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This brief review gives an overview of newer developments in 18F-chemistry with the focus on small 18F-labelled molecules
as intermediates for modular build-up syntheses. The short half-life (<2 h) of the radionuclide requires efficient syntheses of
these intermediates considering that multistep syntheses are often time consuming and characterized by a loss of yield in each
reaction step. Recent examples of improved synthesis of 18F-labelled intermediates show new possibilities for no-carrier-added
ring-fluorinated arenes, novel intermediates for tri[18F]fluoromethylation reactions, and 18F-fluorovinylation methods.

1. Introduction

Thepositron emitter fluorine-18 is a commonly used radionu-
clide in molecular imaging with positron emission tomo-
graphy (PET) due to its advantageous nuclear properties.
Thus, it finds wide application as noninvasive, quantitative,
and versatile modality in medical diagnosis, research, and
drug development [1]. Fluorine-18 has a short half-life of
109.7min which only allows time-limited syntheses and
study protocols. The methods for introducing this short-
lived radionuclide into organic molecules thus require fast
chemistry, and it is desirable to introduce the 18F-label during
the last possible synthetic step.

A further aspect is the stoichiometry of 18F-chemistry
that differs from “cold” fluorinations. The radionuclide is
produced in low (nano- to picomolar) amounts and its
concentration in reaction mixtures is several orders of mag-
nitude lower than the precursor concentration. Furthermore,
the syntheses of the radiotracers have to be performed in
closed, lead-shielded hot cells, which necessitates an easily
applicable and remote-controlled process. Thus, besides the
development of more efficient and flexible 18F-labelling
methods new technological approaches have been examined,
especially in the field of microfluidic chemistry [2–10]. The
development of a reliable 18F-labelling technique together
with an automatic synthesis module is a major prerequisite of

routine production of 18F-labelled PET radiopharmaceuticals
[11–13].

Methods for the introduction of [18F]fluorine into
organic molecules can be divided into two groups, namely,
direct and indirect.The direct method entails introduction of
[18F]fluorine without changing the carbon skeleton structure
of the molecule. However, in many cases this necessitates the
protection of functional groups or requires other transforma-
tions like reduction or oxidation of functional groups after
introduction of radiofluorine [14].

The indirect method involves build-up syntheses, that
is, changing the carbon skeleton structure and starting
from small molecules which themselves can be easily 18F-
fluorinated by nucleophilic substitution. Such small 18F-
labelled alkyl [15] or aryl [16] groups bear typically reactive
functional groups for further transformation reactions.Those
intermediates are used to synthesizemore complex biological
molecules which cannot be labelled with fluorine-18 due to
mechanistic reasons or are not stable enough to tolerate direct
18F-fluorination conditions.

In the case of 18F-labelling of macromolecules like pep-
tides, proteins, and antibodies, these small 18F-labelled inter-
mediates are commonly called “prosthetic groups.” In the last
decade progress has been made regarding the 18F-labelling of
macromolecules [17, 18]. Besides the use of prosthetic groups
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several alternative methods have also been introduced, capa-
ble of using even mild and aqueous conditions, for example,
chelated aluminum [19–21], boron- [22], and/or silicon-based
[18F]fluoride acceptor groups [23–26]. The latter methods
were also used for the synthesis of small molecules [27].

This review focuses on new developments regarding the
use of small 18F-labelled intermediates for build-up synthe-
ses of biologically active compounds. The 18F-labelling of
macromolecules and the click chemistry approach are not
considered.Those special topics of 18F-labelling can be found
in other contributions to this issue [28–30].

2. 18F-Fluorinating Agents

As starting material for all chemical syntheses either aqueous
[18F]fluoride or gaseous [18F]F

2
is used, both of which are

generally produced at a cyclotron via the 18O(p,n)18F nuclear
reaction [31].The nucleophilic [18F]fluoride ion is available in
no-carrier-added (n.c.a.) form which allows the synthesis of
radiotracers with high specific activity. In contrast, in-target
produced [18F]F

2
is available only in carrier-added (c.a.) form

which leads to radiotracers with low specific activity.
Historically, for important radiopharmaceuticals like

2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) and 6-[18F]
fluoro-L-dopa only electrophilic 18F-fluorination was avail-
able. Today this method is rarely used because of the need of
carrier for [18F]F

2
production. Thus, the use of electrophilic

18F-fluorination is limited to nontoxic compounds as well
as to those that can be applied with a low specific activity.
Also, since [18F]F

2
is very reactive and 18F-labelled side prod-

ucts are formed, less reactive electrophilic 18F-agents were
developed [32].More recently, the synthesis of N-[18F]fluoro-
benzenesulfonimide (NFSi) was described, which is a highly
stable, reactive and selective electrophilic 18F-labelling agent
and allows the synthesis of 18F-labelled allylic fluorides and
𝛼-fluorinated ketones from allylsilanes and silyl enol ethers,
respectively [33].

