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Examination of Local Functional Homogeneity in Autism
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Increasing neuroimaging evidence suggests that autism patients exhibit abnormal brain structure and function. We used the
Autism Brain Imaging Data Exchange (ABIDE) sample to analyze locally focal (∼8mm) functional connectivity of 223 autism
patients and 285 normal controls from 15 international sites using a recently developed surface-based approach. We observed
enhanced local connectivity in the middle frontal cortex, left precuneus, and right superior temporal sulcus, and reduced local
connectivity in the right insular cortex. The local connectivity in the right middle frontal gyrus was positively correlated with the
total score of the autism diagnostic observation schedule whereas the local connectivity within the right superior temporal sulcus
was positively correlated with total subscores of both the communication and the stereotyped behaviors and restricted interests of
the schedule. Finally, significant interactions between age and clinical diagnosis were detected in the left precuneus.These findings
replicated previous observations that used a volume-based approach and suggested possible neuropathological impairments of
local information processing in the frontal, temporal, parietal, and insular cortices. Novel site-variability analysis demonstrated
high reproducibility of our findings across the 15 international sites. The age-disease interaction provides a potential target region
for future studies to further elucidate the neurodevelopmental mechanisms of autism.

1. Introduction

Autism spectrum disorder (ASD) is an increasingly rec-
ognized group of neurodevelopmental disorders with early
onset and lifelong persistence. ASD is reported to occur in
∼1% of children [1] and is characterized by abnormalities in
language, social interaction, and a range of stereotyped and
repetitive behaviors.

Neuroimaging studies of ASD have accumulated a wealth
of empirical data on the abnormal brain connectomics
associated with ASD [2–4]. Reduced long distance but
increased local connectivity in ASD has been proposed [5],
and a number of FMRI studies have consistently found
underconnectivity in ASD [2, 6–8]. However, a significant
number of other studies reportmixed or increased functional
connectivity in ASD [9–11]. Regarding these inconsistencies,

Muller and colleagues systematically illustrated that different
methodological choices could produce different results in
functional connectivity studies [4]. Althoughmethodological
choices may affect the statistical results of ASD studies, a
consistent and reliable demonstration of brain function using
a large sample would be a good step towards elucidating the
brain mechanisms of ASD.

Using a local connectivity index of functional homo-
geneity, ReHo, both increases and decreases of ReHo were
observed in resting-state FMRI studies of ASD [12, 13].
ReHo is a promising index of human brain function that
has been applied to multiple neuropsychiatric disorders
[2, 12–14]. It employs Kendall’s coefficient of concordance
(KCC) to measure the functional coherence between a given
area (e.g., a voxel) and its adjacent areas (e.g., neighboring
voxels) [15]. Previous studies on spontaneous brain activity
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in ASD used volume-based ReHo (3dReHo), ignoring the
two-dimensional nature of the laminar cerebral cortex [2, 14].
In volume space, voxel’s neighbors may not be close to the
voxel across the cortical mantle. Recently, our lab developed
a surface-based ReHo method (2dReHo) that demonstrated
moderate to high test-retest reliability and correlated with
neurobiological information processing hierarchies [16, 17].
The present study began by testing the consistency between
the previous 3dReHo and our new 2dReHo results across a
large-scale autism sample. Furthermore, as revealed by our
recent work [17], 2dReHo is a neurobiologically meaningful
metric of the functional organization of the human brain.We
thus aimed to examine the effects of ASD on brain functional
organization.

Abnormal cortical development and organization in chil-
dren with ASD has been characterized in terms of brain
cortical volume, surface area, and cortical thickness [18,
19]. Previous genetic findings, coupled with brain imaging
studies, suggested a potential unifying model of ASD in
which higher-order association areas of the brain that nor-
mally connect to the frontal lobe are partially disconnected
during development [20, 21]. In general, autism is conceived
as a heterogeneous childhood neurodevelopmental disorder
because of its early onset and lifelong persistence. Using
223 ASD and 285 healthy controls (HC) from the autism
brain imaging data exchange (ABIDE) lifetime sample [2,
22], we examined both group differences and diagnosis-age
interactions in local functional homogeneity measured by
2dReHo, as well as behavioral correlations in ASD.

