okadaic acid, and 10mM f-
glycerolphosphate supplemented with a protease inhibitor
cocktail (Complete minitablets, Roche, Indianapolis, IN,
USA). The collected material was then incubated on ice
for 30 min with frequent gentle vortexing. The lysates were
cleared by centrifugation at 13000 g for 15min. The total
protein concentration in the samples was measured using
Bradford method and an xMark Microplate Spectrophotome-
ter (BioRad, CA, USA). Bovine serum albumin of known
concentrations within the range of 0-1500 ng/uL (Thermo
Fermentas, Lithuania) were used to prepare the calibration
curve. Equal amounts of protein (30 ug) from cell lysates
were resolved on 10% SDS-polyacrylamide gels and then
transferred onto PVDF membranes at room temperature
overnight. Blots were blocked for 1h with 1% BSA in Tris-
buffered saline containing 0.1% Tween-20 (TBS-T) (Sigma-
Aldrich) and probed for 1.5h at room temperature with the
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FIGURE 1: Transfection efficiency of T98G cells as assessed by flow cytometry ((a) untransfected cells; (b) transfected cells) 24 h after
transfection with 1 nM siRNA labeled at the 3" end of the sense strand with AlexaFluor488 (green fluorescence).

appropriate primary antibody in TBS-T containing 1% BSA
(affinity-purified mouse polyclonal anti-AKT3; 1:1000 dilu-
tion; R&D Systems Inc., or affinity-purified rabbit polyclonal
anti-PI3KCA; 1:1000 dilution; Bioss, MA, USA). Antibodies
against f-actin (Abcam) were used as the loading control
for the samples and for further estimating the relative gene
expression levels. After washing with TBS-T, the blots were
incubated for 1h at room temperature with the appropriate
horseradish peroxidase-conjugated antimouse or antirabbit
IgG secondary antibody (GE Healthcare) in TBS-T contain-
ing 1% BSA and then washed 1x in TBS-T and 1x in TBS,
respectively. Protein bands were detected using enhanced
chemiluminescence (ChemiDoc-It Imaging System). Scan-
ning densitometry (Imagel) was done in order to quantify
band intensities by volume/area integration.

2.7. Viability and Proliferation Assays. The effects of AKT3,
PI3KCA, and AKT3 + PI3KCA silencing on T98G cell
proliferation and viability were estimated using the cell pro-
liferation reagent WST-1 (Roche) and by the direct counting

of cells that had been stained with trypan blue. The WST-1
assay was based on the cleavage of the tetrazolium salt WST-
1 to formazan by cellular mitochondrial dehydrogenases. An
increase in the overall activity of mitochondrial dehydroge-
nases in a sample is linked to an increase in the number
of viable cells. The formazan dye formation was quantified
using a plate reader at 450 nm. T98G cells were plated onto
a 96-well microplate at a density of 1 x 10* cells per well.
The cells were then transfected with 1nM AKT3, PI3KCA, or
AKT + PIBKCA siRNAs (a few wells were left untransfected).
The negative control wells received serum-free media. Cells
were allowed to incubate for 48 h before the WST-1 reagent
was added and then incubated for 1h in order to measure
cell proliferation (in tetraplicate). Data are presented as a
percentage of the proliferation of the negative control. The
percentage viability was calculated considering the controls
as 100%. A P value < 0.05 was considered to be significant.
Each experiment was repeated six times.

Cell viability was also measured using a trypan blue
exclusion assay. Harvested cells were mixed with an equal
amount of trypan blue (10 uL) and after staining, the cells
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were counted using a Biirker chamber. The T98G cell viability
was calculated as the percentage of live cells in the total cell
population.