An alternative method using a “posttarget” synthesis of
[18F]F

2
leads to moderate specific activity of up to 24.7GBq/

𝜇mol, starting from n.c.a. [18F]fluoride [34]. It was
recently revisited for the radiosynthesis of [18F]selectfluor
bis(triflate), the 18F-labelled form of (1-chloromethyl-4-flu-
orodiazonia-bicyclo[2.2.2]-octane bis-(tetra-fluoroborate)),
an easy to handle and stable electrophilic fluorinating reagent
(cf. Figure 1) [35]. This reagent could successfully be used
for the silver(I)-mediated 18F-fluorination of electron-rich
arylstannane models and intermediates, as well as for the
preparation of 6-[18F]fluoro-L-DOPA [36], albeit all with
limited specific activity of 3.7 ± 0.9GBq/𝜇mol.

3. Aliphatic Intermediates

Aliphatic 18F-fluorination is certainly the most prominent
method for 18F-labelling [32], and important PET-radio-
tracers for clinical use are aliphatically 18F-labelled com-
pounds which fulfill these requirements, for example,
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substitution
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Cl
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N+
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18O(p,n)18F [
18F]F−
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Figure 1: Nuclear reactions to produce fluorine-18 and the
18F-fluorinating agents [18F]fluoride, [18F]fluorine gas, and
[18F]selectfluor bis(triflate).

[18F]FDG, 3󸀠-deoxy-3󸀠-[18F]fluorothymidine ([18F]FLT),
[18F]fluoro(m)ethylcholine, and O-2-[18F]fluoroethyl-L-
tyrosine ([18F]FET) (cf. Figure 2) [15, 37, 38]. [18F]Fluoro(m)-
ethylcholine is an example for 18F-labelled endogenous
compounds, whereas [18F]FDGand [18F]FLT are 18F-labelled
deoxy derivatives of the corresponding endogenous sub-
stances. In all cases a proton is replaced by a fluorine
atom without changing the carbon skeleton of the original
compound. In contrast, [18F]FET is an example of an
endogenous 18F-labelled compound where the introduction
of the radionuclide is performed by an 18F-fluoroalkylation
reaction. Here, the 18F-label is introduced into the molecule
by addition of further C-atoms which means that the
skeleton of the molecule is significantly changed. Other
examples of this kind of reaction are the 18F-fluoroacylation
and 18F-fluoroamidation reactions which are widely used
for labelling of macromolecules [39], most often in aqueous
solution.

3.1. Intermediates for Nucleophilic Substitution and Other
Coupling Reactions. The synthesis of intermediates for 18F-
fluoroalkylation is characterized by a two- or three-step pro-
cedure (cf. Figure 3) [40]. First, [18F]fluoride is introduced
into a molecule using precursors containing a good leaving
group.The 18F-labelled precursor is then isolated and purified
before coupling with a further molecule.

In the first step the [18F]fluoride has to be separated from
the target water and activated for a nucleophilic substitution
reaction. The standard conditions of these basic methods are
described in several reviews [11, 32, 41]. A simplification of
this approach was achieved by water removal on a strong
anion-exchange resin [42] or by use of strong organic bases
as additives replacing the inorganic bases or salts classically
used in the resin eluent [43–46]. Instead of trapping on anion-
exchange resins n.c.a. [18F]fluoride can also be separated by
electrochemical methods which are useful to minimize the
reaction volume especially for the use inmicrofluidic systems
[47–51]. The use of mixtures of nonpolar tert-alcohols with
acetonitrile as a reaction medium enhanced the reactivity
of cesium[18F]fluoride or tetrabutylammonium [18F]fluoride
and reduced the formation of typical by-products compared
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Figure 3: Pathways for aliphatic 18F-labelling intermediates starting from n.c.a. [18F]fluoride.

to those conventionally obtained only with dipolar aprotic
solvents [52, 53].

