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It is challenging and inspiring for us to achieve high spatiotemporal resolutions in dynamic cardiac magnetic resonance imaging
(MRI). In this paper, we introduce two novel models and algorithms to reconstruct dynamic cardiac MRI data from under-
sampled 𝑘 − 𝑡 space data. In contrast to classical low-rank and sparse model, we use rank-one and transformed sparse model
to exploit the correlations in the dataset. In addition, we propose projected alternative direction method (PADM) and alternative
hard thresholding method (AHTM) to solve our proposed models. Numerical experiments of cardiac perfusion and cardiac cine
MRI data demonstrate improvement in performance.

1. Introduction

Dynamic magnetic resonance imaging (MRI) reconstructs
a temporal series of images to resolve the motion or the
variation of the imaged object. It is often used in cardiac, per-
fusion, functional, and gastrointestinal imaging.Thedynamic
contrast variations in the myocardium are typically imaged
40–60 s in cardiac perfusion imaging; however, most patients
cannot maintain a breath-hold for such long durations. The
data in MRI, samples in 𝑘 − 𝑡 space of the spatial Fourier
transform of the object, are acquired sequentially in time.
Therefore, achieving high spatiotemporal resolutions is chal-
lenging and inspiring in dynamic MRI due to the hardware
limitations and the risk of peripheral nerve stimulation.

Compressed sensing (CS) [1, 2] has been successfully
applied to accelerate MRI, for example, [3–7] and references
therein. Lustig et al. [3] systematically exploited the sparsity
which is implicit inMRI anddeveloped a framework for using
CS in MRI. Liang [4] utilized low-rank matrix completion
to dynamic MRI by considering each temporal frame as a
column of a space-time matrix. Lingala et al. [5] and Zhao et
al. [6] combined CS and low-rank matrix completion which
finds a solution that is both low-rank and sparse. Gao et al.
[8] proposed a different method which decomposes dynamic
MRI matrix as a superposition of a low-rank component and

a sparse component. It is worth noting that the low-rank
component can model the temporally correlated background
and the sparse component can model the dynamic informa-
tion that lies on the top of the background. Otazo et al. [7]
presented low-rank and sparse reconstructions for dynamic
MRI using joint multicoil reconstruction for Cartesian and
non-Cartesian 𝑘-space sampling.

Most of the above work is concerned about convex
relaxation; then it comes to an interesting question whether
we can deal with dynamicMRI using ℓ0-minimization.Many
authors have made great effort; see [9–13], for example.
Blumensath and Davies [9] were the first to propose the
iterative hard thresholding (IHT) to solve a type of ℓ0-
regularized problems and showed that the IHT method con-
verges to a local minimizer. Beck and Eldar [10] introduced
and analyzed three kinds of necessary optimality conditions
for ℓ0-constrained problems. Bahmani et al. [14] studied ℓ0-
constrained optimization in cases where nonlinear models
are involved or the cost function is not quadratic. Recently, Lu
and Zhang [11] presented a penalty decomposition method
for solving a more general class of ℓ0-constrained and ℓ0-
regularized minimization problems. Lu [12] considered ℓ0-
regularized convex cone problems and then gave an IHT
method and its convergence. More recently, Pan et al. [13]
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provided the first- and second-order necessary and sufficient
optimality conditions for ℓ0-constrained optimization.

Motivated by the recent advances in the use of CS
in MRI and ℓ0-minimization, we propose rank-one and
transformed sparse models and algorithms to significantly
accelerate dynamic MRI. In contrast to classical low-rank
and transformed sparse decomposition, this paper has the
following merits:

(i) We introduce the use of rank-one matrix in dynamic
cardiacMRI data which avoids singular value decom-
position (SVD).

(ii) We assume the dynamic component has a sparse
representation in some known sparsifying transfor-
mation, not itself.

(iii) We develop new ℓ0-constrained model and ℓ0-
regularized model, rather than their convex relax-
ation.

(iv) We design two ADM-based algorithms, projected
alternative direction method (PADM) and alterna-
tive hard thresholding method (AHTM). Numerical
experiments of dynamic cardiac MRI illustrate the
efficiency of our proposed algorithms.

