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Background. Heart rate monitoring is especially interesting in patients with atrial fibrillation (AF) and is routinely performed by
ECG. A ballistocardiography (BCG) foil is an unobtrusive sensor for mechanical vibrations. We tested the correlation of heartbeat
cycle length detection by a novel algorithm for a BCG foil to an ECG in AF and sinus rhythm (SR). Methods. In 22 patients we
obtained BCG and synchronized ECG recordings before and after cardioversion and examined the correlation between heartbeat
characteristics. Results. We analyzed a total of 4317 heartbeats during AF and 2445 during SR with a correlation between ECG and
BCG during AF of r = 0.70 (95% CI 0.68-0.71, P < 0.0001) and r = 0.75 (95% CI 0.73-0.77, P < 0.0001) during SR. By adding a
quality index, artifacts could be reduced and the correlation increased for AF to 0.76 (95% CI 0.74-0.77, P < 0.0001, n = 3468) and
for SR to 0.85 (95% CI 0.83-0.86, P < 0.0001, n = 2176). Conclusion. Heartbeat cycle length measurement by our novel algorithm
for BCG foil is feasible during SR and AF, offering new possibilities of unobtrusive heart rate monitoring. This trial is registered
with IRB registration number EK205/11. This trial is registered with clinical trials registration number NCT01779674.

1. Introduction

Heart rate control is of importance for patients suffering
from atrial fibrillation (AF) [1] or heart failure [2] to improve
morbidity and mortality. Heart failure is frequently found
amongst the elderly and is often associated with arrhythmias
like AE Above the age of 60, the prevalence of AF is around
5-10%, with about 6 million Europeans and more than 3
million US Americans suffering from AF [3-5]. Up to 90% of
AF episodes are paroxysmal, especially in its early stage, and
up to 90% are asymptomatic [6, 7]. This is of great clinical
relevance since AF is responsible for up to 30% of ischemic
strokes [3], for systemic embolisms [8], and for an increased
perioperative risk [9].

The gold standard for heart rate diagnosis is an ECG, but,
for example in cases of asymptomatic and paroxysmal AF
its diagnosis with intermittent ECG recordings is difficult.
Recent evidence suggests that continuous ECG monitoring
with implantable pacemakers can detect all relevant AF

episodes [10], but, due to the large number of patients
at risk, implantable monitoring devices are not affordable.
Furthermore, prolonged regular ECG monitoring seems
more effective in detecting silent AF episodes than short-
term continuous ECG recordings [11]. For this reason the
National Heart, Lung & Blood Institute Expert Panel of the
United States of America encourages the development of new
methods and technologies for asymptomatic AF detection
[12]. New devices such as smartphone applications [13] and
wearable [14] and videoplethysmographic sensors [15] are
being tested as potential candidates, but to date their clinical
application remains difficult.

In this original investigation, we used a ballistocardio-
graphic sensor in a prospective cohort of patients with AF
receiving an electric cardioversion. The sensor can be posi-
tioned beneath conventional textiles and bed sheets and mea-
sured the mechanical equivalent of the heartbeat indicating
bradycardia, tachycardia, and arrhythmia by the calculated
cycle length.
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FIGURE 1: Heartbeat measurement by a BCG foil: (a) the BCG sensor foil is positioned under the chest of the patient in a supine position; (b)
mechanical contraction of the heart induces impedance change on the BCG sensor foil; (c) a BCG (blue signal) related signal is calculated

and synchronized to an ECG (black signal).

The aim of this study was to evaluate the correlation of
the heartbeat analyzed by our novel algorithm compared to
an ECG as the gold standard.

2. Materials and Methods

22 patients with AF scheduled for elective electric cardiover-
sion at the University Hospital of Aachen were recruited.
After informed consent, all patients were enrolled according
to the following inclusion criteria: presence of AF with sched-
uled, elective cardioversion and at least 18 years of age. Exclu-
sion criteria were pregnancy or lactation, mental incapac-
itation, or implanted electric device. Baseline demographic,
clinical, laboratory, ECG, and synchronized BCG data were
collected before and after electric cardioversion by trained
staff. All recordings were performed in a supine position in
spontaneously breathing participants.