Bromine and iodine and several sulfonate derivatives
serve generally as leaving groups for a nucleophilic aliphatic
radiofluorination [15, 40, 54, 55]. Alternatively, in the case
of preparation of O-[18F]fluoromethylated aliphatic and aro-
matic ethers, the 1,2,3-triazolium triflate group serves as a
very good nucleofuge for displacement by the [18F]fluoride
ion [56].

The purification of 18F-fluorinating agents is performed
by HPLC, solid phase extraction (SPE), or distillation. The
main challenge is the complete separation of the 18F-labelled
intermediate from the precursor which also would act as
reaction partner in the following coupling step. This leads
to unwanted side reactions which could lower the radio-
chemical yield (RCY) or necessitate a higher concentration

of the precursor for the subsequent coupling reaction. A
purification of the 18F-fluorinating agent via HPLC (or GC) is
very effective and is often used [57–59], but it is more incon-
venient for automatization [60, 61]. The use of SPE [62–64]
or a distillation process for purification is principally easier
to automate [40]. For instance, 1-bromo-3-(nitrobenzene-4-
sulfonyloxy)-propane as starting precursor will be retained in
the reaction vessel during the distillation process of 1-bromo-
3-[18F]fluoropropane, due to its very high boiling point, thus
eliminating the risk of formation of pseudocarrier [65]. In a
few cases the direct coupling of the 18F-labelled intermediate
was performed without former separation and purification
[66].

Another possibility for simplified workup is the use
of fluorous solid phase extraction (FSPE). A nucleophilic
18F-fluorination of fluorous-tagged precursors can easily be
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purified by FSPE regardless of the affinity of the untagged
substrate for the stationary phase. FSPE-purified labelled
compounds can then be used in subsequent reactions ormore
easily purified by HPLC before administration [67, 68]. A
similar approach was performed using molecular imprinted
polymers [69].

Coupling reactions of the 18F-fluorination agent with the
desired target molecule are performed either by the use of a
further leaving group, by the click chemistry approach [70],
by Staudinger ligation [71–73], or byPd(0)mediated reactions
[74].

A series of arylsulfonates were prepared as nucleophile
assisting leaving groups (NALG) in which the metal chelat-
ing unit is attached to the aryl ring by an ether linker.
Under microwave irradiation and without the assistance of
a cryptand, such as Kryptofix 2.2.2, primary substrates with
selectedNALGs led to a 2-3-fold improvement in radiofluori-
nation yields over traditional leaving groups [75].

3.2. Tri[18F]fluoromethyl Group. The CF
3
group has an elec-

tronegativity similar to that of oxygen [76] and is character-
ized by a large hydrophobic parameter as measured by the
relative partition coefficient [77]. The trifluoromethyl group
is an important pharmacophore present in many biologically
active pharmaceutical and agrochemical drugs.The increased
lipophilicity and a superior metabolic stability compared
to that of the trifluoromethyl analogues often account for
an improved activity profile [78]. Thus, radiolabelled tri-
fluoromethyl groups are of potential interest to facilitate
drug discovery. Earlier attempts to synthesize an 18F-labelled
trifluoromethyl group were also characterized by low RCY
and low specific activity due to decomposition of the target
material [79–81].

The recently published developments can be divided in
aliphatic and aromatic tri[18F]fluoromethylation reactions
(cf. Figure 3, method B).

A novel, one-step method for nucleophilic radiosyn-
thesis of aliphatic tri[18F]fluoromethyl groups using the
n.c.a. [18F]fluoride ion under relatively mild conditions was
developed by incorporation of the radiolabel by an equiv-
alent nucleophilic addition of H[18F]F to the 1-tosyl-2,2-
difluorovinyl group (cf. Figure 4). The tosylate function then
serves as leaving group in a subsequent coupling step [82,
83]. The specific activity of the tri[18F]fluoromethylether was
determined to be 86MBq/nmol. The need of a double bond
to achieve the addition of the [18F]fluoride limits this reaction
to aliphatic tri[18F]fluoromethylations.

