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Identifying biomarker and signaling pathway is a critical step in genomic studies, in which the regularization method is a widely
used feature extraction approach. However, most of the regularizers are based on 𝐿

1
-norm and their results are not good enough

for sparsity and interpretation and are asymptotically biased, especially in genomic research. Recently, we gained a large amount
of molecular interaction information about the disease-related biological processes and gathered them through various databases,
which focused on many aspects of biological systems. In this paper, we use an enhanced 𝐿

1/2
penalized solver to penalize network-

constrained logistic regression model called an enhanced 𝐿
1/2

net, where the predictors are based on gene-expression data with
biologic network knowledge. Extensive simulation studies showed that our proposed approach outperforms 𝐿

1
regularization, the

old 𝐿
1/2

penalized solver, and the Elastic net approaches in terms of classification accuracy and stability. Furthermore, we applied
our method for lung cancer data analysis and found that our method achieves higher predictive accuracy than 𝐿

1
regularization,

the old 𝐿
1/2

penalized solver, and the Elastic net approaches, while fewer but informative biomarkers and pathways are selected.

1. Introduction

Identifying molecular biomarker or signaling pathway
involved in a phenotype is a particularly important problem
in genomic studies. Logistic regression is a powerful dis-
criminating method and has an explicit statistical inter-
pretation which can obtain probabilities of classification
regarding the class label information.

A key challenge in identifying diagnosis or prognosis
biomarkers using the logistic regression model is that the
number of observations is much smaller than the size of
measured biomarkers in most of the genomic studies. Such
limitation causes instability in the algorithms used to select
gene marker. Regularization methods have been widely used
in order to deal with this problem of high dimensionality. For
example, Shevade and Keerthi proposed the sparse logistic
regression based on the Lasso regularization [1, 2]. Meier
et al. investigated logistic regression with group Lasso [3].
Usually, the Lasso type procedures are often called 𝐿1-norm

type regularization methods. However, 𝐿
1
regularization

may yield inconsistent selections when applied to variable
selection in some situations [4] and often introduces the extra
bias in the estimation [5]. In many genomic studies, we need
a sparser solution for interpretation and accurate outcomes,
but 𝐿

1
regularization has a gap to meet these requirements.

Thus, a further improvement of regularization is urgently
required.𝐿

𝑞
(0 < 𝑞 < 1) regularization can assuredly generate

more sparse and precise solutions than 𝐿
1
regularization.

Moreover, 𝐿
1/2

penalty can be taken as a representative of 𝐿
𝑞

(0 < 𝑞 < 1) penalty and has demonstrated many attractive
properties which do not appear in some 𝐿

1
regularization

approaches, such as unbiasedness, sparsity, and oracle prop-
erties [6–8].

So far, we observed dense molecular interaction infor-
mation about the disease-related biological processes and
gathered it through databases focused on many aspects
of biological systems. For example, BioGRID records col-
lected various biological interactions from more than 43,468
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publications [9]. These regulatory relationships are usually
represented by a network. Combining these pieces of graphic
information extracted from the biological process with an
analysis of the gene-expression data had provided useful prior
information to detective noise and removes confounding
factors from biological data for several classification and
regression models [10–14].

Inspired by the aforementioned methods and ideas, here,
we define a network-constrained logistic regression model
with 𝐿

1/2
penalty following the framework established by

[11], where the predictors are based on the gene-expression
data with biologic network knowledge. The proposed model
is aimed at identifying some biomarkers and subnetworks
regarding diseases. In order to achieve a better predic-
tion, we use an enhanced half thresholding algorithm for
𝐿
1/2

regularization, which is more efficient than the old half
thresholding approach in the literature [6, 15, 16].

The rest of the paper is organized as follows. In Section 2,
we proposed a new version of the network-constrained logis-
tic regression model with 𝐿

1/2
regularization. In Section 3,

we presented an enhanced half thresholding method for
𝐿
1/2

regularization and the corresponding coordinate descent
algorithm. In Section 4, we evaluated the performance of our
proposed approach on the simulated data and presented the
applications of the proposed methods to an analysis of lung
cancer data. We concluded the paper with Section 5.