2.8. Cell Cycle Analysis. T98G cells were seeded in 6-well
plates (at a density of 1.6 x 10* cells per well) and cultured
overnight (24h) and, after a medium exchange, they were
further cultured for 48 h in the presence of AKT3, PI3KCA,
and AKT3 + PI3KCA siRNAs (final concentration 1nM).
Fewer than 90% of the confluent cells were trypsinized and
washed twice with ice-cold phosphate-buffered saline (PBS),
fixed in 70% ice-cold ethanol while undergoing low-speed
vortexing (incubation for 1h on ice). The samples were then
treated with RNAse A (10 mg/mL; for 1 h at 37°C); nuclei were
stained with propidium iodide (PI, 50 ug/mL) and analyzed
using flow cytometry (FACS Ariall, Becton Dickinson). DNA
histograms of PI-stained cells and histograms showing the
distribution of cells in the different phases of the cell cycle
were assessed. A total of 1 x 10* nuclei from each sample
were analyzed on a FACS Ariall flow cytometer and DNA
histograms were examined using BD FACSDiva software
(Becton Dickinson). A gating strategy based on forward
scatter versus side scatter was used to exclude doublets and
debris.

2.9. Apoptosis Assay. T98G cells were seeded in 6-well plates
(at a density of 1.6 x 10* cells per well) and cultured overnight
(24 h) and, after a medium exchange, they were further cul-
tured for 48 h in the presence of AKT3, PI3KCA, or AKT3 +
PI3KCA siRNAs (final concentration 1 nM). After trypsiniza-
tion and washing twice with Hank’s Balanced Salt Solution
(HBSS), the cells were suspended in 1mL of HBSS. In the
next step, the cells were analyzed using flow cytometry with a
Vybrant DyeCycle Violet/SYTOX AADvanced Apoptosis Kit.
The staining pattern that resulted from the simultaneous use
of both dyes in combination make it possible to distinguish
normal, apoptotic, and necrotic cell populations as described
in the manufacturer’s protocol.

2.10. Statistical Analysis. The data that was generated by the
WST-1 assay are presented as mean * SD. t-Student test
and the U Mann-Whitney test or Kruskal-Wallis ANOVA
was used for comparing two or more groups. The power
of all of the tests was not less than f = 0.8. Data were
analyzed using Statistica software (StatSoft, Inc. 2008) version
9.0 (http://www.statsoft.com/). All of the tests were two-sided
and P < 0.05 was considered to be statistically significant.
The proliferation and apoptotic indexes were determined
according to Darzynkiewicz et al. [40] and Henry et al. [41].

3. Results

3.1. AKT3 and PI3KCA siRNAs Decrease the Copy Numbers
of Particular mRNA and AKT3 PI3KCA Protein Levels in
T98G Cells. The AKT3 and PIKCA mRNA copy numbers
were quantified in transfected and untransfected T98G cells,
respectively. We found significantly lower mRNA levels of

both AKT3 and PI3KCA in the transfected cells compared to
the untransfected (control) cells (Figures 2(a) and 2(b)).

AKT3 and PI3KCA protein levels were examined in trans-
fected and untransfected T98G cells using flow cytometry.
We found a significantly lower percentage of AKT3-positive
cells following transfection with AKT3 siRNA, or PI3KCA
siRNA, as well as PI3KCA-positive cells after transfection
with PI3KCA siRNA compared to the untransfected cells
(Figures 2(c), 2(d), 2(e), and 2(f)).

Changes in the expression of AKT3 and PI3KCA proteins
were also analyzed using Western blot technique. Densito-
metric analysis of AKT3 and PI3KCA bands showed that
protein levels were markedly reduced in the T98G cells after
transfection with siRNAs that were specific for AKT3 or
PI3KCA genes, respectively (Figure 3; P < 0.05).

3.2. AKT3 and PI3KCA siRNAs Decrease Cell Viability in
T98G Cells. In the next step, we examined the effect of AKT3,
PI3KCA, and AKT3 + PI3KCA siRNAs on the proliferation
and viability of T98G cells using the WST-1 reagent and
trypan blue staining. The results are expressed as a percentage
of the viability of the control cells (arbitrarily assigned 100%
viability). Transfection of T98G cells with PI3KCA and AKT3
+ PI3KCA siRNAs led to a significant reduction in cell viabil-
ity compared to the untransfected controls. The simultaneous
transfection of T98G cells with siRNAs that target AKT3 and
PI3KCA did not provide an additive cytotoxic effect as was
expected.