Electric cardioversion was performed by a trained physi-
cian of the department of cardiology after exclusion of left
atrial auricular thrombus by transoesophageal echocardiog-
raphy.

The study was performed between January 2012 and
March 2013 at the Department of Cardiology, Pneumology,
Angiology and Intensive Care Medicine, University Hospital
RWTH Aachen, Germany. The clinical trial was approved by
the Ethics Committee of the Medical Faculty of the University
Hospital Aachen (registration number: EK205/11, date: 27
May 2011; ClinicalTrials.gov: NCT01779674) and met current
legal requirements (German Medical Devices Act and Code
of Medical Ethics) as well as ethical principles contained
in the Declaration of Helsinki and Good Clinical Practice
guidelines.

2.1. Data Collection. For data collection a dedicated measur-
ing cart with an “IntelliVue MX800 Patient Monitor” (Konin-
klijke Philips N. V., Amsterdam, Netherlands) connected
to a personal computer was purpose-built. The electrical
integrity was approved by the VDE (Verband Deutscher
Elektrotechnik Elektronik Informationstechnik eV., Frank-
furt, Germany) for EN IEC 60601-1. For electronic data

management an electronic case report form was programmed
in OpenClinica (OpenClinica, LLC, Waltham, MA, USA).

2.2. Ballistocardiographic Sensor. Ballistocardiography (BCG)
is a technique to monitor mechanical activity of the heart
by recording mechanical forces on the body’s surface [16].
The basic concept has been known since the 19th century
[17]. However, recent advances in sensor technologies have
allowed the integration of highly sensitive mechanical sensors
into beds for the purpose of unobtrusive cardiac monitoring
[18, 19]. We used a thin and flexible foil, consisting of
charged polymer layers containing air voids that behave in
a similar way to electrical capacitors. Mechanical activity
causes physical deformations of the sensor’s geometry. If the
geometry of the enclosed air voids changes, their electrical
charges move with respect to each other. These charge shifts
can be measured by the sensor electrodes, converted to a
voltage signal, and subsequently displayed as an ECG related
signal (Figure 1).

2.3. Heartbeat Measurement by BCG Sensor. Every patient
was measured in a supine position on a mattress with an
attached BCG foil. BCGs were recorded by a ballistocar-
diographic sensor (Emfit Ltd., Vaajakoski, Finland). The
sensor foil (30 x 60cm) was positioned under the textile
bed sheet and was invisible to the patients (Figure 1(a)).
The motion signal was recorded by the sensor foil along a
dorsoventral axis. There was no direct contact between the
ballistocardiographic sensor and the patient.

2.4. Signal Processing. The BCG sensor acquired mechanical
movement by a change of charge with 1000 Hz. The calculat-
ing time allowed an almost real-time analysis with a latency of
<2 seconds. Heart contraction (Figure 1(b)), valve movement,
blood flow, respiration, muscular activity [20, 21], and other
mechanical activities were measured by the BCG foil and
were part of the resulting BCG signal (Figure 1(c)). Depend-
ing on the subject’s position related to the sensor, the force
vector of each mechanical activity produced corresponding
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amplitudes. The superposition of different mechanical vec-
tors impaired the signal analysis, so that the genuine signal
had to be cleaned by filtering for the specific frequency range
in question. A genuine BCG signal (Figure 2(a)) measured in
a dorsoventral direction showed, along its vertical axis, slow
oscillations for about 5 seconds of breathing which included
smaller deflections oscillating at a higher frequency. By time-
domain filtering and differencing, the breathing component
was removed and the smaller, higher frequency oscillations
became visible (Figure 2(b)). For filtering we used fixed and
identical filters for all recordings with a cutoft frequency
of 0.5Hz and 80dB stop-band attenuation. By a beat-to-
beat analysis of local interval estimators the cycle length
was calculated (Figure 2(c); Figure 3). Additional calculations
such as quality index, integral, and maximal amplitude of the
BCG complex were performed afterwards (Figure 2(d)). In
the final step the BCG data was harmonized to a synchronized
recorded ECG (Figure 2(e)). In this step the BCG peaks
showed a specific sequence corresponding to the recorded
ECG (Figure 2(e)).