2. Materials and Methods

2.1. Participants and MR Imaging. The ABIDE sample was
part of the 1000 FunctionalConnectomesProject (FCP: http://
fcon 1000.projects.nitrc.org/fcpClassic/FcpTable.html) and
the International Neuroimaging Data-Sharing Initiative
(INDI: http://fcon 1000.projects.nitrc.org/indi/pro/nki.html)
and included RFMRI images of 539 ASD (aged 17.01 ±
8.37) and 573 healthy controls (aged 17.08 ± 7.72) from 18
international sites [2]. Detailed phenotypic and scanning
information can be found at the ABIDE website: http://fcon
1000.projects.nitrc.org/indi/abide/. The overlap of phenotyp-
ic protocol across sites consisted of age at scan, sex, IQ, and
diagnostic information. All contributions were based on
studies approved by the local institutional review boards,
and written informed consent was obtained from the parents
of all the early onset patients and corresponding healthy
controls, as well as all the adult participants.

Similar to the ABIDE consortium paper [2], 794 subjects
from the original participant pool were selected for sub-
sequent imaging analyses. The criteria were (1) individuals
without other comorbidities; (2) male subjects, as they repre-
sent 90%of theABIDE sample; (3) siteswith fIQ estimated for
>75% and subjects with fIQ scores; (4) individuals with fIQ
within 2 s.d. of the overall ABIDE samplemean (i.e., 108 ± 15);
(5) sites with at least 9 participants per group after the above
exclusions.

2.2. Image Preprocessing. For each participant, all MRI
images were preprocessed with the Connectome Computa-
tion System (CCS: http://lfcd.psych.ac.cn/ccs.html) [16].This
system was developed based on FCP scripts for providing
a computational platform for multimodal brain connec-
tome analysis by integrating AFNI [23, 24], FSL [25], and
FreeSurfer [26] and has been used in our previous studies
[16, 17].

All structural MRI images were processed with the
CCS structural pipeline. Briefly, the structural images were
processed for cortical surface reconstruction [27–31], includ-
ing (1) noise removal with a spatially adaptive nonlocal
means filter [32, 33] operation and correction for intensity
inhomogeneity; (2) brain extraction with a hybrid water-
shed/surface deformation; (3) tissue segmentation of the
cerebrospinal fluid (CSF), white matter (WM), and deep
gray matter (GM); (4) cutting plane generation to disconnect
the two hemispheres and subcortical structures; (5) fixation
of the interior holes of the segmentation; (6) a triangular
mesh tessellation over the GM-WM boundary and mesh
deformation to produce a smooth GM-WM interface (white
surface) and GM-CSF interface (pial surface); (7) topological
defect correction on the surface; (8) individual surface mesh
inflated into a sphere; and (9) estimation of the deforma-
tion between the resulting spherical mesh and a common
spherical coordinate system that aligned the cortical folding
patterns across subjects.

All functional images were preprocessed with the CCS
functional pipeline, involving the following steps: (1) elimi-
nating the first 5 EPI volumes from each scan to allow for
signal equilibration; (2) despiking time series to detect and
reduce outliers (spikes) using an hyperbolic tangent function;
(3) slice timing using Fourier interpolation to temporally
correct the interleaved slice acquisition; (4) aligning each
volume to a “base” image (the mean EPI image) using
Fourier interpolation to correct between-head movements;
(5) normalizing the 4D global mean intensity to 10,000
to allow intersubject comparisons; (6) regressing out the
WM/CSF mean time series and the Friston-24 motion time
series to reduce the effects of these confounding factors [16,
34]; (7) filtering the residual time series with a passband
filter (0.01–0.1Hz) to extract low-frequency fluctuations; (8)
removing both linear and quadratic trends; and (9) aligning
individual motion corrected functional images to the indi-
vidual anatomical image using a GM-WM boundary-based
registration (BBR) algorithm [35]. Individual preprocessed
4D RFMRI time series were projected onto the fsaverage5
standard cortical surface with 10,242 vertices per hemisphere
and gaps of 4mm on average [36].

2.3. Quality Control Procedure. The CCS quality control
procedure provides an interactive environment for users
(http://lfcd.psych.ac.cn/ccs/QC.html) to examine the quality
of (1) brain extraction or skull stripping, (2) brain tissue
segmentation, (3) pial and white surface reconstruction, (4)
functional-structural image realignment with BBR registra-
tion, and (5) head motion during RFMRI, calculated using
several quantities: (1) the maximum distance of translational
head movement (maxTran), (2) the maximum degree of
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Table 1: ABIDE sample composition in the current study.