Aromatic tri[18F]fluoromethyl groups were formerly syn-
thesized using hardly accessible aromatic-CF

2
Br groups [84].

Two new approaches were published quite recently (cf.
Figure 5). Both methods start with an aliphatic precursor
which is first labelledwith fluorine-18 and then coupled to the
benzene ring. In a two-step procedure tri[18F]fluoromethane
([18F]fluoroform) available from difluoroiodomethane and
[18F]fluoride [85] is coupled in a copper(I) mediated reaction
to aromatic halides using potassium tert-butoxide as base.
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Figure 4: New aliphatic tri[18F]fluoromethylation.
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Figure 5: Aromatic tri[18F]fluoromethylation reactions.

The RCY was determined up to 65% with a specific activ-
ity of up to 50GBq/𝜇mol [86]. This method has recently
been improved performing a one-pot synthesis in the pres-
ence of copper(I)bromide, N,N-diisopropyl-N-ethylamine,
and the corresponding iodoarene without separation of the
[18F]fluoroform intermediate [87]. The RCYs of the desired
tri[18F]fluoroarenes were determined with up to 90%, but no
information on the specific activities was given.

An alternative method is used in a one-pot process.
The trifluoromethylation agent [18F]CF

3
Cu, generated in

situ from methyl chlorodifluoroacetate, CuI, TMEDA, and
[18F]fluoride, is coupled to (hetero)aryl iodides in RCYs rang-
ing from 17 to 87% [88]. A drawback of this procedure is still
the relative low specific activity of 0.1 GBq/𝜇mol exemplified
so far only for 4-tri[18F]fluoromethyl nitrobenzene.However,
the method enables an efficient tri-[18F]fluoromethylation
of complex molecules like [18F]fluoxetine. N-Boc protected
[18F]fluoxetine was readily prepared in 37% RCY. The subse-
quentN-Boc deprotection delivered [18F]fluoxetinewith 95%
yield. A more detailed review on the scope and limitations of
the radiosynthesis of tri[18F]fluoromethyl groups is provided
as part of this special issue [89].

3.3. Palladium, Managnese and Iridium Catalyzed 18F-Fluor-
ovinylation. Transition metal catalyzed allylic substitution
is a powerful method for carbon–carbon and carbon–
heteroatom bond formation (cf. Figure 3 above, method C).
These reactions encompass a wide variety of heteroatoms (N,
O, and S) as nucleophiles [90]. In the field of 18F-chemistry
a palladium catalyzed allylic fluorination reaction was devel-
oped and transferred to n.c.a. conditions yielding 18F-labelled
cinnamyl fluoride starting from [18F]TBAF, cinnamyl methyl
carbonate, [Pd (dba)

2
], and triphenylphosphine in anhydrous

acetonitrile [91].
Further, a rapid allylic fluorination method utilizing

trichloroacetimidates in conjunction with an iridium catalyst
has been developed. The reaction is performed at room
temperature without the need of inert gas atmosphere and
relies on the Et

3
N⋅3HF reagent to provide branched allylic

fluorides with complete regioselectivity. This high-yielding
reaction can be carried out on a multigram scale and shows
considerable functional group tolerance.The use of Kryptofix
2.2.2/K

2
CO
3
allowed an incorporation of fluorine-18 within

10min [92]. The RCY of allylic [18F]fluoride was determined
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to be 38%. A specific activity for the aforementioned reac-
tions, however, was not reported.

A new method enables the facile n.c.a. 18F-labelling of
aliphatic C–H bonds in benzylic position using manganese
salen catalysts with RCY ranging from 20% to 72% within
10min without the need for preactivation of the labelling
precursor [93].

4. Aromatic and Heteroaromatic Intermediates

4.1. 18F-Labelled Aromatic and Heteroaromatic Intermedi-
ates by Classic Approaches. Historically, the use of the
Balz-Schiemann or Wallach reaction was the first attempt
to synthesize 18F-labelled aromatic rings starting from
[18F]fluoride (cf. Figure 6, method A) [94, 95]. However,
the thermal decomposition of the corresponding aryl dia-
zonium salts and of the aryl triazenes is characterized by
low RCY, a low specific radioactivity, and extensive by-
product formation [95].The use of tetrachloroborate or 2,4,6-
triisopropylbenzenesulfonate as counterions led to improve-
ments of the Balz-Schiemann reaction which enables the
synthesis of [18F]fluoroarenes in 39% RCY at the n.c.a.
level, exemplified for 4-[18F]fluorotoluene [96]. In a recently
published study these nucleophilic 18F-labelling methods
were reinvestigated using polymer bound aryl diazonium
salts and aryl triazenes [97]. The solid phase supported de-
diazofluorination using arenediazonium cations, ionically
bound to a sulfonate functionalised ion exchange resin,
was, however, not suitable for nucleophilic 18F-labelling of
aromatic compounds, whereas the solid supported triazene
yielded the 18F-labelled product in a reasonable RCY of 16%.