2.5. Cycle Length Detection and Quality Index. Common
techniques for automated heartbeat analysis consisted of
locating relevant events, like the QRS complex, to obtain beat-
to-beat intervals. Prior knowledge of the characteristics for
the events of interest was necessary. Due to the variability
of the inter- and intrasubject BCG deflection depending on
the vector of interest related to the sensor and artifacts, these
kinds of algorithms did not seem applicable for beat-to-beat
analysis using the BCG signal [22]. We used a novel approach
for heart rate analysis inspired by the so-called pitch-tracking
method for speech processing [23].

The first window of interest was of constant size by a
prior defined frequency of interest. The specific sequence
of a heartbeat was not known but the assumption was
that consecutive heartbeats consisted of a corresponding
sequence of amplitudes. The algorithm analyzed the BCG
signal for repeated patterns of deflections and identified
these events as heartbeats (Figure 3(a)). A sliding window
of interest moved 200 ms forward and an adaptive threshold
measurement was performed of the window location. If
the thresholds were violated, the presence of a high-energy
artifact was assumed. The location was marked as corrupted
and the algorithm restarted. In the case of no threshold
violation the algorithm continued. The window of interest
was more than twice the length of the estimated cycle
length and identified two consecutive heartbeats for their
specific amplitude pattern (Figure 3(b)). Three local interval
estimators compared the isolated sequences to each other
and each of them estimated a cycle length. The quality index
defined the match of these three local interval estimators.
The higher the accordance between the three estimators, the
higher the quality index and the more precise the calculated
cycle length (Figure 3(c)). Finally the cycle length and the
corresponding quality index were defined and the window
of interest moved on (Figure 3(d)). After computing the
algorithm the results were displayed in less than two seconds
(Figure 4).

TaBLE 1: ECG and BCG interval characteristics before and after
cardioversion.

Atrial .
fibrillation Sinus rhythm P value
Mean (+SD) Mean (£SD)
ECG interval [ms] 729 (+280) 1004 (+180) <0.001
BCG interval [ms] 758 (+276) 983 (+199) <0.001
Quality index
0.001

[AU]* 0.41 (+£0.21) 0.52 (+0.27) <
BCG amplitude o0 (10.047)  0.059 (:003)  <0.001
[AU]
Integral BCG 0.018 (+0.011)  0.011 (0.006)  <0.001

complex [AU]"
* AU: arbitrary units.

By means of the quality index it was possible to identify
artifacts or hampered signals by filtering the whole recorded
signal for a specific quality. Subsequently, we added the
synchronized ECG signal and analyzed the beat-to-beat inter-
val in ECG using the “Open Source Arrhythmia Detection
Software” (EP Limited, 35 Medford St., Somerville, MA,
USA). At least 10 consecutive heartbeats were used for signal
analysis.

2.6. Statistical Analysis. For correlation analysis we used Pear-
son’s correlation coefficient and the Bland-Altman Plot for
visual analysis. For qualitative analysis all values are expressed
in percentages and absolute numbers. Values of P < 0.05
were considered as statistically significant. Statistical analysis
was performed with SPSS 21 (BM Corp., Released 2012, IBM
SPSS Statistics for Windows, Version 21.0., Armonk, NY, IBM
Corp.) and MedCalc Statistical Software version 13.3.1 (Med-
Calc Software bvba, Ostend, Belgium; http://www.medcalc
.org; 2014).

