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The accurate identification of gait asymmetry is very beneficial to the assessment of at-risk gait in the clinical applications. This
paper investigated the application of classification method based on statistical learning algorithm to quantify gait symmetry
based on the assumption that the degree of intrinsic change in dynamical system of gait is associated with the different statistical
distributions between gait variables from left-right side of lower limbs; that is, the discrimination of small difference of similarity
between lower limbs is considered the reorganization of their different probability distribution. The kinetic gait data of 60
participants were recorded using a strain gauge force platform during normal walking.The classification method is designed based
on advanced statistical learning algorithm such as support vector machine algorithm for binary classification and is adopted to
quantitatively evaluate gait symmetry. The experiment results showed that the proposed method could capture more intrinsic
dynamic information hidden in gait variables and recognize the right-left gait patterns with superior generalization performance.
Moreover, our proposed techniques could identify the small significant difference between lower limbs when compared to the
traditional symmetry index method for gait. The proposed algorithm would become an effective tool for early identification of the
elderly gait asymmetry in the clinical diagnosis.

1. Introduction

The symmetry in human gait is commonly considered as one
of the important features of the behavior during walking, and
it is often viewed as a vital indicator of gait function of healthy
individual in both clinical and research setting [1, 2]. As we
have known, the gait symmetry is usually assumed as the
identical function of locomotion between left and right sides
of body and its change (i.e., gait asymmetry) can be found
by examining the significant difference of activity between
two sides such as lower limbs.The accurate evaluation of gait
symmetry has an important role in the assessment of motion
function [3, 4].

In nearly twenty years, although there are debates over
gait symmetry based on the different definition or methods,
the studies on techniques for quantitative analysis of gait
symmetry have been increasing attention [3–5].The common
methods for quantifying the gait symmetry, according to

the literatures reported, mainly include two classes: algebraic
indices and statistical techniques [1, 3, 5]. The basic idea of
these algorithms is to find the significant difference between
left and right limb during walking by quantitative analysis
of the gait variables [1, 3]. For example, the symmetry index
(SI), the classical algebraic algorithm proposed by Robinson,
is defined as

SI =
2 (𝑋
𝑅
− 𝑋
𝐿
)

(𝑋
𝑅
+ 𝑋
𝐿
)

× 100%, (1)

where 𝑋
𝑅

and 𝑋
𝐿
are the values of the measured gait

parameters from the right and left limbs, respectively [3].That
is, the gait symmetry can be available when the value of SI
is equal to zero by calculating the gait variables at discrete
time point during gait cycle. Since the traditional SI value is
obtained only by a simple average calculation, there exists the
loss of the useful information associated with symmetry in
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gait variables. Recently, the techniques of the development
of SI have been presented in publication related to gait
symmetry [6]. More recently, a related study showed that the
SI value is developed as the integral of the absolute value to
evaluate the difference between left and right lower limb. In
this study reported, the developed SI value is obtained by
calculating the data set from the entire stance phase in order
to provide more useful information about gait symmetry. In
addition, the statistical technique has been widely applied in
the gait analysis to quantify gait symmetry [4]. Most of the
early studies tried to use some simple statistical techniques
(such as the paired 𝑡-tests) to evaluate the difference between
lower limbs duringwalking based on kinematic or kinetic gait
data. These simple statistical techniques only provide limited
information related to the assessment of gait symmetry [7, 8].
Recently, multivariate statistical techniques have attracted
growing attention in the field of the quantization of gait
symmetry in order to gathermore information on insight into
gait complexity [4]. Principal components analysis (PCA),
as a powerful multivariate statistical technique, has been
successfully applied to quantify gait symmetry in some
studies. These authors have proved great potential of use
of PCA for the assessment of symmetry in gait, but they
also found that the selection of principal components in
PCA mainly depends on the rotational criteria, in which
there exists limitation of PCA in reality application such as
clinical environment circumstance [9, 10]. Aswe have known,
the complex dynamic of gait is an important characteristic
of locomotion during walking, and the recorded gait data
contains the “interesting” characteristic information related
to the intrinsic nonlinear dynamics of human gait [1, 2, 10].
It is vital to capture those pieces of intrinsic “interesting”
information from gait data for quantifying gait symmetry.
However, the current technique such as the new developed
SI or PCA for the quantization of symmetry in gait cannot
provide the intrinsic nonlinear dynamic information which
resided in gait data because they only satisfy linear algorithm
[4, 10]. So, it motivates us to find the more effective method
that can gain more information about insight into complex
dynamic of gait for accurately quantitative assessment of gait
symmetry.