Most successful for the introduction of fluorine-18 into
aromatic rings is the conventional aromatic nucleophilic
substitution (SNAr) reaction using the [18F]fluoride anion to
displace a suitable leaving group from an electron deficient
benzene ring. As leaving groups serve halides, the nitro
and the trimethylammonium function. The activation of
the aromatic ring is usually achieved by suitable func-
tional groups with a–M effect like the carbonyl, carboxyl,
cyano, and nitro group [32]. These highly activating groups
especially enable the efficient introduction of [18F]fluoride
into aromatic rings to label small 18F-intermediates for
build-up syntheses. The activating functionality is then con-
verted by reduction, oxidation, or hydrolysis to nucleophilic
groups for subsequent coupling reactions. The n.c.a. inter-
mediates 4-[18F]fluoroaniline, 4-[18F]fluorobenzylamine [98,
99], 4-[18F]fluorobenzoic acid, or 4-[18F]fluorophenol (see
Section 3.3), which are not directly achievable by a 18F-
fluorination reaction, are obtained by these strategies (cf.
Figure 7) [16, 100]. 4-[18F]Fluorobenzaldehyde is also used in
multicomponent reactions to yield 18F-radiotracers with the
label positioned on an aryl moiety, not susceptible to direct
nucleophilic fluorination [101].

The azocarbonyl unit is a new group for activation of
the arene ring by an SNAr mechanism. The aromatic core
of phenylazocarboxylic esters is highly activated towards
nucleophilic aromatic 18F-substitution (cf. Figure 8) [102].

This kind of compounds was converted in a radical ary-
lation reaction into biaryl compounds or in substitutions
at its carbonyl unit to produce azocarboxamides. Because
of the high reactivity of the aryl radical, side products
like [18F]fluorobenzene and 4-[18F]fluorophenol were also
formed.

The conventional nucleophilic aromatic substitution
reaction can principally be used for the n.c.a. 18F-labelling
of aromatic rings in complex molecules [14]. However, the
direct introduction of [18F]fluoride is often hampered by a
lack of activation and further functional groups, especially
those which have acidic protons. In the case of free amino,
hydroxyl, or carboxylic acid functions the use of protecting
groups is indispensable which have to be removed at the end
of synthesis. Generally, the direct 18F-labelling of complex
molecules enables the establishment of one-pot syntheses
which is advantageous of being better introduced in a
remote controlled synthesizer. In a multistep synthesis the
intermediates have often to be purified (e.g., [103]) which
hampers the installation in a synthesismodule.Thus, one-pot
syntheses are normally preferable over the build-up synthesis
using several reactor vessels.There are exceptions to this rule,
for example, when the build-up synthesis gives substantially
higher RCYs [104].

In contrast to benzene, some heteroarenes like pyridine
efficiently support the SNAr reaction and can directly be used
to prepare 18F-labelled heteroarenes in the 2- or 4-position
[105–107]. Because of its straightforward feasibility, this
method was even applied for radiofluorination of complex
structures containing an azabenzoxazole [108], a 1,3-thiazole
[109], a fluoropurine [110], a pyridine [111–118], a quinolinol
[119], or a pyrimidine moiety [120].

4.2. New Developments on Radiofluorination of Arenes. In
general, the examination of new methods for 18F-labelling
of arene rings focuses on the late stage introduction of
[18F]fluorine into complex organic molecules without the
need of any transformation reaction afterwards. This prin-
cipally simplifies the establishment of 18F-labelling meth-
ods in fully automated, remotely controlled synthesis units.
However, these new methods are also useful for the syn-
thesis of small intermediates for build-up synthesis. The
novel methods of two prominent ones, [18F]fluorophenol
and [18F]fluoro-halobenzene, are separately described (see
Sections 4.3 and 4.4).