2. 𝐿
1/2

Penalized Network-Constrained
Logistic Regression Model

Generally, assuming that dataset 𝐷 has 𝑛 samples, 𝐷 =

{(𝑋
1
, 𝑦
1
), (𝑋
2
, 𝑦
2
), . . . , (𝑋

𝑛
, 𝑦
𝑛
)}, where 𝑋

𝑖
= (𝑥

𝑖1
, 𝑥
𝑖2
, . . . ,

𝑥
𝑖𝑝
) is 𝑖th sample with 𝑝 genes and 𝑦

𝑖
is the corresponding

variable that takes a value of 0 or 1. Define a classifier 𝑓(𝑥) =
𝑒
𝑥
/(1 + 𝑒

𝑥
) and the logistic regression is defined as

𝑃 (𝑦
𝑖
= 1 | 𝑋

𝑖
) = 𝑓 (𝑋



𝑖
𝛽) =

exp (𝑋
𝑖
𝛽)

1 + exp (𝑋
𝑖
𝛽)
, (1)

where 𝛽 = (𝛽
1
, . . . , 𝛽

𝑝
) are the coefficients to be estimated.

We can obtain𝛽 byminimizing the log-likelihood function of
the logistic regression. Following [11], to combine biological
networkwith an analysis of the genemicroarray data, we used
a Laplacian constraint approach here. Consider a graph 𝐺 =

(𝑉, 𝐸), where 𝑉 is the set of genes that meet 𝑝 explanatory
variables and 𝐸 is the set of edges. If gene 𝑢 and gene V are
connected, then there is an edge between gene 𝑢 and gene V,
which is denoted by 𝐸

𝑢V = 1; else 𝐸
𝑢V = 0. 𝑤

𝑢V denotes the
weight of edge 𝐸

𝑢V. The normalized Laplacian matrix 𝐿 for 𝐺
is defined by

𝐿
𝑢V =

{{{{

{{{{

{

1 −
𝑤
𝑢V

𝑑
𝑢

if 𝑢 = V, 𝑑
𝑢

̸= 0,

−
𝑤
𝑢V

√𝑑
𝑢
𝑑V

if 𝑢, V are adjacent

0 otherwise,

(2)

where 𝑑
𝑢
and 𝑑V are the degrees of genes 𝑢 and V, respectively.

The degrees of gene 𝑢 (or V) describe the number of the

edges that connected with 𝑢 (or V). For 𝜆 ≥ 0, the network-
constrained logistic regression model is presented as

𝐿 (𝜆, 𝛽) = −

𝑛

∑

𝑖=1
{𝑦
𝑖
log [𝑓 (𝑋

𝑖
𝛽)]

+ (1−𝑦
𝑖
) log [1−𝑓 (𝑋

𝑖
𝛽)]} + 𝜆𝛽

𝑇
𝐿𝛽,

(3)

where the first term in (3) is the log-likelihood function of the
logistic model and the second term is a network constraint
based on the Laplacian matrix, which induces a smooth
solution of 𝛽 on the graph.

Directly computing (3) performs poorly for both pre-
diction and biomarker selection purposes when the gene
number 𝑝 ≫ the sample size 𝑛. Therefore, the regularization
approach is vitally needed. When adding a regularization
term to (3), the sparse network-constrained logistic regres-
sion can be written as

𝐿 (𝜆1, 𝜆2, 𝛽) = −
𝑛

∑

𝑖=1
{𝑦
𝑖
log [𝑓 (𝑋

𝑖
𝛽)]

+ (1−𝑦
𝑖
) log [1− f (𝑋

𝑖
𝛽)]} + 𝜆1

𝑝

∑

𝑗=1
𝑃 (𝛽
𝑗
)

+ 𝜆2𝛽
𝑇
𝐿𝛽,

(4)

where 𝜆1 > 0 is a regularization parameter. In Zhang et al.
[13], the authors used Lasso (𝐿

1
) which has the regularization

term 𝑃(𝛽) = ∑
𝑝

𝑗=1 |𝛽𝑗| to penalize (4). However, the result
of the Lasso type (𝐿

1
) regularization is not good enough

for interpretation, especially in genomic research. Besides
this, 𝐿

1
regularization is asymptotically biased [17, 18]. To

improve the solution’s sparsity and its predictive accuracy,
we need to think beyond 𝐿

1
regularization to 𝐿

𝑞
penalties.