It is well-known that the complex dynamic in human gait
arises from the high interaction between central nervous sys-
tem and various muscles [2, 3]. Gait symmetry or asymmetry
can be considered the degree of “order” or “disorder” of a
dynamic system. According to statistics theory, we assume
that the degree of intrinsic change in dynamical system of gait
is associated with the different statistical distributions; that
is, it is desirable to search for the corresponding probability
distribution associated with the degree of disorder in the
dynamic system of gait such as gait symmetry [10]. In
this study, all gait variables from the two sides of body
are assumed to be independent and identically distributed.
These variables satisfy the same probability distribution in
the hypothesis space when the gait is symmetrical; in other
words, the gait symmetry is destroyed when the entire gait
variables arise from the different probability distribution.
Therefore, based on the difference of probability distribution
related to gait variables between lower limbs, we tried to

investigate the application of the classification technique to
find the small significant difference between left and right
sides; that is, the advanced classification algorithm is used to
recognize the difference between left and right gait, which can
quantitatively assess gait symmetry.

Recently, some advanced machine learning algorithms
have been more and more attractive in the gait analysis for
gait classification. Practically, support vectormachine (SVM),
which is a novel statistics learning algorithm based on the
Vapnik-Chervonenkis (VC) theory and structural risk min-
imization (SRM), has been widely and successfully applied in
gait classification for assessment of change of gait function
[11–14]. In this study, we considered that the determination
of deviations from symmetry in gait is considered a binary
classification task, and SVM with superior classification
performance was developed to quantify gait symmetry. In
order to test the effectiveness of our proposed technique, we
obey the fundamental assumption that the normal or healthy
gait is symmetric and pathological gait is asymmetric. Here,
we acquired the kinetics gait data of lower limb of subjects
from 60 subjects. In order to capture more information
related to dynamic of gait from the recorded data, we defined
all values of gait parameters measured during a gait cycle
as a gait pattern. SVM was developed to classify the gait
pattern between the right and left sides of lower limb in order
to effectively determine the difference of similarity between
the corresponding gait patterns. In addition, with the same
gait data, we also compared our proposed technique to the
traditional SI method, further suggesting that our proposed
technique is more effective than traditional quantization of
method for gait symmetry.

This paper was organized as follows. Section 2 presented
the procedure of kinetics gait data acquisition. In Section 3,
we particularly introduced our proposed algorithm for quan-
tifying the gait symmetry or asymmetry. In Section 4, the
experimental results of this studywere given.Discussions and
conclusions were given in Sections 5 and 6, respectively.

2. Kinetics Gait Data Acquisition

In this study, the acquisition of kinetic gait data was per-
formed with 60 healthy participants (mean age: 64.1 ± 2.35
years; height: 169 ± 5.3 cm). All participants had no known
injuries or abnormalities that affect their gait. They were
asked to walk at a self-determined pace on the 10m long
straight laboratory walkway where a strain gauge Bertec
force platform (Bertec Corporation, Canada) was embedded
in the middle. In this experiment, the foot was required
to entirely step on the force platform and not to contact
the edge of the platform. Prior to acquisition of data, each
participant was given 20 minutes to be familiar with the
data collection procedure and setting, and body weight of
each participant was recorded. The sampling frequency of
force platform was set to 400Hz. For each participant, we
recorded 10 successful trials from the right and left sides,
respectively. In order to avoid the individual difference of
participants, all recorded values of foot-ground force (GRF)
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were normalized by participants’ bodyweight while they were
further normalized with respect to the duration of the gait
cycle of each limb [15–17].