Site name ASD number HC number Age (years)
Caltech 4 6 29.5 ± 11.8
CMU 7 2 27.8 ± 6.0
KKI 3 11 10.0 ± 1.5
Leuven 14 12 22.8 ± 3.6
MaxMum 15 24 26.3 ± 11.0
NYU 30 69 15.7 ± 6.6
OHSU 9 13 10.5 ± 1.6
Olin 7 11 17.2 ± 3.0
Pitt 22 21 19.0 ± 6.9
Stanford 7 9 10.1 ± 1.7
Trinity 17 24 16.9 ± 3.4
UCLA 35 29 13.1 ± 2.4
UM 9 16 16.3 ± 3.8
USM 35 22 23.8 ± 8.2
Yale 9 16 12.1 ± 2.6

rotational headmovement (maxRot), (3) themean framewise
displacement (meanFD) [37, 38], and (4) the minimal cost of
the BBR coregistration (mcBBR). All subjects with bad brain
extraction, tissue segmentation, and surface reconstruction
were excluded from the subsequent computation. All datasets
filled the following criteria: (1) maxTran ≤ 2mm, (2) maxRot
≤ 2∘, (3) meanFD ≤ 0.4mm, and (4) mcBBR< 0.75. We were
left with a total of 508 subjects (223 ASD, 285 HC) from 15
different sites passing the above quality control procedure for
the final statistical analysis (see Table 1 for the composition of
the final sample).

2.4. 2dReHo and Statistics. We applied surface-based
2dReHo to characterize local functional homogeneity
in both ASD and HC subjects due to its high test-retest
reliability [16] neurobiological significance [17]. Specifically,
for a given vertex V

0
on the surface grid fsaverage5, we

identified its 𝐾 nearest neighbors V
𝑖=1,2,...,𝐾

and denoted by
V
𝑖
(𝑡) their RFMRI time series. The 2dReHo measure of this

vertex was computed as Kendall’s coefficient of concordance
(KCC) using these time series. The mathematical formula
is shown as (1), where 𝑅

𝑖=1,...,𝑛
represents the ranks of V

𝑖
(𝑡),

𝑛 is the number of time points, 𝑅
𝑖
is the mean rank across

its neighbors at the 𝑖th time point, and 𝑅 is the overall
mean rank across all neighbors and across all the time
points. A vertexwise 2dReHo surface map was produced by
repeating this computation procedure for every vertex on the
surface of both hemispheres. Both length-one (6 neighbors)
and length-two (19 neighbors) 2dReHo maps, denoted by
2dReHo1 and 2dReHo2, respectively, were generated for
subsequent analyses:
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A general linear model was constructed by modeling
diagnosis (ASD versus HC), site, age, and fIQ as covariates
of interests (see details in (2)). Notably, before the group level

analysis of 2dReHo, we first removed the effects of meanFD,
mcBBR, Jacobian values of white surface, and global mean
(gm) 2dReHo (see details in (3)). We have found that this
computation is equivalent to directly including all these fac-
tors in the final group analysis for the purpose of examining
the effects of the variables of interest. Here, the mean FD
indicates the mean framewise displacement [37] and mcBBR
indicates the warp distortion for BBR-based function-to-
structure realignment. The vertexwise significance values for
groupdifference and age by group interactionswere corrected
formultiple comparisons with a clusterwisemethod based on
random field theory (cluster-defining 𝑃 = 0.01, cluster-level
corrected 𝑃 = 0.05):

𝑌 = 𝛽

1
× age + 𝛽

2
× site + 𝛽

3
× fIQ

+ 𝛽

4
× Group + 𝛽

5
× Group × age + 𝑒,

(2)

𝑌

adj
= 𝑌 − (𝛽gm × gm + 𝛽fd ×meanFD

+𝛽bbr ×mcBBR + 𝛽jac × JAC) .
(3)