In mathematics, 𝐿
𝑞
(0 < 𝑞 < 1) type regularization |𝛽|

𝑞
=

∑ |𝛽|
𝑞 with the lower value of 𝑞 would lead to better solu-

tions with more sparsity and gives asymptotically unbiased
estimates [17]. Moreover, 𝐿

1/2
penalty can be taken as a

representative of 𝐿
𝑞
(0 < 𝑞 < 1) penalty and has permitted

an analytically expressive thresholding representation [6, 7].
Therefore, we proposed a novel 𝐿

1/2
net approach based

on 𝐿
1/2

regularization to penalize the network-constrained
logistic regression model, as shown in

𝐿 (𝜆1, 𝜆2, 𝛽) = −
𝑛

∑

𝑖=1
{𝑦
𝑖
log [𝑓 (𝑋

𝑖
𝛽)]

+ (1−𝑦
𝑖
) log [1−𝑓 (𝑋

𝑖
𝛽)]} + 𝜆1

𝛽
1/2

+𝜆2𝛽
𝑇
𝐿𝛽,

(5)

where |𝛽|1/2 = ∑
𝑝

𝑗=1 |𝛽𝑗|
1/2.

3. A Coordinate Descent Algorithm for the
Network-Constrained Logistic Model with
the Enhanced 𝐿

1/2
Thresholding Operator

𝐿
1/2

penalty function is nonconvex, which raises numerical
challenges in fitting the models. Recently, the coordinate



BioMed Research International 3

descent algorithms [19] for solving nonconvex regularization
models (SCAD [20], MCP [21]) have shown significant
efficiency and convergence [22]. Since the computational
burden increases only linearly with the feature number 𝑝,
the coordinate descent algorithm can be a powerful tool for
solving high-dimensional problems. Its standard procedure
can be demonstrated as follows: for every coefficient 𝛽

𝑗
(𝑗 =

1, 2, . . . , 𝑝), to partially optimize the target function with
respect to 𝛽

𝑗
, and fix the remaining elements 𝛽

𝑘
(𝑘 =

1, 2, . . . , 𝑝 and 𝑘 ̸= 𝑗) at their most recently updated values.
The specific form of updating 𝛽 depends on the thresholding
operator of the penalty.

In this paper, we present an enhanced 𝐿
1/2

thresholding
operator for the coordinate descent algorithm:

𝛽
𝑗

= Enhanced Half (𝜔
𝑗
, 𝜆)

=

{{

{{

{

2
3
𝜔
𝑗
(1 + cos(

2 (𝜋 − 𝜑
𝜆
(𝜔
𝑗
))

3
)) if 𝜔𝑗


>

3
√54
4

(𝜆)
2/3

0 otherwise,

(6)

where 𝜑
𝜆
(𝜔) = arccos((𝜆/8)(|𝜔|/3)−3/2), 𝜋 = 3.14, 𝜔

𝑗
=

∑
𝑛

𝑖=1 𝑥𝑖𝑗(𝑦𝑖 − �̃�
𝑖

(𝑗)
), and �̃�

𝑖

(𝑗)
= ∑
𝑘 ̸=𝑗

𝑥
𝑖𝑘
𝛽
𝑘
as the partial

residual for fitting 𝛽
𝑗
.

Remark. This enhanced 𝐿
1/2

thresholding operator
(

3
√54/4)(𝜆)2/3 outperforms the old 𝐿

1/2
thresholding

(3/4)(𝜆)2/3 introduced in [6, 15, 16]. We know that the
quantity of the regularization solutions depends seriously on
the value of the regularization parameter 𝜆. Based on this
enhanced 𝐿

1/2
thresholding operator, when 𝜆 is chosen by

some efficient strategies for the parameter tuning, such as
cross validation, the convergence of algorithm (6) is proved
[7].