The remainder of this paper is organised as follows.
Section 2 reviews some existing related work and proposes
our new models. Section 3 describes PADM and AHTM to
solve our proposed models. Section 4 reports experimen-
tal results. Section 5 concludes this paper with some final
remarks.

2. Model Analysis

We begin this section by introducing the low-rank and
transformed sparse decomposition in [7]; that is,

min ‖𝐿‖
∗
+𝛽 ‖𝑇𝑆‖1

s.t. 𝐸 (𝐿 + 𝑆) = 𝑑,

(1)

where ‖ ⋅ ‖
∗
is defined as the sum of all singular values and

‖ ⋅ ‖
1
is defined as the sum of absolute values of all entries.

𝛽 ∈ R is a real positive weighting parameter to balance
the weights of rank and sparsity, and 𝑑 is the undersampled
𝑘 − 𝑡 data. 𝐿 ∈ C𝑚×𝑛 is a low-rank matrix, which can model
the temporally correlated background. 𝑆 ∈ C𝑚×𝑛 is a sparse
matrix, which can model the dynamic information that lies
on top of the background. Generally, the dynamic component
𝑆 has a sparse representation in some known sparsifying
transformation 𝑇 (e.g., temporal frequency domain), hence
the idea of minimizing 𝑇𝑆 and not 𝑆 itself. For acquisition
with multiple receiver coils, 𝐸 is given by the frame-by-frame
multicoil encoding operator, which performs amultiplication
by coil sensitivities followed by a Fourier transform according
to the sampling pattern.

Compared with a low-rank or sparse constraint, (1) can
significantly increase compressibility of dynamic MRI data
and thus enable high acceleration factors. However, (1) is

the convex relaxation problem. The original optimization
problem associated with (1) is formulated as follows:

min rank (𝐿) + 𝛽 ‖𝑇𝑆‖0

s.t. 𝐸 (𝐿 + 𝑆) = 𝑑,

(2)

and its low-rank and sparse constrained optimization prob-
lem is as follows:

min ‖𝐸 (𝐿 + 𝑆) − 𝑑‖
2

s.t. rank (𝐿) ≤ 𝑟

‖𝑇𝑆‖0 ≤ 𝑠,

(3)

where 𝑟 denotes the rank of 𝐿, 𝑠 denotes the sparsity of 𝑇𝑆,
and ‖ ⋅ ‖

0
is ℓ0-norm, which counts the number of nonzero

entries.
Note that if𝐸 and𝑇 reduce to identitymatrix, (3) becomes

a low-rank and sparse constrained optimization problem:

min ‖𝐿 + 𝑆 −𝐷‖
2

s.t. rank (𝐿) ≤ 𝑟

‖𝑆‖0 ≤ 𝑠,

(4)

where 𝐷 = 𝐸
∗

𝑑 is given data. Zhou and Tao [15] developed
GoDecmethod to estimate the low-rank part𝐿 and the sparse
part 𝑆 in (4). GoDec alternatively updated 𝐿 by SVD and 𝑆 by
hard thresholding. To overcome the difficulty of SVD, they
proposed bilateral random projections. Even so, it still costs
much time.

We find sometimes that the background is exactly a
rank-one matrix, instead of a general low-rank matrix, so
Li et al. [16] proposed to replace low-rank matrix with
rank-one matrix which avoids any SVD completely. Xiu and
Kong [17] extended it to the case of tensor decomposition
and showed that it performs well in surveillance video.
Specifically speaking, we set 𝐿 = 𝑢1𝑇, where 𝑢 ∈ C𝑚 and 1
denotes the vector in R𝑛 whose entries are all 1, which leads
to the following rank-one and transformed sparse matrix
decomposition problem:

min 
𝐸 (𝑢1𝑇 + 𝑆) − 𝑑

2

s.t. ‖𝑇𝑆‖0 ≤ 𝑠,

(5)

and its unconstrained version

min 𝐸 (𝑢1
𝑇

+ 𝑆) − 𝑑


2
+𝜆 ‖𝑇𝑆‖0 , (6)

where 𝜆 > 0 is a regularized parameter.