3. Results

The average age of patients was 72; 75% were male. Partici-
pants had a significantly higher heart rate before electric car-
dioversion (AF 88 + 21 versus SR 67 + 21 beats per minute).
Two participants suffered serious medical problems during
cardioversion so that due to many artifacts and a short mea-
suring time these data were excluded. One patient converted
spontaneously to sinus rhythm (SR) prior to cardioversion
and his data were included in the SR group only. After
successful cardioversion two patients showed premature ven-
tricular beats after every normal sinus heartbeat (bigeminus)
and thus were not considered as SR data. In five patients
cardioversion was not successful; therefore their data after
cardioversion were included in the AF group. Overall, we
analyzed the data of 20 patients.

Cardioversion converted AF to SR and increased the
mean ECG cycle length significantly (P < 0.001) from
729 + 280 ms to 1004 + 180 ms. Comparably, the mean BCG
cycle length increased significantly (P < 0.001) from 758 +
276 ms to 983 + 199 ms (Table 1). After cardioversion, the
BCG amplitude and integral of BCG complex decreased
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FIGURE 2: Signal processing of BCG data: (a) the raw signal includes in its highest deflections inhalation and exhalation; (b) after time-domain
filtering the breathing component is removed and repeating oscillations as a surrogate for the heart contraction are visible; (c) the local interval
estimator defines the cycle length by beat-to-beat analysis (Figure 3); (d) additional calculations for the integral of the BCG complex and the
maximal amplitude deflections are carried out; (e) the BCG signal is synchronized to the ECG.
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FIGURE 3: Estimating the heartbeat cycle length: (a) the window of interest analyzes the signal for repeated amplitude patterns and estimates
the cycle length; (b) a sliding window of interest performs basic threshold measurements and identifies two consecutive heartbeats; (c) three
local interval estimators analyze the signals and each estimates a cycle length: the match between the three estimators is the quality index; (d)
the window of interest moves forward and the estimated cycle length and quality index are displayed. “BCG: ballistocardiogram; CL: cycle

length; QI: quality index.

significantly (P < 0.0001) with a narrow standard deviation
indicating a more consistent heartbeat signal complex in BCG
during SR (Table 1).

We analyzed 4317 heartbeats between BCG and ECG
during AF resulting in a correlation coefficient of 0.7 (0.68-
0.71, P < 0.0001, n = 4317) (Figure 5(a)). 2445 heart-
beats during SR were analyzed; here we found a correlation
coefficient between BCG and ECG of 0.75 (95% CI 0.73-
0.77, P < 0.0001, n = 2445) (Figure 5(b)). By filtering
the AF signal with the quality index >0.25 (Table 2), the
number of analyzable heartbeats was reduced to 80%, and
the correlation coeflicient increased to 0.76 (95% CI 0.74-
0.77, P < 0.0001, n = 3468) (Figure 5(c)). The correlation

in SR increased to 0.85 (95% CI 0.83-0.86, P < 0.0001,
n = 2176) (Figure 5(d)) by filtering with the quality index
>0.25, with 89% of heartbeats remaining analyzable data. For
higher quality indexes the resulting correlation coefficient
increased with a decrease of analyzable heartbeat intervals.
Thus, a quality index >0.4 resulted in a high correlation
coefficient during AF with 0.89 (95% CI 0.88-0.90, P <
0.0001,n = 1606) (Figure 5(e)) and a near-perfect correlation
coefhicient of 0.95 (95% CI 0.95-0.96, P < 0.0001, n = 1410)
(Figure 5(f)) during SR.

Figures 6(a)-6(d) document examples of BCG analysis
corresponding to quality index and synchronized ECG. For
AF with normal heart rate (Figure 6(a)) the BCG interval
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TaBLE 2: Filtering of the measured BCG during AF and SR by the quality index with remaining analyzable episodes and corresponding

correlation coefficient.