4.2.1. Iodonium Salts (See Figure 6, Method D, and Figure 9).
The classical approach of n.c.a. nucleophilic aromatic 18F-
substitution reactions is limited to activated arene rings.
The use of diaryliodonium salts enables the introduction
of n.c.a. [18F]fluoride into aromatic rings without further
activation of strong electron withdrawing groups, which
was first demonstrated in 1995 [121]. The reaction via an
SNAr mechanism leads to n.c.a. [18F]fluoroarenes and the
corresponding iodoarenes. The nucleophilic attack on the
diaryliodonium salt occurs preferably at the more electron-
deficient ring and a steric influence of substituents, especially
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of ortho-substituted, could be observed [95]. Further studies
have recently been performed to examine the possibilities and
limitations of this reaction, with a focus on the synthesis of
ortho- and meta-substituted arenes and the use of microre-
actors [122–124].

An interesting aspect here is that the reaction of
diaryliodonium salts with [18F]fluoride is feasible in the pres-
ence of water, however, depending on the substituents present
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on the arene ring. Iodonium salts bearing a para- or ortho-
electron-withdrawing group (e.g., p-CN) reacted rapidly (∼
3min) to give the expected major [18F]fluoroarene product
in useful, albeitmoderate radiochemical yields evenwhen the
solvent had awater content of up to 28%. Iodonium salts bear-
ing electron-withdrawing groups in metaposition (e.g., m-
NO
2
) or an electron-donating substituent (p-OMe) gave low

radiochemical yields under the same conditions. The finding
that [18F]fluoroarenes, that having an ortho-alkyl substituent
or an ortho- or a para-electron withdrawing group, can be
synthesized without the need to remove irradiated water
or to add a cryptand, could be attractive in some radio-
tracer production settings, particularly as this method saves
time, avoids any need for automated drying of cyclotron-
produced [18F]fluoride, and also avoids substantial loss of
radioactivity through adsorption onto hardware surfaces
[125].

In order to control the attack of the [18F]fluoride ion
on the diaryliodonium salts it is important that one arene
ring be more electron-rich than the ring to be labelled
with fluorine-18. Here, the use of symmetrically substituted
diaryliodonium salts [126] or the use of aryl(heteroaryl) iodo-
nium salts [127] is an alternative to direct the 18F-labelling
to the desired ring. More recently, the use of aryiodonium
ylides became of interest for this purpose. The electron-rich
status of the ylides, made, for example, from dimedone (5,5-
dimethylcyclohexane-1,3-dione), even enables the synthesis
of electron-rich arenes in high RCY [128]. This type of
precursor has recently been demonstrated to be even suitable
for complex molecules [129].

Some special intermediates like azide-containing diaryl-
iodonium salts bearing an azidomethyl grouponone aryl ring
and with a 4-methoxy group on the second one enable the
synthesis of click-labelling synthons up to 50 % RCY, even in
the presence of a high fraction of water in the reaction solvent
[130].

Halopyridinyl-(4󸀠-methoxyphenyl)iodonium tosylates
were used to rapidly produce [18F]fluorohalopyridines and

in useful RCYs, including the otherwise difficult to access
3-[18F]fluorohaloisomers [131].

4.2.2. Sulfur Activated Systems (See Figure 6 and Methods E
and F). Another newer method for the 18F-labelling of non-
activated aromatic compoundsmakes use of triarylsulfonium
salts. The method is applicable to a wide range of substituted
aryl systems including amides [132].

A new radiosynthetic method for producing n.c.a.
[18F]fluoroarenes is based on the reactions of diaryl sul-
foxides bearing electron-withdrawing paragroups with the
[18F]fluoride ion. These reactions are relatively mild, rapid,
and efficient. However, this reaction is limited to aromatic
rings bearing an electron withdrawing function like the nitro,
cyano, or trifluoromethyl group [133].

4.2.3. Umpolungs Reactions (See Figure 6 and Methods G and
H). New concepts to synthesize 18F-labelled aromatic rings
try to achieve fluoride-derived electrophilic n.c.a. fluorina-
tion reagents by fluoride umpolung [134, 135]. A preliminary
realization of this concept was achieved by using a n.c.a.
[18F]fluoride capture by a Pd(IV) complex to form an elec-
trophilic 18F-fluorination reagent followed by a subsequent
n.c.a. 18F-fluorination of palladium aryl complexes [136,
137]. Another kind of palladium catalyzed fluoride activation
enables the synthesis of 18F-labelled 1-[18F]fluoronaphthalene
in 33% RCY but only in the presence of fluoride carrier [138].
Another advanced method for a transition metal catalyzed
late-stage radiofluorination relies on a one-step oxidative 18F-
fluorination using a nickel aryl complex and a strong oxida-
tion agent [139].