3. Algorithm and Convergence

In this section, we present the projected alternative direction
method (PADM) for (5) and alternative hard thresholding
method (AHTM) for (6). Then we discuss their convergent
properties.
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3.1. ProjectedAlternative DirectionMethod for (5). Let us look
at the optimization problem (5). Inspired by ADM-based
methods, it is easy to divide (5) into three subproblems:

𝑢
𝑘

= argmin
𝑢

{

𝑢1𝑇 + 𝑆𝑘−1 −𝑀𝑘−1

2
} ,

𝑆
𝑘

= argmin
𝑆

{

𝑢
𝑘1𝑇 + 𝑆−𝑀𝑘−1

2
: ‖𝑇𝑆‖0 ≤ 𝑠} ,

𝑀
𝑘

= 𝑢
𝑘1𝑇 + 𝑆𝑘 −𝐸∗ (𝐸 (𝑢𝑘1𝑇 + 𝑆𝑘) − 𝑑) ,

(7)

where 𝑀𝑘 is obtained by enforcing data consistency, where
the aliasing artifacts corresponding to the residual in 𝑘 − 𝑡
space data𝐸∗(𝐸(𝑢𝑘1𝑇+𝑆𝑘)−𝑑) are subtracted from 𝑢𝑘1𝑇+𝑆𝑘.
Here, we denote these subproblems in (7) as 𝑢-subproblem,
𝑆-subproblem, and𝑀-subproblem, respectively.

The first 𝑢-subproblem has the solution

𝑢
𝑘

= mean (𝑀𝑘−1 − 𝑆𝑘−1) , (8)

where, for any 𝑍 ∈ C𝑚×𝑛, mean(⋅) ∈ C𝑚 is defined as

(mean (𝑍))
𝑖
=
1
𝑛

𝑛

∑

𝑗=1
𝑍
𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑚. (9)

Before establishing the solution of the second 𝑆-subproblem,
we first give a proposition about sparse projection.

Proposition 1. Let Ω = {𝑆 : ‖𝑇𝑆‖
0
≤ 𝑠}. Then P

Ω
(𝑆) =

𝑇
∗

(𝑇𝑆)max(𝑠), where P
Ω
(𝑆) denotes all but 𝑠 largest absolute

value components of 𝑆.

Proof. LettingΩ = {𝑆 : ‖𝑇𝑆‖
0
≤ 𝑠}, we have

P
Ω
(𝑆) = argmin

‖𝑇𝑆‖0≤𝑠

‖𝑋− 𝑆‖
2
= argmin
‖𝑇𝑆‖0≤𝑠

‖𝑇𝑋−𝑇𝑆‖
2

= argmin
‖𝑌‖0≤𝑠

‖𝑇𝑋−𝑌‖
2
= PB (𝑇𝑆) ,

(10)

whereB = {𝑌 : ‖𝑌‖0 ≤ 𝑠} = 𝑌max(𝑠) and the third equation is
satisfied by introducing 𝑌 = 𝑇𝑆. Then, it holds that

P
Ω
(𝑆) = 𝑇

∗

(𝑇P
Ω
(𝑆)) = 𝑇

∗

PB (𝑇𝑆)

= 𝑇
∗

(𝑇𝑆)max(𝑠) .
(11)

The proof is completed.

From Proposition 1, we derive the solution of 𝑆-
subproblem:

𝑆
𝑘

= P
Ω
(𝑀
𝑘−1
−𝑢
𝑘1𝑇) . (12)

Hence the scheme is summarized as the following projected
alternative direction method (PADM).

In Algorithm 1,𝑀-subproblem is obtained by enforcing
data consistency, so the convergence properties can be ana-
lyzed by considering the iterations of 𝑢-subproblem and 𝑆-
subproblem. Now we will present the convergence result of
PADM as follows.