The Laplacian matrix 𝐿 is nonnegative definite; thus, it
can be written as 𝐿 = 𝑆𝑆

𝑇 by Cholesky decomposition.
Following C. Li and H. Li [11] approach, (4) can be expressed
as

𝐿 (𝜆1, 𝜆2, 𝛽) = 𝐿 (𝛾, 𝛽
∗
) = −

𝑛

∑

𝑖=1
{𝑦
∗

𝑖
log [𝑓 (𝑋∗

𝑖
𝛽
∗
)]

+ (1−𝑦∗
𝑖
) log [1−𝑓 (𝑋∗

𝑖
𝛽
∗
)]} +

𝑝

∑

𝑗=1
𝛾

𝛽
∗

𝑗



1/2
,

(7)

where 𝑋∗
(𝑛+𝑝)×𝑝

= (1 + 𝜆2)
−1/2

(
𝑋

√𝜆2𝑆
𝑇 ), 𝑌∗
(𝑛+𝑝)

= (
𝑌

0 ), 𝛽
∗
=

√1 + 𝜆2𝛽, and 𝛾 is the regularization parameter and can be
expressed as 𝛾 = 𝜆1/√1 + 𝜆2.

One-term Taylor series expansion for (7) can be written
as

𝐿 (𝛾, 𝛽
∗
) ≈

1
2𝑛

𝑛

∑

𝑖=1
(𝑍
𝑖
−𝑋
∗

𝑖
𝛽
∗
)


𝑊
𝑖
(𝑍
𝑖
−𝑋
∗

𝑖
𝛽
∗
)

+

𝑝

∑

𝑗=1
𝑃 (𝛽
∗

𝑗
) ,

(8)

where𝑍
𝑖
= 𝑋
∗

𝑖

̃
𝛽
∗
+(𝑦
∗

𝑖
−𝑓(𝑋

∗

𝑖

̃
𝛽
∗
))/𝑓(𝑋

∗

𝑖

̃
𝛽
∗
)(1−𝑓(𝑋∗

𝑖

̃
𝛽
∗
)

is the estimated response and𝑊
𝑖
= 𝑓(𝑋

∗

𝑖

̃
𝛽
∗
)(1 − 𝑓(𝑋∗

𝑖

̃
𝛽
∗
)

is the weight for the estimated response. 𝑓(𝑋∗
𝑖

̃
𝛽
∗
) =

exp(𝑋∗
𝑖

̃
𝛽
∗
)/(1+exp(𝑋∗

𝑖

̃
𝛽
∗
)) is the evaluated value under the

current parameters.Thus, we can redefine the partial residual
for fitting current ̃𝛽∗ as �̌�

(𝑗)

𝑖
= ∑
𝑛

𝑖
𝑊
𝑖
(�̃�
𝑖
− ∑
𝑘 ̸=𝑗

𝑥
∗

𝑖𝑘

̃
𝛽
∗

𝑘
) and

𝜔
𝑗
= ∑
𝑛

𝑖=1 𝑥
∗

𝑖𝑗
(𝑍
𝑖
− �̌�
(𝑗)

𝑖
). The procedure of the coordinate

descent algorithm for 𝐿1/2 penalized network-constrained
logistic model is described as follows.

Algorithm 1 (the coordinate descent algorithm for 𝐿1/2 penal-
ized network-constrained logistic model). We consider the
following.

Step 1. Initialize all 𝛽
𝑗
(𝑚) ← 0 (𝑗 = 1, 2, . . . , 𝑝) and 𝑦∗, 𝑋∗,

and set𝑚 ← 0, 𝛾 chosen by cross validation.

Step 2. Calculate 𝑍(𝑚) and 𝑊(𝑚) and approximate the loss
function (8) based on the current 𝛽(𝑚).

Step 3. Update each 𝛽
𝑗
(𝑚) and cycle over 𝑗 = 1, . . . , 𝑝, until

𝛽
𝑗
(𝑚) does not change.

Step 3.1. Compute 𝑍
𝑖

(𝑗)
(𝑚) ← ∑

𝑛

𝑖=1𝑊𝑖(𝑚)(𝑍𝑖(𝑚) −

∑
𝑘 ̸=𝑗

𝑥
∗

𝑖𝑘
𝛽
𝑘
(𝑚)) and 𝜔

𝑗
(𝑚) ← ∑

𝑛

𝑖=1 𝑥𝑖𝑗(𝑍𝑖(𝑚) − �̌�𝑖
(𝑗)

(𝑚)).