3. SVM Classification Algorithm for
Evaluating Gait Symmetry

SVM [11], a prevailing statistical learning algorithm for
machine learning, is proposed by Van pick based on the
Vapnik-Chervonenkis (VC) theory and structural risk min-
imization (SRM). Compared to traditional machine learning
algorithm such as artificial neural network, SVM can yield
superior generalization for new data classification because
of its ability to minimize both structural and empirical risk.
The basic idea of SVM for classification algorithm is to firstly
map input data into a higher dimensional feature space via
kernel function and then to construct an optimal separating
hyperplane between the two classes in the mapped space. In
this study, we assume that a gait data set 𝑀 of points in a 𝑛-
dimensional space belongs to two different classes +1 and −1.
Here, classes +1 and −1 represent the right and left side gait
pattern, respectively:

𝑀 = {(𝑥
𝑙
, 𝑦
𝑙
) , 𝑦
𝑙
∈ (+1, −1)} , (2)

where 𝑙 ∈ {1, . . . , 𝐿}, 𝑥
𝑙
∈ 𝑅

𝑛.
The task of SVM is to find a function that maps the points

from their data space to their label space by the following
equation:

𝑓 : 𝑅

𝑛
→ {+1, −1} ,

𝑥
𝑙
→ 𝑦
𝑙
, 𝑦
𝑙
∈ {+1, −1} .

(3)

Therefore, with kernel function, the optimal separating
hyper-plane can be found in the higher-dimension space, and
it is expressed as [18]

𝑓 (𝑥) = sign(∑

𝑖∈SV
𝛽
𝑖
𝑦
𝑖
𝐾(𝑥
𝑖
, 𝑥) + 𝑏) , (4)

where 𝐾(𝑥
𝑖
, 𝑥) is kernel function that satisfies Mercer’s

conditions; 𝑏 is a bias estimated on the training set; 𝛽
𝑖
are

the coefficients of the generalized optimal separating hyper-
plane, and they can be obtained by solving the following
quadratic programming (QP ) problem [19]:

min 𝑊(𝛽) = −𝛽

𝑇
𝐼 +

1

2

𝛽

𝑇
𝑀𝛽

subject to 𝛽

𝑇
𝑦 = 0, 𝛽

𝑖
∈ [0, 𝐶] , (𝐼)𝑖

= 1.

(5)

Since the gait data are not linearly separable in this study,
in order to minimize classification error, some nonnegative
slack variables (𝜉

𝑖
≥ 0 is a measure of misclassification

errors) and a penalty function 𝐹
𝛾
(𝜉) = ∑

𝑖
𝜉

𝛾

𝑖
𝛾 ≥ 0

are employed in SVM classification algorithm. Thus, the
problem of searching for the generalized optimal separating

hyperplane can be considered the solution of the following
optimization problem [11]:

min 1

2

‖𝑤‖

2
+ 𝐶

𝐿

∑

𝑖

𝜉
𝑖

subject to 𝑦
𝑖
(𝑤

𝑇
𝑥 + 𝑏) ≥ 1 − 𝜉

𝑖
,

𝑖 = 1, . . . , 𝐿,

(6)

where 𝑤 is the weight vector in the generalized optimal
separating hyperplane. Minimizing (1/2)‖𝑤‖

2 is equal to
maximizing the margin, and minimizing 𝐶∑

𝐿

𝑖
𝜉
𝑖
can obtain

the minimization of the classification error. 𝐶 denotes the
misclassification penalty parameter which controls the trade-
off between the maximum margin and the minimum error
and must be set to a given value [11].