Input:
𝑑: undersampled 𝑘 − 𝑡 space data
𝐸: space-time encoding operator
𝑇: sparsifying transform

Initialize:𝑀0
= 𝐸
∗

𝑑, 𝑆0 = 0, 𝑠
While

𝑢
𝑘

= mean(𝑀𝑘−1 − 𝑆𝑘−1)
𝑆
𝑘

= P
Ω
(𝑀
𝑘−1
− 𝑢
𝑘1𝑇)

𝑀
𝑘

= 𝑢
𝑘1𝑇 + 𝑆𝑘 − 𝐸∗(𝐸(𝑢𝑘1𝑇 + 𝑆𝑘) − 𝑑)

End
Output: 𝐿, 𝑆

Algorithm 1: Projected alternative direction method for (5).

Theorem 2. Let {(𝑢𝑘, 𝑆𝑘)} be the sequence generated by the
above PADM, and (𝑢

∗

, 𝑆
∗

) is an accumulation point of
{(𝑢
𝑘

, 𝑆
𝑘

)}. Then (𝑢∗, 𝑆∗) is a local minimizer of (5).

Proof. Let 𝐹(𝑢, 𝑆) = ‖𝐸(𝑢1𝑇 + 𝑆) − 𝑑‖2, for all 𝑆 ∈ Ω. Indeed,
one can observe that

𝐹 (𝑢
𝑘+1
, 𝑆
𝑘

) ≤ 𝐹 (𝑢, 𝑆
𝑘

) ,

𝐹 (𝑢
𝑘

, 𝑆
𝑘+1
) ≤ 𝐹 (𝑢

𝑘

, 𝑆) , ∀𝑆 ∈ Ω.

(13)

It follows that

𝐹 (𝑢
𝑘+1
, 𝑆
𝑘+1
) ≤ 𝐹 (𝑢

𝑘+1
, 𝑆
𝑘

) ≤ 𝐹 (𝑢
𝑘

, 𝑆
𝑘

) . (14)

Hence, the sequence {𝐹(𝑢𝑘, 𝑆𝑘)} is nonincreasing. Since
(𝑢
∗

, 𝑆
∗

) is an accumulation point of {(𝑢𝑘, 𝑆𝑘)}, there exists a
subsequence 𝐾 such that lim

𝑘∈𝐾→∞
(𝑢
𝑘

, 𝑆
𝑘

) = (𝑢
∗

, 𝑆
∗

). We
then observe that {𝐹(𝑢𝑘, 𝑆𝑘)}

𝑘∈𝐾
is bounded, which together

with the monotonicity of {𝐹(𝑢𝑘, 𝑆𝑘)} implies that {𝐹(𝑢𝑘, 𝑆𝑘)}
is bounded below and hence lim

𝑘→∞
(𝑢
𝑘

, 𝑆
𝑘

) exists. This
observation and the continuity of {𝐹(𝑢𝑘, 𝑆𝑘)} yield

lim
𝑘→∞

𝐹 (𝑢
𝑘+1
, 𝑆
𝑘+1
) = lim
𝑘→∞

𝐹 (𝑢
𝑘

, 𝑆
𝑘

)

= lim
𝑘∈𝐾→∞

𝐹 (𝑢
𝑘

, 𝑆
𝑘

) = 𝐹 (𝑢
∗

, 𝑆
∗

) .

(15)

Using these relations and taking limits on both sides of (13)
as 𝑘 ∈ 𝐾 → ∞, we have

𝐹 (𝑢
∗

, 𝑆
∗

) ≤ 𝐹 (𝑢, 𝑆
∗

) ,

𝐹 (𝑢
∗

, 𝑆
∗

) ≤ 𝐹 (𝑢
∗

, 𝑆) , ∀𝑆 ∈ Ω.