Step 3.2. Update 𝛽
𝑗
(𝑚) ← Enhanced Half(𝜔

𝑗
(𝑚), 𝛾).

Step 4. Let𝑚 ← 𝑚 + 1, 𝛽(𝑚 + 1) ← 𝛽(𝑚).
If 𝛽(𝑚) dose not converge, then repeat Steps 2 and 3.

4. Simulation and Application

4.1. Analyses of SimulatedData. Weevaluate the performance
of four methods: the network-constrained logistic regression
models with 𝐿

1
regularization (𝐿

1
net), 𝐿

1/2
regularization

with old thresholding value (3/4)(𝜆)2/3 (𝐿
1/2

net) and with
the enhanced thresholding value ( 3

√54/4)(𝜆)2/3 (enhanced
𝐿
1/2

net), and the Elastic net regularization approach (Elastic
net). We first simulated the graph structure to mimic gene
regulatory network: assuming that the graph consists of
200 independent transcription factors (TFs) and each TF
regulates 10 unlike genes, so there are a total of 2200 variables,
𝑋 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑝
), 𝑝 = 2200. The training and the

independent test data sets include the sample sizes of 100,
respectively. Each TF 𝑥

𝑛
and its regulated genes 𝑥

𝑚
were

generated by the normal distribution 𝑁(0, 1). We set the
correlation rate between 𝑥

𝑛
and its regulated gene 𝑥

𝑚
as 0.75,

𝑥
𝑚
= (1 − 0.75) × 𝑥

𝑚
+ (0.75) × 𝑥

𝑛
. The binary responder 𝑦

𝑖

(1 ≤ 𝑖 ≤ 100), which is associated with the matrix 𝑋 of TFs
and their regulated genes, is calculated based on the following
formula and rule:

𝑦
𝑖
= 1 (Label 1) ,

if 𝑃 (𝑦
𝑖
= 1 | 𝑋

𝑖
) =

exp (𝑋
𝑖
𝛽 + 𝜖)

1 + exp (𝑋
𝑖
𝛽 + 𝜖)

⩾ 0.5; else 𝑦
𝑖
= 0 (Label 0) ,

(9)
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Table 1: Simulation results of the enhanced 𝐿
1/2

net, 𝐿
1/2

net, 𝐿
1
net, and Elastic net, respectively.

Model Misclassification errors (%) Sensitivity (%) Specificity (%)
Eh 𝐿1/2 𝐿1/2 𝐿1 Elastic Eh 𝐿1/2 𝐿1/2 𝐿1 Elastic Eh 𝐿1/2 𝐿1/2 𝐿1 Elastic

1 9.22 9.85 11.81 13.12 0.985 0.971 0.968 0.873 0.969 0.970 0.962 0.981
(0.36) (0.31) (0.41) (0.12) (0.00) (0.00) (0.02) (0.00) (0.00) (0.01) (0.01) (0.00)

2 10.76 10.83 13.21 14.14 0.939 0.939 0.943 0.835 0.987 0.981 0.987 0.980
(0.33) (0.36) (0.24) (0.23) (0.00) (0.00) (0.01) (0.00) (0.02) (0.01) (0.01) (0.00)

Simulation results (averaged over 100 runs) for comparison of misclassification errors, sensitivity, and specificity used the enhanced 𝐿1/2 net, 𝐿1/2 net, 𝐿1 net,
and the Elastic net, respectively. The standard errors are given in parentheses.

where 𝛽 = (2, 2/√5, . . . , 2/√5⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

10

, −2, −2/√5, . . . , −2/√5⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

10

, 4,

4/√5, . . . , 4/√5⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

10

, −4, −4/√5, . . . , −4/√5⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

10

, 0, . . . , 0) for Model 1,

and 𝜀 ∼ 𝑁(0, 𝜎2
𝑒
).