2.5. Behavioral Correlations. Autism diagnostic observation
schedule (ADOS) [39], autism diagnostic interview (ADI),
and the Gotham algorithm of the ADOS (ADOS GOTHAM)
were selected for the final behavioral correlation analyses, as
each of these subscale scores represented >40% of the whole
patient group. Within each cluster showing a significant
group difference in 2dReHo, we calculated the Pearson
correlation coefficient between the average 2dReHo values of
the cluster and the behavioralmeasurements. ADOS includes
the total score (ADOS TOTAL), the communication total
subscore (ADOS COMM), the social total subscore
(ADOS SOCIAL), and the stereotyped behaviors and
restricted interests total subscore (ADOS STEREO BEHAV).
ADI includes the reciprocal social interaction subscore
(A) total for the autism diagnostic interview-revised
(ADI R SOCIAL TOTAL A), the abnormality in communi-
cation subscore (B) total for the autism diagnostic inter-
view-revised (ADI R VERBAL TOTAL BV), the restricted,
repetitive, and stereotyped patterns of behavior subscore
(C) total for the autism diagnostic interview-revised
(ADI R RRB TOTAL C), and the abnormality of devel-
opment evidence at or before 36-month subscore
(D) total for the autism diagnostic interview-revised
(ADI R ONSET TOTAL D). ADOS GOTHAM includes
the social affect total subscore for the Gotham algorithm of
the ADOS (ADOS GOTHAM SOC AFFECT), restricted
and repetitive behaviors total subscore for the Gotham
algorithm of the ADOS (ADOS GOTHAM RRB), the
sum of the social affect total and restricted and repetitive
behaviors total (ADOS GOTHAM TOTAL), and the
individual calibrated severity score for the Gotham algorithm
of the ADOS (ADOS GOTHAM SEVERITY).

3. Results

3.1. Sample Composition. The final analysis was conducted
on 508 participants from 15 sites. The details of the sample
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Table 2: Cortical clusters demonstrating significant differences in 2dReHo between ASD and HC.

Cluster Vertex number MNI coordination − sign(𝑡)log
10

(𝑃)

Middle frontal sulcus 52 30, −41, −18 2.86
Superior frontal sulcus 39 20, −7, −60 3.35
Precuneus gyrus 34 6, 71, −47 2.95
Middle frontal gyrus 32 33, −32, −32 3.05
Middle frontal sulcus 78 −24, −41, −32 3.27
Superior temporal sulcus 38 −45, 37, 3 4.96
Middle frontal gyrus 35 −39, −46, −20 3.28
Insular cortex 39 −38, 10, −19 −3.45
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Figure 1: Sample characteristics of the ABIDE sites included in the
final analyses.

composition are presented in Table 1. The number of partic-
ipants per site ranged from 3 to 35 ASD patients and from 2
to 69 HC subjects. The age distribution is shown in Figure 1.
The red and blue bars represent the ASD and HC numbers
for a particular age bin, respectively. There is no significant
difference in age between the ASD andHC subjects (𝑡 = 1.40;
𝑃 = 0.16). Results derived with 2dReHo1 and 2dReHo2 were
almost identical and we thus presented the findings based
upon 2dReHo1, which were detailed in below.

3.2. Group Differences in 2dReHo. There was no difference in
the global 2dReHo between ASD andHC subjects (𝑡 = −0.33,
𝑃 = 0.75). Figure 2 depicts the brain areas that significantly
differed betweenASD andHC subjects.The anatomical labels
and locations are summarized in Table 2. The middle frontal
cortex, the left precuneus gyrus, and right superior temporal
sulcus exhibited increased local functional homogeneity
(warm colors) in ASD compared with HC. The right insular
cortex had decreased local functional homogeneity (cool
colors) in ASD compared to HC subjects.

3.3. Age by Diagnosis Interactions. The age-diagnosis inter-
action was examined for differences in correlations between
age and local functional homogeneity (i.e., the developmental
effect) between ASD and HC subjects. Significant group by
age interaction effects were detected in the left precuneus
gyrus (Figure 3(a)), where ASD patients demonstrated lower
2dReHo than HC subjects (Figure 2). To look into the details
of 2dReHo changes across this large age span, we also
visualized the age dependence of 2dReHo as scatter plots for
ASD and HC subjects (Figure 3(b)). Clearly, the scatter plot
shows that ASD subjects had increased 2dReHo with age,
whereas HC subjects had decreased 2dReHo, the opposite
pattern, with age.