In addition, the performance of SVM classification algo-
rithm mainly relies on the selection of kernel functions
because these functions determinate the nature of the deci-
sion surface between separated gait data [19]. In this study,
the following kernels functions were used:

(1) linear: (𝑥
𝑖
, 𝑥
𝑗
) = 𝑥
𝑖
⋅ 𝑥
𝑗
,

(2) polynomial (poly): 𝐾(𝑥
𝑖
, 𝑥
𝑗
) = ((𝑥

𝑖
⋅ 𝑥
𝑗
) + 1)

𝑑, where
𝑑 is the polynomial’s degree,

(3) Gaussian radial basis function (RBF): 𝐾(𝑥
𝑖
, 𝑥
𝑗
) =

exp(‖𝑥
𝑖
− 𝑥
𝑗
‖

2
/2𝜎

2
), where 𝜎 is the width of RBF

function.

As a result, we can discriminate the small difference of simi-
larity between lower limbs by developing SVM classification
model to recognize the right-left gait patterns accurately.

4. Experimental Results

4.1. The SI-Based Methods for Gait Symmetry. Since the
variability of the forces in vertical direction is lower than
that of the other direction force [18, 20], in this study, we
selected the GRF in vertical direction for the quantization
of gait symmetry. To more effectively evaluate our proposed
technique, we firstly used the traditional SI-based method
to quantify the gait symmetry of subjects. The six important
gait parameters in analysis of normal gait function (three
peak forces 𝐹𝑧1, 𝐹𝑧2, and 𝐹𝑧3 and their corresponding time
𝑇𝑧1, 𝑇𝑧2, and 𝑇𝑧3), as shown in Figure 1, were chosen to
quantitatively assess the deviation from the gait symmetry
[18, 21, 22].

At first, the variability of six gait parameters selected was
estimated by using coefficient of variation (CV).

Here, for each gait parameter corresponding to right and
left side of body, respectively, its value of CV can be obtained
by calculating the measurement of 10 trails according to the
following definition of CV:

CV =

SD
M

× 100%, (7)

where SD andM denote standard deviations andmean value,
respectively. The variability of each gait parameter can be
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Figure 1: The selected six gait parameters in the vertical directional
foot-ground reaction forces.

regarded as an acceptable level when CV ≤ 12.5%. In this
study, the absolute symmetry index (SI) was used to evaluate
the deviation from gait symmetry [13, 21–23], and it is defined
as

SI =










2 (𝑋
𝑅
− 𝑋
𝐿
)

(𝑋
𝑅
+ 𝑋
𝐿
)











× 100%. (8)

When the SI value is less than 10%, the deviation from gait
symmetry can be considered an acceptable level. In addition,
we also employed a paired 𝑡-test technique to further test
the left-right difference of each gait parameter [21, 22]. In
the experiment, the significance level value (𝑃) was set as
0.05; that is, when 𝑃 ≤ 0.05, the significance of right-left
difference is an acceptable level. The experimental results
were presented in Table 1. From Table 1, we can see that the
variability of each gait parameter selected is acceptable level
due to the fact that each corresponding CV value is less than
12.5%. The symmetry in gait of subjects would seem to be
an acceptable level as the obtained ASI values are less than
10%. However, there exists small difference between right
and left limbs based on the obtained significance level value
(𝑃 ≤ 0.05) from𝑇𝑧1, 𝐹𝑧2, and𝑇𝑧3, respectively.These results
suggested that the traditional SI-based method could not
discover the more intrinsic dynamic information hided in
gait variables.

4.2. SVM for Gait Symmetry. In order to capture more
information related to dynamic of gait from the recorded
data, all values of gait parametersmeasured during a gait cycle
were defined as a gait pattern; namely, each gait pattern is
denoted as 101 dimensions vector according to sampling at
each 1% within a normalized stance phase.These defined gait
patterns were used as the input of SVM train sets to develop
the SVM classifier for recognizing the right-left gait pattern.

In this study, since the number of subjects is 60, the
total of gait samples including right and left side are 120.
With small sample data, the cross-validation technique was

Table 1: The results of statistics analysis for the selected right-left
gait parameters from all subjects.