(16)

In addition, from the definition ofΩ, we know that ‖𝑇𝑆𝑘‖
0
≤

𝑠, which immediately implies ‖𝑇𝑆∗‖
0
≤ 𝑠. Thus, (𝑢∗, 𝑆∗) is a

saddle point of (5). Let Δ𝑆 be a variant such that 𝑆∗ + Δ𝑆 ∈ Ω
and letΔ𝑢 be a vector inR𝑚. It then follows from (16) and the
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first-order optimality condition that [∇
𝑢
𝐹(𝑢
∗

, 𝑆
∗

)]
𝑇

Δ𝑢 ≥ 0
and [∇

𝑆
𝐹(𝑢
∗

, 𝑆
∗

)]
𝑇

Δ𝑆 ≥ 0. Henceforth, we obtain that

𝐹 (𝑢
∗

+Δ𝑢, 𝑆
∗

+Δ𝑆) ≥ 𝐹 (𝑢
∗

, 𝑆
∗

)

+ [∇
𝑢
𝐹 (𝑢
∗

, 𝑆
∗

)]
𝑇

Δ𝑢

+ [∇
𝑆
𝐹 (𝑢
∗

, 𝑆
∗

)]
𝑇

Δ𝑆

≥ 𝐹 (𝑢
∗

, 𝑆
∗

) ,

(17)

which implies that (𝑢∗, 𝑆∗) is a local minimizer of (5).

3.2. Alternative Hard Thresholding Method for (6). We can
also divide the optimization problem (6) into the following
𝑢-subproblem, 𝑆-subproblem, and𝑀-subproblem:

𝑢
𝑘

= argmin
𝑢

{

𝑢1𝑇 + 𝑆𝑘−1 −𝑀𝑘−1

2
} ,

𝑆
𝑘

= argmin
𝑆

{

𝑢
𝑘1𝑇 + 𝑆−𝑀𝑘−1

2
+𝜆 ‖𝑇𝑆‖0} ,

𝑀
𝑘

= 𝑢
𝑘1𝑇 + 𝑆𝑘 −𝐸∗ (𝐸 (𝑢𝑘1𝑇 + 𝑆𝑘) − 𝑑) .

(18)

Compared with the above subsection, we find that the 𝑢-
subproblem and 𝑀-subproblem are the same; hereafter we
mainly explain how to solve the 𝑆-subproblem. By applying
the separability of the objective function and the technique
of operator splitting, the 𝑆-subproblem can be converted into
𝑚𝑛 corresponding single variable minimization problems.
Therefore, the following proposition will give the solution of
the corresponding single variable minimization problem.

Proposition 3. Suppose that 𝑥∗ is a solution of problem

min𝜑𝜆
𝑡
(𝑥) = 𝑥

2
− 2𝑡𝑥 + 𝜆 |𝑥|0 , (19)

where 𝑥 ∈ R is variable and 𝑡 ∈ R is a parameter. Then,

𝑥
∗

=H
𝜆
0.5 (𝑡) =

{{{{

{{{{

{

𝑡, 𝑖𝑓 |𝑡| > 𝜆
0.5
,

0, 𝑖𝑓 |𝑡| < 𝜆
0.5
,

𝑡 𝑜𝑟 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(20)

Proof. Note that 𝜑𝜆
𝑡
(0) = 0 and when 𝑥 ̸= 0, 𝜑𝜆

𝑡
(𝑥) = (𝑥 −

𝑡)
2
+ 𝜆 − 𝑡

2.

(i) If |𝑡| > 𝜆0.5, 𝜑𝜆
𝑡
(𝑡) < 0, then 𝑥∗ = 𝑡.

(ii) If |𝑡| < 𝜆0.5, 𝜑𝜆
𝑡
(𝑡) > 0, then 𝑥∗ = 0.

(iii) If |𝑡| = 𝜆0.5, 𝜑𝜆
𝑡
(𝑡) = 0, then 𝑥∗ = 𝑡 or 0.

Thus, we immediately obtain the proposition.

It is straightforward to establish the following result.