3.4. Site Effects and Reproducibility. Because this was a
multisite study, we included site as one covariate of interest.
Site effects revealed by the statistical model are illustrated
in Figure 4. Multiple regions showed significant site effects,
implying a remarkable variability of 2dReHo across the 15
international sites. Specifically, the left pre/postcentral gyrus,
the middle/inferior frontal gyrus, the left medial prefrontal
cortex, the left superior parietal gyrus, and cingulate gyrus
exhibited significant site variability in 2dReHo. In contrast,
the superior temporal gyrus, the right postcentral gyrus, the
inferior part of the precentral sulcus, the inferior frontal
sulcus, the right insular cortex, the right precuneus, the
left calcarine sulcus, the occipital-temporal gyrus, and right
medial prefrontal cortex exhibited an inverse pattern of site
variability.

To further investigate the impacts of site variability on the
findings presented, we applied a leave-one-site-out validation
(LOSOV) approach. Specifically, we left one of the 15 sites out
from the ASD-HC comparisons and repeated the group level
analyses using the datasets from the other 14 sites. The site
reproducibility of the current findings was measured as the
number of replications of the voxelwise ASD-HC significance
maps. Figure 5 illustrates the reproducibility of the findings,
which were highly replicated for the middle frontal cortex,
the right superior temporal sulcus, and left precuneus.

3.5. Behavioral Correlations. The mean 2dReHo values
within the right middle frontal gyrus were positively cor-
related with the ADOS TOTAL scores (𝑟 = 0.1728; 𝑃 =
0.0171), whereas the mean 2dReHo values within the right
superior temporal sulcus were positively correlated with
both the ADOS COMM (𝑟 = 0.1542; 𝑃 = 0.0428) and
ADOS STEREO BEHAV (𝑟 = 0.1620; 𝑃 = 0.0477) scores.
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Figure 2: Group differences in local functional homogeneity between autism spectrum disorder (ASD) patients and healthy controls (HC).
The vertexwise significance of group comparisons is measured with signed log

10

transformed 𝑃 values and is rendered onto the cortical
surfaces of the left hemisphere (LH) and right hemisphere (RH). These inflated surfaces are defined by FreeSurfer as the fsaverage5 surface
model and visualized from six different (lateral, medial, posterior, anterior, dorsal, and ventral) views. Light gray colors indicate a cortical
gyrus whereas dark gray colors show a cortical sulcus.

4. Discussion

Based upon an aggregated large sample with a wide age range,
the ABIDE consortium paper [2] examined different aspects
of the functional architecture of autism brains using various
derivatives but did not explore age or site effects. The current
study quantitatively examined the local functional homo-
geneity of ASD and age/site effects. Using the ABIDE resting-
state FMRI samples of 223 ASD patients and 285 normal
controls from 15 different sites, we observed increased local
functional homogeneity measured by 2dReHo in the middle
frontal cortex, the left precuneus, and the right superior
temporal sulcus and decreased 2dReHo in the right insular
cortex. Within the left precuneus, ASD patients exhibited
decreased 2dReHo with age, but normal controls showed
increased 2dReHo with age. Notably, 2dReHo demonstrated
a widely distributed spatial pattern of variability across
sites. Across-site reproducibility of the observation was thus
conducted to show the dependency of our findings, which
revealed a novel contribution to assessment to both the
variability and reproducibility of the findings across sites in a
multicenter design. These findings indicate alterations in the
complexity of functional information processing across the

associative cortex and further correlate with multiple behav-
ioral outcomes in ASD. The age-disease interaction offers a
target region, the left precuneus, for future developmental
studies on ASD.

Consistent with the volume-based 3dReHo method used
by Di Martino et al. [2], the middle frontal cortex exhibited
increased ReHo in ASD patients. The reduction of ReHo in
the right insular cortex in ASD is consistent with a previous
study of adults with autism [13]. A study on children with
autism [12] reported that the right temporal region exhibited
greater ReHo in autism compared with typical develop-
ing controls. These consistencies and replications validate
our computation and analyses and suggest a possible neu-
ropathology in the frontal, temporal, precuneus (parietal),
and insular cortices. A widely distributed spatial pattern of
local functional organization across the association cortex is
disrupted inASD.Therewere also some inconsistencies in the
group differences in local functional connectivity between
ASDpatients andhealthy controls across the previous studies.
The reason may lie in the heterogeneity of the disorder and
the different age distribution of the participants, as well as dif-
ferent methodological choices [4]. More importantly, if ASD
was indeed characterized by an atypical neurodevelopmental
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Figure 3: The vertexwise significance (the signed log
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transformed 𝑃 values) of interactions between clinical diagnosis (diag.: ASD versus
HC) and age is visualized on the left medial cortical surface (a). The details of the diag.-age interaction are further plotted as scatters in (b),
where each dot represents the individual mean local functional homogeneity in the left precuneus cluster indicated in (a).
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Figure 4: Site variability in local functional homogeneity. The vertexwise significance of site variability is measured with signed log
10