Parameters Left-side Right-side SI (%) 𝑃 (%)
CV (%) Mean CV (%) Mean

Fz1 8.38 113.84 8.95 114.86 2.45 3.78
Tz1 10.14 23.45 8.16 22.38 4.56 9.26
Fz2 6.42 74.39 7.38 76.56 4.35 2.34
Tz2 5.34 48.93 5.43 50.98 3.23 4.41
Fz3 9.45 110.43 7.75 112.24 2.67 6.57
Tz3 5.13 77.05 3.76 78.76 0.83 6.38

used to develop and evaluate the SVM classifier [16–20].
Here, a six-fold cross-validation scheme was proposed; that
is, 120 sample data including 60 right-side and 60 left-
side gait sample data were divided into six segments, and
each segment must consist of 10 right-side and 10 left-
side gait patterns. Namely, each of the six cross-validation
test segments contained 10 right-side and 10 left-side gait
patterns while their respective training segment included the
remaining 50 right-side and 50 left-side gait patterns. Firstly,
5 out of the 6 segments were used to train and construct
the SVM decision surface while the remaining one was used
in testing, and an average classification result was obtained
from the testing set of the subjects’ gait data. Secondly,
the above procedures were repeated for 10 times. Finally,
the six classification results were averaged to obtain a final
performance result [12–14].

In this experiment, three common kernels (polynomial,
linear, and RBF kernel) were adopted for SVM. The training
SVM classifier mainly includes initialization of the training
set and optimization of parameter such as regularization
parameter𝐶, kernel parameter 𝜎, and 𝑑 of SVM.The detailed
training procedure is as follows.

Step 1. Initiate the kernel parameters such as𝐶, 𝜎, and 𝑑, and
construct an initial training set.

Step 2. The optimal generalization performance of SVM was
produced by adjusting the optimal parameters 𝐶, 𝜎, and 𝑑

based on the proposed six-cross-validation method.

In addition, accuracy, sensitivity, and specificity were
used to evaluate the performance of the SVM classification,
and they were defined as the following, respectively:

Accuracy = TP + TN
TP + FP + TN + FN

× 100%,

Sensitivity = TP
TP + FN

× 100%,

Specificity = TN
TN + FP

× 100%,

(9)

where TP denotes the number of true right-side gait patterns
that SVM correctly identifies. FP is the number of false right-
side gait patterns recognized; that is, SVMdetects a right-side
gait pattern as left-side. FN is the number of SVMs for the
identification of a left-side gait pattern as right-side, andTN is
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the number of true left-side gait patterns that SVM correctly
recognizes. Therefore, accuracy is defined as the ratio of the
number of gait patterns accurately identified to the total of
gait patterns in the tests. Sensitivity is defined as a rate of
SVM for the test of ability to detect right-side gait patterns
correctly, while specificity is defined as a rate of SVM for
recognizing left-side gait patterns correctly.

