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1 Algorithm convergence analysis

In this section we study the convergence properties of Algorithm LRSDec. Firstly, we define the objective

value (decomposition error) is ‖X − L − S‖2F . We have the following lemma about the convergence of

the objective value ‖X− L− S‖2F in (7).

Lemma 2. (Convergence of objective value) The alternative optimization (7) produces a sequence of

‖X− L− S‖2F that converges to a local minimum.

Proof. Let the objective value ‖X − L − S‖2F after solving the two subproblems in (7) be E1
t and E2

t ,

respectively, in the tth iteration. On one hand, we have:

E1
t = ‖X− Lt − St−1‖2F , E2

t = ‖X− Lt − St‖2F (1)

The global optimality of St yields E1
t ≥ E2

t . On the other hand,

E2
t = ‖X− Lt − St−1‖2F , E1

t+1 = ‖X− Lt+1 − St‖2F (2)

The global optimality of Lt+1 yields E2
t ≥ E1

t+1. Therefore, the objective values (decomposition errors)

‖X− L− S‖2F keep decreasing throughout LRSDec (7):

E1
1 ≥ E2

1 ≥ E1
2 ≥ ... ≥ E1

t ≥ E2
t ≥ E1

t+1 ≥ ... (3)

Since the objective of (7) is monotonically decreasing and the constrains are satisfied all the time, the

LRSDec algorithm produces a sequence of objective values that converge to a local minimum.

In Section 1.1, we will show that the sequence Lt,St generated via LRSDec converges asymptotically.

1



1.1 Asymptotic Convergence

Lemma 3. The nuclear norm shrinkage operator Tλ(·), defined in Lemma 1 and card shrinkage operator

Λk(·), defined in (13), satisfies the following for any W1,W2 (with matching dimensions)

‖Tλ(W1)−Tλ(W2)‖2F ≤ ‖W1 −W2‖2F

‖Λk(W1)− Λk(W2))‖2F ≤ ‖W1 −W2‖2F

In particular this implies that Tλ(W) and Λk(W) are continuous map in W.

Proof. The continuity of nuclear norm shrinkage operator Tλ(·) has been proved in [3]. We give the

proof of card shrinkage operator Λk(·).

W1 = PΘ(W1) + PΘ⊥(W1),W2 = PΘ(W2) + PΘ⊥(W2) Θ ∩Θ⊥ = �

‖W1 −W2‖2F = ‖PΘ(W1)− PΘ(W2) + PΘ⊥(W1)− PΘ⊥(W2‖2F

= ‖PΘ(W1)− PΘ(W2)‖2F + ‖PΘ⊥(W1)− PΘ⊥(W2‖2F

= ‖Λk(W1)− Λk(W2))‖2F + ‖PΘ⊥(W1)− PΘ⊥(W2‖2F

≥ ‖Λk(W1)− Λk(W2))‖2F

Lemma 4. The successive differences ‖Lt − Lt−1‖2F , ‖St − St−1‖2F of the sequence Lt,St are monotone

decreasing:

‖Lt+1 − Lt‖2F ≤ ‖Lt − Lt−1‖2F ∀t.

‖St+1 − St‖2F ≤ ‖St − St−1‖2F ∀t.

Proof.

‖Lt+1 − Lt‖2F = ‖Tλ(X− St)−Tλ(X− St−1)‖2F

(by Lemma 3) ≤ ‖(X− St)− (X− St−1)‖2F

= ‖St−1 − St‖2F

= ‖Λk(X− Lt−1)− Λk(X− Lt)‖2F

(by Lemma 3) ≤ ‖Lt − Lt−1‖2F

In the same way for sequence St:

‖St+1 − St‖2F = ‖Λk(X− Lt+1)− Λk(X− Lt)‖2F

≤ ‖Lt − Lt+1‖2F

= ‖Tλ(X− St−1)−Tλ(X− St)‖2F

≤ ‖St − St−1‖2F
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The above implies that sequence ‖Lt − Lt−1‖2F and ‖St − St−1‖2F converge (since they are decreasing

and bounded below). This implies that:

‖Lt+1 − Lt‖2F − ‖Lt − Lt−1‖2F → 0 as t→∞

‖St+1 − St‖2F − ‖St − St−1‖2F → 0 as t→∞

So there exist constants α1 ≥ 0, α2 ≥ 0

‖Lt+1 − Lt‖2F → α1 as t→∞

‖St+1 − St‖2F → α2 as t→∞

Actually, since LRSDec can be written as the form of alternating projections on two manifolds. According

to [2], Lt converges asymptotically to some point L∗, St converges linearly to some point S∗, for some

constant α, exists β:

‖Lt − L∗‖2F ≤ α1β
t
1

‖St − S∗‖2F ≤ α2β
t
2
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2 Figure S1. Hierarchical clustergram of all 552 genes in Sec-

tion 6.2 with imputing missing values
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Figure 1: Red and green represent positive and negative genetic interactions, respectively, grey entries in

the original figure in ([5]) have been imputed, whose the clustering results could be found more clearly

here.

4



3 Calculation of p-value for a gene set

Let N be the total number of genes and M be the number of genes related to a functional category from

the total genes. Suppose now we have a gene set with N1 genes. Among these N1 genes there are M1

genes related to GO functional category. The p-value of this gene set is given below:

p(N,M,N1,M1) =

N1∑
i=M1

 M

i

 N −M

N − i


 N

N1


The p-value are adjusted using Bonferroni correction.

4 Jaccard index: evaluation measure of the predicted modules

The Jaccard index [4] between two sets Mi and Bj is defined as:

]{Mi ∩Bj}
]{Mi ∪Bj}

(4)

where ]{A} denotes the number of set A

For module Mi, the Jaccard index between Mi and each gene set Bj in the benchmark is computed,

and the Jaccard index of Mi and the benchmark gene sets is defined as the maximum of Jaccard index

between Mi and any gene set in the benchmark:

Jaccard Index(Mi, B) = maxj{JaccardIndex(Mi, Bj)} (5)

Thus, the average Jaccard index of the predicted modules and the benchmark gene sets can be computed

as:

Jaccard Index(M,B) =

∑
i∈1,...k

Jaccard Index(Mi, B)

k
(6)
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5 Global view of the genetic crosstalk between different RNA-

related complexes

Figure 2: Global view of the genetic crosstalk between different RNA-related complexes (GO CC FAT). Green and

red represent a statistically significant enrichment of negative (genetic interaction score [S] ≤ −2.5)and positive (genetic

interaction score [S] > 2.0) interactions, respectively, whereas yellow corresponds to cases where there are roughly equal

numbers of positive and negative genetic interactions. Nodes (balls) correspond to distinct protein complex, edges (lines)

represent how the complexes are genetically connected.
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6 Results in Strategy 2
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7 Results in Synthetic data
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Figure 7: Performances of LRSDec and GoDec in Low-Rank and Sparse decomposition tasks on synthetic data under

different paramenters. (a)-(d): nosise e = 10−3 ∗ F, specially, (a)-(b): fixed parameter card, different parameter rank;

(c)-(d): fixed parameter rank, different parameter card. And (e)-(h): nosise e = 10−1∗F, specially, (e)-(f): fixed parameter

card, different parameter rank; (g)-(h): fixed parameter rank, different parameter card.9



8 Application to C.elegans

Here we added the application of LRSDec algorithm to a genetic interaction dataset of Caenorhabditis

elegans [1]. This dataset systematically tested genetic interactions between 11 ‘query’ genes and 858

‘target’ genes. There are almost 20 % missing entries in this one. We can also get the low-rank matrix

and the sparse matrix, meanwhile impute the missing entries in the dataset. We presented the results of

LRSDec on this dataset in the Supplementary. After the matrix decomposition of LRSDec we could found

more functional gene clusters by estimated the clustering results with GO biological process category

using the hypergeometric distribution. Then if people follow our strategy 1 and 2 in the paper, they

could explore the functional pathways or complexes according to the annotation dataset of Caenorhabditis

Elegans. Furthermore, we could found more functional clusters than that in the original paper. Such as

“Regulation of signal transduction”, “Cell cycle switching”, “Positive regulation of cellular” and so on.

Table 1: Clustering Results

low-rank matrix L Original matrix

] Clusters
JC-Index ] Enriched@ JC-Index ] Enriched@

9 0.146 9 0.112 9

18 0.121 18 0.082 18

@: hyper-geometric test applied to test the enrichment of gene sets. Signif-

icance level :FDR<=0.05. ]Cluster: the number of clusters to cut off the

hierarchical clustering tree. ]Enriched: the number of modules predicted

by hierarchical clustering enriched in the GO iterms
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