Data (collected from 14 independent experiments) are
represented as the median + S.D and shown as a so-called
“box-plot” with the median, lower, and upper quartiles as
boxes and the min-max values as lines (Figure 4; P < 0.05,
compared to the control cells).

3.3. AKT3, PI3KCA, and AKT3 + PI3KCA siRNAs Decrease
the Number of T98G Cells in the S and G2/M Phases and
Decrease the DNA and Proliferation Indexes. In order to
examine the possible mechanisms of the antiproliferative
activity of AKT3 and PI3KCA siRNAs, cell cycle distribution
using flow cytometry was performed. Proliferation index
(PI), that is, percentage of proliferating cells in S + G2/M
cell cycle phases, was determined. PI was quantified in
untransfected T98G cells and after the knockdown with
adequate 1nM siRNA. It was found that AKT, PI3KCA,
and AKT3 + PI3KCA siRNAs decrease the percentage of
cells in the S + G2/M phases (lower PI) and simultaneously
increase the percentage of cells in subGl1 phase, as compared
to untransfected (control) cells (Figures 5 and 6, resp.).

We also found that AKT3 and PI3KCA siRNAs decrease
the DNA index (the ratio of transfected cell DNA fluores-
cence/untransfected GI-GO cell DNA fluorescence) (Figures
6 and 7; P < 0.05 compared to the control cells).

3.4. AKT3 and PI3KCA siRNAs Decrease the Expression of
the BCL-2 mRNA and Increase the Expression of the BAX
mRNA in T98G Cells. The BCL-2 family includes important
regulators of apoptotic cell death. It is known that the ratio of
BAX/BCL-2 is critical for the induction of apoptosis [42]. The
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FIGURE 2: Effect of siRNA on T98G cells. ((a), (b)) Comparison of mRNA copy numbers for AKT3 (a) and PI3KCA (b) between transfected
and untransfected T98G cells (AKT3: P < 0.01, ¢t = 4.178, f = 0.981; PI3KCA: P < 0.01,t = 4.98, B = 0.987); ((c), (d)) dot-plots for
comparison of the percentage of AKT3 protein-positive cells after AKT3 and PI3KCA knockdown and without using AKT3 siRNA; analysis

was performed using flow cytometry; ((e), (f)) comparison of the percentage of AKT3 or PI3KCA protein-positive cells between the groups
that were analyzed (P < 0.05).
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assay (P < 0.05).

BAX protein is regulated by AKT through phosphorylation
that occurs near the C-terminus at serine 184 (direct control)
or by GSK-3 kinase (indirect regulation) [33]. Therefore, we
also examined the changes in the levels of the BCL-2 and BAX
mRNAs expression in transfected and untransfected T98G
cells.

A statistically significant increase in the BAX/BCL-2
mRNAs level ratio was observed after the siRNA-mediated

silencing of AKT3, PI3KCA, and AKT3 + PI3KCA genes
in transfected cells compared to untransfected control cells
(Figure 8).

3.5. AKT3, PI3KCA, and AKT3 + PI3KCA siRNAs Can Induce
Apoptosis. Necrotic and apoptotic cells were detected using
flow cytometry with double staining with Vybrant DyeCycle
Violet and SYTOX AADvanced following transfection with
AKT3 and PI3KCA siRNAs. The knockdown of AKT3 and
PI3KCA genes led to apoptosis in 69.3% cells (AKT3 siRNA)
and 50.3% cells (PI3KCA siRNA), respectively, compared to
8.7% in the untransfected control cells (Figure 9(b); P <
0.05). In contrast, the necrosis rates of transfected T98G cells
were 19.7% and 10.2% after AKT3 and PI3KCA silencing,
respectively, whereas the necrosis rate of the untransfected
control cells was only 1.8% (Figure9(a); P < 0.05). We
observed a 6- to 8-fold higher apoptotic index value after cell
transfection with siRNAs (Figure 9(b); P < 0.05).