As we have known, the superior generalization perfor-
mance of SVM for classification, to the great degree, depends
on the extraction or selection of the gait features as the
input of the training sets. To further evaluate the classi-
fication performance of SVM, we used different methods
for obtaining some good gait features from the originally
defined gait pattern including 101 dimensions vector: (1)
selection of the six vital gait parameters (𝐹𝑧1, 𝐹𝑧2, 𝐹𝑧3, 𝑇𝑧1,
𝑇𝑧2, and 𝑇𝑧3) as a gait feature vector and (2) extraction
of some gait feature vector from a gait pattern by PCA.
Therefore, the above features vector obtained, respectively,
were defined as a new gait pattern for developing SVM
classifier, and the classification performance was tested by
the same six-fold cross-validation design. The best results of
these proposed SVM classifiers were given in Table 2. From
Table 2, we could see that the classification performance of
SVM reaches maximum (accuracy: 0.90, sensitivity: 0.90,
and specificity: 0.88) when the some gait features obtained
by PCA were used as input of SVM. Meanwhile, when
the initially defined gait patterns (101 dimensions vector)
and the six important gait features selected, respectively,
were used as the inputs of SVM, their best result of SVM
classification is almost the same (i.e., accuracy: 0.86-0.87,
sensitivity: 0.85-0.86, and specificity: 0.85). These results
showed that the extraction of gait feature by PCA can reduce
more redundancy information which resided in gait pattern
for improving the performance of SVM classification. The
selection of six gait features could lose useful information
about gait symmetry while the initially defined gait pat-
tern could contain more redundancy information, which
can destroy the classification performance of SVM. In this
experiment, the generalization performance of SVM with
nonlinear kernel function is superior to that of SVM with
linear kernel function, suggesting that SVM with nonlinear
kernel could obtain the more intrinsic nonlinear dynamic
information from gait variables than SVM with linear. More
importantly, the results of sensitivity and specificity from
these proposed SVM for gait classification algorithms are
slightly different, which showed that our proposed SVM
algorithm could gain probability distribution of right and
left side gait pattern in the mapped higher-dimension feature
space. In general, these results demonstrated that, with our
data, the proposed technique for gait classification could
determine the small deviation between left and right lower
limbs of subjects, suggesting that SVM could be used as
effective tool for quantifying the gait symmetry.

5. Discussions

The experiment results demonstrated that, with our gait
data, the SVM was able to exactly determinate the difference

Table 2: Comparison of results from the different SVM classifica-
tion algorithm designed.

Classifiers Kernel (ACC, SEN, SEP)

Extracted features-SVM
Poly (0.90, 0.88, 0.88)
RBF (0.90, 0.90, 0.88)
Linear (0.89, 0.87, 0.87)

All variables-SVM
Poly (0.85, 0.85, 0.83)
RBF (0.86, 0.85, 0.85)
Linear (0.83, 0.83, 0.85)

Six variables-SVM
Poly (0.86, 0.85, 0.85)
RBF (0.87, 0.86, 0.85)
Linear (0.85, 0.85, 0.83)

Note: ACC, SEN, and SEP denote accuracy, sensitivity, and specificity,
respectively.

between probability distribution from gait pattern of right
and left sides in the higher-dimension features space mapped
via kernel function, and SVM for gait classification method
has superior ability to quantify gait symmetry when com-
pared to the traditional SI-based technique. Currently, the
evaluation of symmetry in the able-bodied gait has received
more attention in the field of biomechanics and computer
science research, and it has been becoming more and more
challenging endeavor [4, 6]. In this study, we chose the elderly
subjects for the evaluation of gait symmetry based on the
fact that gait asymmetry is produced due to the neurological
and physiological changes related to the gait and aging [22–
24]. To capture more useful information associated with the
complex dynamic of gait, the acquisition of the kinetic gait
data of subjects was performed because these acquired data
satisfy theory of “kinetic chain” and avoid the limitations in
the marker-based kinematics data collection such as its high
cost, limited access to experiment participants, and narrowed
marker positions. As showed in Table 1, the variability of
all gait parameter satisfied the acceptable level because of
CV ≤ 12.5%. Although the SI values from each selected
gait parameter satisfied an acceptable level (i.e., <10%),
there exists significant difference between some selected gait
variables from left-right side such as 𝑇𝑧1, 𝐹𝑧2, and 𝑇𝑧3

according to the fact that their corresponding significance
level value 𝑃 is less than 0.05. These results demonstrated
that the collected gait data contain more useful information
related to the complex dynamic of gait, but the traditional
SI-based technique cannot discriminate the small difference
between the right-left sides of lower limb [10]. The possible
reason is that the traditional SI-based methods could not
capture the “interesting” information embedded in the gait
data for quantifying gait symmetry.