[18F]Fluoride can also be introduced into organic
molecules by electrochemical oxidative fluorination via
an aryl cation that undergoes rearomatization by loss of
a proton. Oxidation of benzene in an electrolysis cell,
using Et

3
N⋅3HF and Et

3
N⋅HCl in acetonitrile as the elec-

trolyte, gave c.a. [18F]fluorobenzene in 17% RCY [140] and
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[18F]fluorophenylalanine in 10.5% RCY with a specific activ-
ity of 1.2 GBq/mmol [141].

However, the aim of all these methods is the late stage
18F-fluorination of electron-neutral and electron-rich aro-
matic compounds to simplify the synthesis of radiotracers.
Regarding the palladium and nickel reactions, the precursor
synthesis is often complex, has to be carefully handled under
inert atmosphere, and needs high synthetic experience. This
method is far from ideal, given the many reagents and
demanding reaction conditions necessary, which hamper to
fulfill a “good manufacturing practice” (GMP) pharmaceuti-
cal production [142, 143]. Thus, although principally applica-
ble, their limitation and complexity do notwarrant usefulness
for the syntheses of build-up intermediates, as there are more
efficient methods available for those molecules.

4.3. N.c.a. 4-[18F]Fluorophenol. 4-[18F]Fluorophenol is a ver-
satile structural unit for the synthesis of more complex
radiopharmaceuticals bearing a 4-[18F]fluorophenoxy moi-
ety. Former syntheses of n.c.a. 4-[18F]fluorophenol were
made either by a modified Balz-Schiemann reaction or by
hydrolysis of a 4-[18F]fluorobenzene diazonium salt with
radiochemical yields of only 10–15% and 15–33% within
35 and 60min, respectively [144]. These methods required
either the preparation of an anhydrous tetrachloroborate or
a two-step synthesis from [18F]fluoroaniline and were not
established for radiotracer production.

Amore reliable preparation of n.c.a. 2- and 4-[18F]fluoro-
phenol was achieved using the Baeyer-Villiger reaction on
18F-labelled benzaldehyde, acetophenone, or benzophenone
derivatives. Total radiochemical yields of about 25% were
received using m-chloroperbenzoic acid as oxidant in the
presence of trifluoroacetic acid [145]. The Baeyer-Villiger

reaction of 18F-labelled benzophenone derivatives containing
further electron withdrawing groups yielded up to 65%
of 4-[18F]fluorophenol within 60min with a high radio-
chemical purity. However, a considerable disadvantage of
this method is the somewhat cumbersome work-up of the
aqueous reaction mixture in order to isolate the product for
its further use [146]. The formation of 18F-labelled 4-phenol
derivatives by Baeyer-Villiger oxidation was, for example,
applied to the direct 18F-fluorination of 6-[18F]fluoro-L-dopa
[147].

A novel radiochemical transformation by an oxidative
18F-fluorination of tert-butylphenols uses the concept of an
aryl umpolung (cf. Figure 10) and is also applicable to other
O-unprotected phenols. The reaction is performed at room
temperature by applying a one-pot protocol and can also be
performed in a commercially available microfluidic device
[148].

Furthermore, aryl(thienyl) iodonium salts [149] and
bis(4-benzyloxyphenyl) iodonium salts [150] have success-
fully been employed for the preparation of [18F]fluorophenol
in a two-step procedure. Compared with the Baeyer Vil-
liger method using benzophenone derivatives, this path-
way saves 20 to 45min of preparation time and delivers
[18F]fluorophenol in an organic solution. So these methods
are more useful for subsequent coupling reactions under
anhydrous conditions. In contrast to the aryl umpolung
reaction, the iodonium strategy, however, necessitates a
deprotection step after the 18F-exchange.