transformed 𝑃 values and rendered onto the cortical surfaces of the left hemisphere (LH) and right hemisphere (RH).These inflated surfaces
are defined by FreeSurfer as the fsaverage5 surfacemodel and visualized in six different (lateral, medial, posterior, anterior, dorsal, and ventral)
views. Light gray colors indicate a cortical gyrus whereas dark gray colors indicate a cortical sulcus.
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Figure 5: Leave-one-site-out reproducibility of group differences in local functional homogeneity between autism spectrum disorders (ASD)
patients and healthy controls (HC). The vertexwise numbers of replications of group comparisons are rendered onto the cortical surfaces of
the left hemisphere (LH) and right hemisphere (RH). These inflated surfaces are defined by FreeSurfer as the fsaverage5 surface model and
visualized in six different (lateral, medial, posterior, anterior, dorsal, and ventral) views. Light gray colors indicate a cortical gyrus whereas
dark gray colors show a cortical sulcus.

pattern, even a moderate difference in the age range could
have a substantial influence on the results [40]. Beyond these
inconsistencies, the implication of the spatial patterns of local
functional organization will be discussed in the following
sections.

We observed increased local functional homogeneity in
ASD patients compared to normal controls in the middle
frontal cortex, part of the prefrontal cortex. In addition to the
above evidence for frontal alterations in ASD with 2dReHo,
both the fractional amplitude of low-frequency fluctuations
and the degree centrality of human brain function exhibited
impaired patterns in the frontal cortex in ASD [2]. During
brain development, in ASD, higher-order association areas
that normally connect to the frontal lobe are partially dis-
connected [20], and local connectivity is strengthened while
long-distance connectivity is impaired in the frontal cortex
[5]. Structural abnormalities, such as a thicker left frontal
cortex, have also been reported [19]. Based upon our recent
study on the neurobiological significance of ReHo in [17],
increased ReHo in the middle frontal cortex may indicate
reduced functional segregation or a reduced complexity of
local information processing. The frontal cortex is responsi-
ble for executive function, which may involve coordination
of multiple human brain networks [17]. ASD may involve
disrupted functional segregation in this area, which may
induce abnormal behaviors in patients.

The superior temporal sulcus showed increased ReHo in
ASD compared to normal controls. Similar abnormalities in
the superior temporal sulcus have been characterized using
cerebral blood flow (CBF), brainmorphology, and functional
metrics in previous studies. In greater detail, metabolism
was reduced, as indicated by decreased rCBF, in autistic
patients at the superior temporal regions [41]. A decreased
concentration of grey matter in the superior temporal sulcus
was observed in autistic children [42]. Directly related to
the current report, Shukla and colleagues observed that the
right temporal regions exhibited greater ReHo in autism
compared with typically developing controls [12]. Using the
ABIDE datasets, Anderson and colleagues recently reported
the best accuracy of whole brain classification between ASD
and HC using intrinsic functional connectivity of Wernicke’s
area, which is located in the temporal lobe [22]. Increases of
2dReHo in the superior temporal sulcus implied decreases
of local functional separation or differentiation [17] and a
decreased complexity of information processing [17, 43].
Taking this explanation a step further because this area is a
part of the language network [44] and ASD patients exhibit
abnormal functional architecture of the superior temporal
sulcus, these results may explain impaired language function
and social interactions in ASD.