Proposition 4. For the general ℓ0-regularized problem,

min ‖𝐴𝑋−𝐵‖2 +𝜆 ‖𝑋‖0 , (21)

Input:
𝑑: undersampled 𝑘 − 𝑡 space data
𝐸: space-time encoding operator
𝑇: sparsifying transform

Initialize:𝑀0
= 𝐸
∗

𝑑, 𝑆0 = 0, 𝜆
While

𝑢
𝑘

= mean(𝑀𝑘−1 − 𝑆𝑘−1)
𝑆
𝑘

= 𝑇
∗

(H
𝜆
0.5 (𝑇(𝑀

𝑘−1
− 𝑢
𝑘1𝑇)))

𝑀
𝑘

= 𝑢
𝑘1𝑇 + 𝑆𝑘 − 𝐸∗(𝐸(𝑢𝑘1𝑇 + 𝑆𝑘) − 𝑑)

End
Output: 𝐿, 𝑆

Algorithm 2: Alternative hard thresholding method for (6).

where 𝐴 ∈ R𝑝×𝑚 is some transform matrix and 𝐵 is a given
matrix in R𝑝×𝑛. Then, the solution𝑋𝑘 is described as follows:

𝑋
𝑘

=H
𝜆
0.5 (𝑋
𝑘−1
−𝐴
𝑇

(𝐴𝑋
𝑘−1
−𝐵)) , (22)

whereH
𝜆
0.5 is the hard thresholding operator defined as

H
𝜆
0.5 (𝑋
𝑖𝑗
) =

{{{{

{{{{

{

𝑋
𝑖𝑗
, 𝑖𝑓


𝑋
𝑖𝑗


> 𝜆

0.5
,

0, 𝑖𝑓

𝑋
𝑖𝑗


< 𝜆

0.5
,

𝑋
𝑖𝑗
𝑜𝑟 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(23)

Proof. The conclusion holds directly from Proposition 3 by
separating the objective function.

From Proposition 4, the solution of 𝑆-subproblem is
characterized as

𝑆
𝑘

= 𝑇
∗

(H
𝜆
0.5 (𝑇 (𝑀

𝑘−1
−𝑢
𝑘1𝑇))) . (24)

Based on the above argument, we have derived the following
alternative hard thresholding method (AHTM) for (6).

In the end of this subsection, we will establish the
convergence result of Algorithm 2.

Theorem 5. Let {(𝑢𝑘, 𝑆𝑘)} be the sequence generated by the
above AHTM, and (𝑢∗, 𝑆∗) is an accumulation point of
{(𝑢
𝑘

, 𝑆
𝑘

)}. Then (𝑢∗, 𝑆∗) is a local minimizer of (6).

Proof. Let 𝑓(𝑢, 𝑆) = ‖𝐸(𝑢1𝑇 + 𝑆) − 𝑑‖2; then

𝐹 (𝑢, 𝑆) = 𝑓 (𝑢, 𝑆) + 𝜆 ‖𝑇𝑆‖0

=

𝐸 (𝑢1𝑇 + 𝑆) − 𝑑

2
+𝜆 ‖𝑇𝑆‖0 .

(25)

Like the proof of Theorem 2, we derive that (𝑢∗, 𝑆∗) is a
saddle point of (6). We choose Δ𝑢 to be a vector in R𝑚,
and Δ𝑆 satisfies ‖𝑇(𝑆∗ + Δ𝑆)‖

0
= ‖𝑇𝑆

∗

‖
0
. Based on the
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convexity of 𝑓(𝑢, 𝑆), we have [∇
𝑢
𝑓(𝑢
∗

, 𝑆
∗

)]
𝑇

Δ𝑢 ≥ 0 and
[∇
𝑆
𝑓(𝑢
∗

, 𝑆
∗

)]
𝑇

Δ𝑆 ≥ 0. Using this relation, we obtain that

𝐹 (𝑢
∗

+Δ𝑢, 𝑆
∗

+Δ𝑆) ≥ 𝑓 (𝑢
∗

, 𝑆
∗

)

+ [∇
𝑢
𝑓 (𝑢
∗

, 𝑆
∗

)]
𝑇

Δ𝑢

+ [∇
𝑆
𝑓 (𝑢
∗

, 𝑆
∗

)]
𝑇

Δ𝑆

+𝜆
𝑇 (𝑆
∗

+Δ𝑆)
0

≥ 𝑓 (𝑢
∗

, 𝑆
∗

) + 𝜆
𝑇𝑆
∗0

= 𝐹 (𝑢
∗

, 𝑆
∗

) .