4.4. N.c.a. 4-[18F]Fluorohalobenzene. Recently, the synthe-
sis of 4-[18F]fluorohalobenzenes has comprehensively been
described [151]; here a few further aspects are added.
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1-Bromo-4-[18F]fluorobenzene or 4-[18F]fluoro-1-iodoben-
zene serves as intermediates for C–C coupling reactions
using Grignard-, lithium- [152], or palladium-mediated reac-
tions [151, 153]. In Figure 11 the most efficient routes for
the synthesis of n.c.a. 4-[18F]fluorohalobenzenes are illus-
trated. The use of symmetrically substituted diaryliodo-
nium salts enables an efficient one-step synthesis of n.c.a.
1-bromo-4-[18F]fluorobenzene [154] as well as n.c.a. 4-
[18F]fluoro-1-iodobenzene [155]. For the latter, the precur-
sor synthesis is more challenging and has recently been
improved [156]. The precursor syntheses of iodophenyl-
thienyliodonium bromide and 4-iodophenyliodonium-(5-
[2,2-dimethyl-1,3-dioxane-4,6-dione]) ylide [157] are easier
to perform and the latter gave up to 70% RCY of 4-
[18F]fluoro-1-iodobenzene [158]. The most efficient method
for the one-step synthesis of 4-[18F]fluoro-1-iodobenzene is,
however, the use of triarylsulfonium salts [132, 159] which
leads to 90% RCY. A challenge, when using iodonium salts
as precursor for the synthesis of 4-[18F]fluorohalobenzenes,
is the formation of other nonradioactive halobenzene deriva-
tives which are normally not separated from the 18F-labelled
product and thus could hamper the final product separation.

5. Conclusion

The lack of universally useful methods for direct n.c.a.
radiofluorination of complex molecules causes the wide use
of 18F-labelled intermediates for the build-up synthesis of
radiotracers. Nevertheless, multistep build-up syntheses of
18F-labelled radiotracers are confronted with several funda-
mental challenges, which often hamper a remotely controlled,
large scale production by this type of reactions. Time con-
suming separation steps and the use of moisture or even
air sensitive reagents complicate the automation of these
build-up syntheses. Their application is therefore limited
to specialized laboratories with the suitable equipment and
experienced staff. The use of build-up reactions then often

enables the only way to achieve the synthesis of new radio-
tracers. Once proven that a radiotracer has the potential to
be a useful radiopharmaceutical for molecular imaging, most
oftenways can be found to establish its routine production via
an alternative, simpler synthetic concept and/or by optimisa-
tion. Here, the novel developments in umpolung reactions or
the improvements in iodonium chemistry in 18F-labelling of
arenes are promising methods, which might also be effective
for the late-stage 18F-fluorination of complex precursors.
However, their suitability for daily routine GMP-production
of radiopharmaceuticals remains to be elucidated.
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Eds., pp. 15–26, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1993.

[32] H. H. Coenen, “Fluorine-18 labeling methods: features and
possibilities of basic reactions,” in PET Chemistry: The Driving
Force in Molecular Imaging, P. A. Schubiger, L. Lehmann, and
M. Friebe, Eds., vol. 62 of Ernst Schering Research Foundation
Workshop, pp. 15–50, Springer, Berlin, Germany, 2007.

[33] H. Teare, E. G. Robins, E. Årstad, S. K. Luthra, and V. Gou-
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[158] F. Kügler, J. Cardinale, P. Kaufholz et al., “Efficient radiosyn-
theses of 18F-fluorinated aromatic amines using innovative
iodonium precursors,” Journal of Nuclear Medicine, Meeting
Abstract, vol. 53, abstract 185, 2012.

[159] J. D. Way and F. Wuest, “Automated radiosynthesis of no-
carrier-added 4-[18F]fluoroiodobenzene: a versatile building
block in 18F radiochemistry,” Journal of Labelled Compounds
and Radiopharmaceuticals, vol. 57, pp. 104–109, 2014.



Submit your manuscripts at
http://www.hindawi.com

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

MEDIATORS
INFLAMMATION

of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Behavioural 
Neurology

Endocrinology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Disease Markers

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Oncology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oxidative Medicine and 
Cellular Longevity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

PPAR Research

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Immunology Research
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Obesity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Computational and  
Mathematical Methods 
in Medicine

Ophthalmology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Diabetes Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Research and Treatment
AIDS

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gastroenterology 
Research and Practice

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Parkinson’s 
Disease

Evidence-Based 
Complementary and 
Alternative Medicine

Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com