In this study, the aim of the use of the SVMwith advanced
statistical learning algorithm for gait symmetry is to mine
the more intrinsic nonlinear dynamic information hidden in
gait data from the inter-relationship between multiple gait
variables, which can accurately identify the small difference
between the right-left sides of lower limbs. From Table 2, we
can see that SVM classification technique can recognize the
right-left gait pattern with better generalization performance.
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In particularly, PCA-based SVM could obtain the best gener-
alization performance in all proposed SVM methods. Here,
PCA was adopted as a preprocessing tool of gait data for
reducing the redundancy information between multiple gait
variables before SVM classification. Thus, we could use PCA
to extract more gait features containing the more account
of separation information between the separable classes [4,
13, 14]. In the experiment, we expect to obtain some good
features providing additional discrimination information for
improving the performance of classification because more
additional extraction features do not provide all the necessary
information for gait classification. The choice of the number
of gait features extracted by using PCA has an important
impact on the identification results. FromTable 2, we can also
see that when the 101 dimensions gait variables or six gait
parameters selected were, respectively, used as gait feature
vector (i.e., inputs of SVM), their classification performance
of SVM was less than that of PCA-based SVM. The possible
reason is that 101 dimensions gait vector could contain more
redundant information and the selected gait features could
not provide additional discrimination information between
left-right lower limbs, which can deteriorate the classifica-
tion performance of SVM [11, 19]. Similar dependence of
classification performance on the selected features has been
reported in applicability to the classification of gait patterns
using various machine classifiers [12–14]

In addition, it is very important to select kernel function
in the proposed SVM algorithm [19] because these kernel
functions can reflect the intrinsic change in dynamical
system of gait by the inter-relationship between multiple
gait variables in the mapped higher-dimension feature space.
In this study, considering that there may exist probability
distribution of all gait variables in the higher space, we
selected three kernel functions (RBF, poly, and linear kernel)
for gait data analysis. From Table 2, we could find that these
selected kernel functions performwell, but the generalization
performance of SVM with nonlinear kernel such as RBF
and Poly is superior to that of SVM with linear kernel. This
is because these selected nonlinear kernels could discover
“interesting” information about the interaction of all gait
variables in a complicated nonlinear fashion, which can offer
corresponding probability distribution associated with the
degree of disorder in the dynamic system of gait. Thus, non-
linear kernel can provide more useful information related to
nonlinearly separable gait patterns than linear kernel, which
effectively improve the generalization performance of SVM,
and determine similarities or dissimilarities between the
lower limbs for quantifying gait symmetry. More important,
according to the experiment results in this study, we found
that our proposed statistical learning algorithm such as SVM
for classification of gait pattern could accurately discriminate
change of elderly gait symmetry, suggesting that the early
identification of elderly gait asymmetrymay be gained for the
assessment of at-risk gait and prevention fall in the clinical
applications [25, 26].

In this study, we also observed that the selection of the
optimal parameter was vital for classification performance.
The optimal parameters, such as misclassification penalty
parameter 𝐶, and the kernel parameters (𝑑, 𝜎) of SVM, must

be carefully selected to obtain the best classification perfor-
mance. This is because the optimal value of each parameter
could vary with different values of other parameters and each
was chosen by using the experiment method [12, 13].

6. Conclusion

In this study, with our gait data, the proposed statistical learn-
ing algorithm such as SVM classification algorithm for gait
symmetry can effectively capture more useful information
related to complex dynamic of gait from all gait variables
during gait stance and determinate the small difference
of similarity between lower limbs when compared to the
traditional SI-based methods. Furthermore, our proposed
technique can also be applied in the other kind of gait data
such as kinematics and accelerometer data to evaluate the
effectiveness of gait symmetry.The proposed technique could
be developed as a novel method for quantifying the gait
symmetry, which would be used as the tool for the early
identification of the elderly gait asymmetry in the clinic
applications.

In addition, we also found that the obtained nonlinear
feature information associated with gait change could con-
tribute greatly to gaining deeper insight into the process of
intrinsic nonlinear dynamics of gait. In the future work, we
will focus on searching for themore robust statistical learning
algorithm for gaining gait nonlinear information to evaluate
the change of gait symmetry in pathologies and physiological
mechanisms.
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