4. Discussion

More effective therapies for the treatment of CNS neoplasms
are urgently needed. The present study was focused on the
cell cycle, apoptotic behavior, and viability of the human
glioblastoma multiforme T98G cell line. The PI3K/AKT
signaling pathway plays a crucial role in carcinogenesis and
the development, progression, and invasiveness of GBM.
Before we began to study the changes in the cellu-
lar processes in question, we verified whether transfection
with a given siRNA did indeed silence the respective gene
expression. As we expected, the expression levels of AKT3
and PI3KCA mRNAs were significantly downregulated after
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AKTS3, PI3KCA, and AKT3 + PI3KCA siRNAs, respectively, compared to the untransfected control cells. Cells were fixed in 70% ethanol and
stained with PI. Fluorescence of the PI-stained cells was measured using a FACS Ariall cytometer (Becton Dickinson).

transfection with specific siRNAs. This was also confirmed
by Western blot and flow cytometry analyses. Both analyses
showed a reduction in the AKT3 and PI3KCA protein
levels in the siRNA-transfected cells compared to the control
(untransfected) cells. This step confirmed that transfection of
T98G cells with specific siRNAs downregulates the expres-
sion of AKT3 and PI3KCA genes.

The PI3K/AKT signaling pathway is responsible for the
regulation of cell cycle progression and proliferation. AKT

promotes the G1/S phase transition by blocking the FOXO-
mediated transcription of cell cycle inhibitors. We found that
siRNAs that target AKT3 and PI3KCA decrease the percent-
age of T98G cells in the S phase and mitosis and increase
the percentage of T98G cells that undergo apoptosis (subGl
fraction). We showed that the knockdown of AKT3 and
PI3KCA genes triggers a reduction in the proliferative index
and inhibits the proliferation of T98G cells. The complex
character of proliferative response may explain the relatively
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small differences between transfected and untransfected cells
that were observed in our experiment. Several different
pathways are involved in the cell proliferation process (e.g.,
receptor-initiated signal transduction, kinase activation, tar-
get phosphorylation, and DNA synthesis). However, our
results as well as previous observations by Weber et al. [1]
show that PI3KCA knockdown results in decreased GBM
cell proliferation. This seems to confirm that the PI3K/AKT
pathway is very important in proliferation process.

The activation of AKT3 by IGF-1 suggests that AKT3 may
be involved in regulating cell survival [43]. We found that
AKTS3, PI3KCA, and AKT3 + PI3KCA silencing by siRNAs
significantly reduces the viability of T98G cells. An increase
in the percentage of cells in the subGl phase (apoptotic cells)
was accompanied by a reduction in the number of cells in
the S and G2/M phases. We suggest that AKT3 and PI3KCA
siRNAs induce an intrinsic apoptotic pathway in T98G cells.

AKT plays an important role in regulating apoptosis by
phosphorylating and inhibiting the maturation of procaspase
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FIGURE 8: BAX/BCL-2 ratio in T98G cells after AKT3, PI3KCA, and
AKT3 + PI3KCA gene silencing using specific siRNAs (P < 0.05).