Model 2 was defined similar to Model 1, except that
we considered the case when the TF can have positive and
negative effects on its regulated genes at the same time:

𝛽 = (2, −2
√5

,
−2
√5

,
−2
√5

,
2
√5

, . . . ,
2
√5⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

7

, − 2, 2
√5

,
2
√5

,
2
√5

,

−2
√5

, . . . ,
−2
√5⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

7

, 4, −4
√5

,
−4
√5

,
−4
√5

,
4
√5

, . . . ,
4
√5⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

7

, 4, 4
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(10)

In these twomodels, the 10-fold cross validation approach
was conducted on the training datasets to tune the regulariza-
tion parameters of the enhanced𝐿

1/2
net,𝐿

1/2
net, and𝐿

1
net.

Both penalized parameters for 𝐿
1
and ridge regularization

in the Elastic net were tuned by the 10-fold cross validation
on the two-dimensional parameter surfaces. We repeated
the simulations over 100 times and then computed the
misclassification error, the sensitivity, and the specificity
averagely for each net model on the test datasets.

Table 1 summarizes the simulation results from each
regularization net model. In general, our proposed enhanced
𝐿
1/2

net model achieved the smallest misclassification errors
in Models 1 (9.22%) and 2 (10.76%) compared with the other
regularization methods including the old 𝐿

1/2
thresholding

method (9.85% for Model 1 and 10.83% for Model 2), 𝐿
1

net (11.81% for Model 1 and 13.21% for Model 2), and the
Elastic net (13.12% for Model 1 and 14.14% for Model 2).
Meanwhile, the enhanced 𝐿

1/2
net resulted in the highest

sensitivity in Model 1 (98.5%) compared with the other
methods. Moreover, the enhanced 𝐿

1/2
net obtained the best

specificity inModel 2 (98.7%) amongst the other approaches.
To sumup, the enhanced𝐿

1/2
net outperforms the other three

algorithms in terms of prediction accuracy, sensitivity, and
specificity.
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Figure 1: The solution paths of the enhanced 𝐿1/2 net for the lung
cancer dataset in one sample run.

4.2. Analysis of Lung Cancer. In this section, we merged
the protein-protein interaction (PPI) network (see
http://www.thebiogrid.org/) with a lung cancer (LC) gene-
expression dataset [23] to demonstrate the performance
of our proposed enhanced 𝐿

1/2
net method. The gene-

expression dataset contains the expression profiles of 22284
genes for 107 patients, in which 58 had lung cancer. To
test the generalization ability of the proposed method, we
divided the dataset into the training set (sample size 𝑛 = 70;
38 LC, 32 non-LC) which covered 2/3 samples of the dataset
and the test set (sample size 𝑛 = 37; 20 LC, 17 non-LC) which
covered the other 1/3 specimens of the dataset. The 10-fold
cross validation approach was conducted on the training
dataset to tune the regularization parameters. By combining
the gene-expression data with the PPI network, the final PPI
network includes 8619 genes and 28293 edges.

Figures 1–4 display the solution paths of the four regu-
larization net methods for the LC dataset in one sample run.
Here, 𝑥-axis displays the values of the running lambda (the
running lambda of 𝐿

1
penalty in the Elastic net approach),

and 𝑥-axis at the top (degrees of freedom)means the number
of nonzero coefficients of beta. 𝑦-axis is the values of the
coefficients beta which measure the gene importance. The
predictive model builds from the training set and then tests
its predictive performance on the test set.The detailed results
were represented in Table 2.

As shown in Table 2, the enhanced 𝐿
1/2

net selected
the fewest number of genes and edges compared to 𝐿

1/2
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Table 2: The results of the enhanced 𝐿
1/2

net, 𝐿
1/2

net, 𝐿
1
net, and Elastic net on LC dataset, respectively.

Selected genes Connected genes Connected edges Cross validation error Test error
Eh 𝐿1/2 net 171 54 41 6/70 5/37
𝐿1/2 net 193 61 47 6/70 6/37
𝐿1 net 500 150 121 7/70 6/37
Elastic 636 337 510 6/70 6/37
Results of analysis of LC gene expression dataset by four procedures, including the number of genes selected, the number of linked PPI network genes, the
number of linked PPI network edges, the CV error, and test errors.
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Figure 2: The solution paths of 𝐿1/2 net for the lung cancer dataset
in one sample run.