(26)

Hence (𝑢∗, 𝑆∗) is a local minimizer of (6).

4. Numerical Experiments

In this section, we conduct numerical experiments to com-
pare the performance of IST [7], PADM, and AHTM
for dynamic cardiac MRI data. We apply all these meth-
ods on MR images: cardiac perfusion and cardiac cine,
which are available at the website http://cai2r.net/resources/
software/ls-reconstruction-matlab-code. All experiments are
implemented in MATLAB (MathWorks, Natick, MA) on a
desktop computer with Intel Core I5 2.60GHzCPU and 8GB
of RAM.

We now address the initialization and the termination
criteria for these methods. In particular, we set the stopping
criterion as RelErr < 2.5𝐸 − 3, where

RelErr :=

𝑢
𝑘1𝑇 + 𝑆𝑘 − (𝑢𝑘−11𝑇 + 𝑆𝑘−1)

2

𝑢
𝑘−11𝑇 + 𝑆𝑘−1

2 . (27)

We choose 𝜆 = 0.01 in AHTM as suggested in [7]. However,
we do not know the sparse parameter 𝑠 beforehand. Hence,
in this paper, we initialize 𝑠 as one percent of pixels in each
frame of 𝑇𝑆.

4.1. Cardiac Perfusion. We next conduct numerical experi-
ments to test the performance of IST [7], PADM, and AHTM
for dynamic cardiac perfusion MRI data. The computational
results of the three methods are presented in Figures 1–3. In
detail, we use 𝐿 + 𝑆 (the first row) to denote the original
dynamic cardiac perfusionMRI frames,𝐿 (the second row) to
denote the reconstructed background parts, and 𝑆 (the third
row) to denote the reconstructed moving parts. Comparing
Figures 1–3, we can observe that PADM (see Figure 2) and
AHTM (see Figure 3) are easier to recognize the pathological
parts than IST (see Figure 1), which is due to the use of ℓ0
rather than its convex relaxation ℓ1. This capacity may be
useful to identify lesions that are difficult to visualize in the
original images.

In addition, Table 1 reports the computational results for
dynamic cardiac perfusion MRI data. Here, the number of
iterations is given in the second column (i.e., Iteration). The
third column (i.e., Time) lists the computing time in seconds.
The relative error is reported in the last column (i.e., RelErr).
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S

Figure 1: Performance of IST for dynamic cardiac perfusion.

L

L + S

S

Figure 2: Performance of PADM for dynamic cardiac perfusion.

Table 1: Computational results for dynamic cardiac perfusion.

Algorithm Iteration Time RelErr
IST 36 80.38 2.5𝐸 − 03

PADM 25 59.47 2.5𝐸 − 03

AHTM 31 63.25 2.4𝐸 − 03

It is evident to see that the “Time” and “Iteration” of PADM
and AHTM are lower than these of IST. This is because we
employ rank-one to avoid SVD.

4.2. Cardiac Cine. Similarly, Figures 4–6 and Table 2 demon-
strate the performance of IST [7], PADM, and AHTM for
dynamic cardiac cine MRI data. From the third row, we find
that Figures 5 and 6 can get clearer moving parts, because we
can tune the sparsity of 𝑠 and 𝜆.

5. Conclusions

In this paper, we focused on the application of rank-one and
transformed sparse decomposition for dynamic cardiacMRI.
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L

L + S

S

Figure 3: Performance of AHTM for dynamic cardiac perfusion.
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Figure 4: Performance of IST for dynamic cardiac cine.

Table 2: Computational results for dynamic cardiac cine.

Algorithm Iteration Time RelErr
IST 26 140.13 2.4𝐸 − 03

PADM 18 81.49 2.5𝐸 − 03

AHTM 22 94.26 2.4𝐸 − 03

We established the projected alternative direction method
and alternative hard thresholding method and showed their
convergent results. Finally, numerical experiments demon-
strated the efficiency and effectiveness of our proposed
methods.
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Figure 5: Performance of PADM for dynamic cardiac cine.
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Figure 6: Performance of AHTM for dynamic cardiac cine.
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