9, a protease that is crucial for the execution phase of
apoptosis, or by the phosphorylation and inactivation of BAD
as was mentioned before [25]. BAD inhibits the function
of the prosurvival molecule BCL-X;. AKT also prevents
apoptosis through the activation of antiapoptotic proteins
such as BCL-2, IxB kinase (IKK) and HDM2. The inhibition
of apoptosis depends on the intracellular balance between
BCL-2 and BAX activity and other proteins that belong to
the BCL-2 family like BAG1, BAD, BCL-X;, and BCL-Xg
[44, 45]. An increase in the BAX/BCL-2 ratio stimulates the
release of cytochrome ¢ from the mitochondria into cytosol.
Since defects in apoptosis may be essential for building up a
resistance to the majority of current treatments, it would be
highly desirable to develop a strategy that would reduce the
resistance of glioblastoma cells to apoptosis. We found that
AKTS3, PI3KCA, and AKT3 + PI3KCA siRNAs increased BAX
mRNA expression and decreased BCL-2 mRNA expression,
which is compatible with an increase in the BAX/BCL-2
ratio. Our results suggest that AKT3 and PI3KCA siRNAs
have the ability to alter the mRNA expression of the BCL-
2 family of apoptosis-related genes. We also found that the
knockdown of AKT3 and PI3KCA genes was associated with
a significantly higher apoptotic index. Our results are con-
sistent with the findings of previous studies. Opel et al. [46]
reported that the inhibition of PI3K is an eflicient strategy
to sensitize glioblastoma cells to the induction of apoptosis.
Koseoglu et al. [47] analyzed the influence of AKTI1, AKT2,
and AKT3 knockdown on the induction of apoptosis in 20
human tumor cell lines and found that the knockdown of
AKT resulted in apoptosis in six out of 11 tumor cell lines
with activated AKT. Stahl et al. [48] recorded that a targeted
reduction in the AKT3 expression with siRNA stimulates
apoptosis and inhibits the development of melanoma tumors.
Finally, Mure et al. [4] observed an induction of apoptosis
that was mediated by a mitochondrial pathway through the
dephosphorylation of BAD and the activation of caspase 3
and 9 in glioma cell lines that had been exposed to AKT3
knockdown.

To summarize, our study is the first to demonstrate
the results of AKT3 and PI3KCA silencing in T98G cells.
Unexpectedly, we found that the simultaneous knockdown
of AKT3 and PI3KCA has a weaker effect than the silenc-
ing of these genes separately. These results may suggest
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that the simultaneous knockdown of AKT3 and PI3KCA
genes leads to a cascade of another signaling pathway
that mediates cell cycle and apoptosis regulation. There
is another Ras/Raf/MAPK pathway that is known to be
extremely important in GMB tumorigenesis in addition to
the PI3K/AKT pathway. Sunayama et al. [49] showed that
the inactivation of the Ras/Raf/MAPK pathway triggered
a reciprocal activation of the PI3K/AKT pathway and vice
versa, which suggests that there may be a mutually inhibitory
crosstalk between them. It could be that the simultaneous
silencing of PI3KCA and AKT3 leads to a greater activation
of Ras/Raf/MAPK pathway, but this phenomenon needs to
be clarified.

T98G cells are less sensitive to BCNU and etoposide than
U87-MG cells [46]. In addition, the T98G cell line is the
most resistant to temozolomide compared to cell lines such as
U373-MG, U251-MG, GB-1, U87-MG, and A-172 [12], which
is a major chemotherapeutic agent in the current treatment
of GBM. Thus, it seems reasonable to conduct research for
potential new glioma therapy methods using that cell line.

5. Conclusions

In the T98G glioblastoma multiforme cell line, the expression
of AKT3 or PI3KCA genes is downregulated by siRNAs that
target their mRNAs and this leads to the upregulation of
the BAX/BCL-2 mRNA expression ratio. We also showed
that AKT3 and PIK3CA siRNAs significantly reduced the
respective protein levels. Moreover, AKT3 and PI3KCA-
specific siRNAs reduced the viability and proliferation of
GBM cells and promoted their apoptosis via mitochondrial
pathway. Therefore, blocking AKT3 and PI3KCA with suitable
siRNAs offers a potential therapeutic strategy for controlling
the growth of human glioblastoma multiforme cells. Further
studies are warranted in order to determine whether targeting
AKT3and PI3KCA genes with siRNAs has a true potential for
glioblastoma multiforme treatment in vivo.
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