0.4

0.3

0.2

0.1

0

−0.1

−0.2

−0.3

−0.4

−0.5

−0.6

3 8 2
2

5
1

1
0
8

1
7
5

3
8
3

6
5
9

1
3
0
3

2
8
2
6

3
7
5
6

10
−2

10
−3

10
−4

10
−5

𝜆

df

Figure 3:The solution paths of 𝐿
1
net for the lung cancer dataset in

one sample run.

net, 𝐿
1
net, and the Elastic net. Meanwhile, the predictive

performance of the enhanced 𝐿
1/2

net outperforms the other
three regularization net algorithms.

To further evaluate the performance of the enhanced
𝐿
1/2

net procedure, we report its capacity of identifying
the biomarkers related to lung cancer. NK2 homeobox 1
(Nkx2-1) protein regulates transcription of genes specific for
lung. It is used as a biomarker to determine lung cancer in
anatomic pathology. It also has a critical role in maintaining
lung tumor cells [24, 25]. Epidermal growth factor receptor
(EGFR) is known to play a key role in cell proliferation and
apoptosis. EGFR overexpression and activity could result in
tumor growth and progression [26] and somatic mutations
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Figure 4: The solution paths of the Elastic net for the lung cancer
dataset in one sample run.

within the tyrosine kinase domain of EGFR, which have
been identified in a subset of lung adenocarcinoma [27, 28].
The enhanced 𝐿

1/2
net (Figure 5) and 𝐿

1/2
net successfully

identified these two important biomarkers for LC. However,
neither 𝐿

1
net nor the Elastic net selected them both.

Except to identify these two significant biomarkers
(EGFR and Nkx2-1), the enhanced 𝐿

1/2
net also selected

several pathways that were associated with lung cancer. For
example, one of the subnetworks includes genes involving
molecular proliferation (e.g., genes ARF4, EGFR, DCN,
BRCA1, and ITIH5). As these gene express significantly and
continuously, it promotes lung cancer progression. On the
other hand, this group is linked to ENO1. We are unable to
get a clear testimony to sustain this relationship by looking at
PPI database. However, a recent report [29] has demonstrated
that ENO1 is the promising biomarker that may provide
more diagnostic efficacy for lung cancer. This link implies
a functional relationship and suggests the important role of
ENO1 in lung cancer.

All these results reveal that the enhanced 𝐿
1/2

net is more
reliable than 𝐿

1/2
net, 𝐿

1
net, and the Elastic net approaches

for selecting key markers from high-dimensional genomic
data. Another advantage of our proposed method is that it
has the ability to recognize novel and potential relationships
with biologic significance. It ismentionable that our proposed
method is inclined to identify fewer but more informative
genes (or edges) than 𝐿

1
net and the Elastic net approaches

in genomic data and that means the proposed method has
allowed the researcher to more easily concentrate on the key
targets for functional studies or downstream applications.
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Figure 5: Subnetworks identified by the enhanced 𝐿
1/2

net for lung cancer datasets (only those genes that are linked on the PPI network are
plotted).

5. Conclusions

In biological molecular research, especially for cancer, the
analysis of combining biological pathway information with
gene-expression data may play an important role to search
for new targets for drug design. In this paper, we use
the enhanced 𝐿

1/2
solver to penalized network-constrained

logistic regression model to integrate lung cancer gene-
expression with protein-to-protein interaction network. We
develop the corresponding coordinate descent algorithm as
a novel biomarker selection approach. This algorithm is
extremely fast and easy to implement. Both simulation and
real genomic data studies showed that the enhanced 𝐿

1/2
net

is a ranking procedure compared with 𝐿
1/2

net (using the
old thresholding operator), 𝐿

1
net, and the Elastic net in the

selection of biomarker and subnetwork.
We successfully identified several important clinical

biomarkers and subnetwork that are driving lung cancer.
The proposed method has provided new information to
investigators in biological studies and can be the efficient tool
for identifying cancer related biomarker and subnetwork.
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