The right insula was the only region with decreased ReHo
in ASD patients. Abnormality of the insula is one of the most
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consistent findings of fMRI studies on ASD. In addition to
abnormal ReHo in the insular areas of ASD [13], alterations
of VMHC (voxel-mirrored homotopic connectivity) and DC
in the insular were observed in ASD [2]. The classification
accuracy betweenASD andHCusing functional connectivity
was best in the insular cortex using the same ABIDE data as
the current study [22]. Meanwhile, decreased left posterior
insular activity during auditory language in autism was
reported previously [45]. A longitudinal study on children
aged 5–11 years showed decreases in left posterior insular
activity with age [46]. Given the neurobiological significance
of ReHo [17], decreased ReHo in the insular cortex may
indicate decreased functional integration. Considering the
roles of the insular region in emotion and decision-making
[47] and as a hub in supporting the brain connectome [48,
49], alterations of local functional homogeneity in the insular
area may correlate with impaired emotion processing and
other high-level cognitive processings in autism.

ASD patients and normal controls displayed different
trends of age dependencies. This finding may help to explain
the neurodevelopmental mechanisms of ASD. Other studies
reported abnormalities in the left precuneus in ASD com-
pared with normal controls. Functional alterations of VMHC
[22] and a thicker cortex in the left precuneus gyrus [19]
were found in two separate studies. Mak-Fan and colleagues
confirmed a similar age by group interaction pattern of
overall brain volume, overall grey matter volume, overall
surface area, andmean thickness of the brain in ASD andHC
[19]. Another study also explored the age by group interaction
in ASD focusing on brain morphology [18]. Importantly,
the current study found consistent group differences and
age by group interactions in the left precuneus gyrus. The
left precuneus may therefore be a target region for future
developmental studies of ASD.

The increases of local functional homogeneity in the right
middle frontal gyrus and right superior temporal sulcus in
ASD are associated with the severity of ASD symptoms.
Considering both the high test-retest reliability [16] and
the emerging neurobiological significance of 2dReHo, we
propose that 2dReHo may serve as a neuroimaging marker
for the diagnosis, treatment, and prevention of ASD in the
future [50]. As illustrated in the group difference subsection
of the Discussion, the frontal cortex and superior temporal
sulcus are two major areas of autism studies for both brain
structure and function [20, 51]. The current findings were
also mostly reproducible across different sites for these two
regions (Figure 5). The correlations of average ReHo with
ADOS symptoms indicate that these regions may be targets
for further explorations of the neuropathology of ASD [51].

4.1. Limitations and Future Directions. The ABIDE consor-
tium paper [2] reported less commonly explored regions
such as the thalamus. In the current study, the subcortical
regions and cerebellum were excluded due to the limitation
of the surface-based ReHo method. These regions may be a
direction of future studies by developing surface-based ReHo
approaches for these noncerebral structures.The second lim-
itation of ReHo is its nature of local short-range connectivity
and being not suitable for characterizing global long-range

connectivity. A sample limitation is that the sample was
composed of mainly males with ASD (>90%). Therefore,
sex differences may be crucial in ASD progression during
brain development, and future studies with a comparable
number of male and female ASD patients could improve our
understanding of the neuropathology of the disorder.Thirdly,
the subgroup of ASD generally included autism, Asperger’s
syndrome, or PDD-NOS. There is an ongoing debate about
clinical standards for the classification of the four subgroups.
However, enough samples for each subgroup would give
more insight into the classification in terms of neuroimaging-
based data mining approaches (see a pilot demonstration
in early onset schizophrenia in [52]). Finally, all age-related
findings observed in the present study are derived from
a cross-sectional dataset and should be interpreted with
caution that these age-related changes can be interpreted
as developmental effects only with a longitudinal sample in
future.

5. Conclusions

In the current study, using the ABIDE sample with 223 ASD
and 285 healthy controls with wide age span, we observed
increased local functional homogeneity ReHo in the middle
frontal sulcus and gyrus, the left precuneus gyrus, and
right superior temporal sulcus, together with decreased local
functional homogeneity ReHo in the right insular. Significant
group by age interactions in the left precuneus gyrus were
also found, and the group difference (increased 2dReHo in
ASD) decreased with age. At the same time, the average
2dReHo values within the right middle frontal gyrus were
significantly positively correlatedwithADOS TOTAL scores,
and the average 2dReHo values within the right superior
temporal sulcus were significantly positively correlated with
ADOS COMM and ADOS STEREO BEHAV scores. All of
these findings, especially the consistent group differences,
the interaction effects in the precuneus gyrus, and the
behavioral correlations, contribute to our understanding of
the neurodevelopmental pathological mechanisms of ASD.
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