Quality index Atrial fibrillation Sinus rhythm
n % r 95% CI n % r 95%
>0.1 4317 100 0.70 0.68 to 0.71 2445 100 0.75 0.73t0 0.77
>0.15 4301 100 0.70 0.69 to 0.72 2440 100 0.76 0.74 t0 0.78
>0.2 4071 94 0.72 0.71to 0.74 2359 96 0.79 0.77 to 0.80
>0.25 3468 80 0.76 0.74 to 0.77 2176 89 0.85 0.83 to 0.86
>0.3 2711 63 0.83 0.82t0 0.84 1933 79 0.901 0.9 to 0.92
>0.35 2088 48 0.87 0.86 to 0.88 1670 68 0.94 0.93t0 0.94
>0.4 1606 37 0.89 0.88 to 0.90 1410 58 0.95 0.95 t0 0.96
a changed amplitude pattern. However, the algorithm needed
)\ no training phase and the consecutive heartbeats showed
again a good cycle length correlation and an improving
.. quality index.
4. Discussion
BCG The present study demonstrates that heartbeat interval detec-
tion by a ballistocardiographic sensor during SR and AF
is feasible using a novel pitch-tracking inspired algorithm.
Peat - #1 5 » #4 » Heartbeat analysis is currently mainly performed by ECG
ECG (ms) 709 1091 996 696 696 X
BCG (ms) 716 992 385 677 696 or by photoplethysmographic sensors. The ECG represents
Q153 0.34 0.44 121 1.25 the gold standard for heart rate measurement. Although

FIGURE 4: ECG (black signal) synchronized BCG (blue signal),
heartbeat count, ECG cycle length, and corresponding estimated
BCG cycle length and quality index are simultaneously displayed.
Beat 2 is a premature ventricular contraction resulting in a minor
accordance of ECG and BCG cycle length. Also heartbeat 3 is
affected by premature ventricular contraction; the following heart-
beats show near-perfect accordance to the ECG cycle length with
a high corresponding quality index. “BCG: ballistocardiogram; QI:
quality index.

detection showed a good correlation to ECG. In heartbeats
with inaccurate correlation of BCG and ECG cycle length
the corresponding calculated quality index of the BCG signal
decreased too.

In SR (Figure 6(b)) after cardioversion the ECG and BCG
cycle length correlation was near perfect resulting in a high
quality index for each heartbeat.

Premature atrial contraction in SR (Figure 6(c)) after
cardioversion resulted in a decreased BCG quality index and
poor correlation to the ECG for the premature contraction
and the following heartbeat. However, a good correlation
of BCG signals was observed during normal sinus beats
(without premature contraction) with a corresponding high
quality index.

Figure 6(d) depicts the effect of a movement artifact.
The match between BCG and ECG was interrupted by a
high-energy artifact resulting from patient movement. The
episode was marked as corrupt and could be used for
filtering the BCG signal. After the artifact the first heartbeat
showed a poor correlation of cycle length detection due to

new sensor technologies are the focus of research to deal
with the upcoming problems of an aging society and an
increasing demand for outpatient diagnostic tools, none have
proven clinically useful so far. The pitfalls of these new
sensor technologies are compliance of the patient, operability,
availability, and accuracy.

In our study participants were placed in a supine position
with their chests above the BCG foil. The sensor is unob-
trusive and has no direct contact to the skin. This offers
the possibility of integrating the sensor foil into any bed
sheet. Other measuring situations such as a prone or sideways
position are theoretically possible. In particular, the prone
position might offer a better signal for the heartbeat analysis
owing to direct contact of the BCG foil and the apical impulse
of the heart. However, this position was not tested due to the
study setting of cardioversion.

There seems to be a circadian distribution of arrhythmias
with peaks at different times during the day [24, 25]. Thus
the proposed technology, which can be easily integrated into
a mattress, may potentially be suited for large scale and long-
term recording of the heart rate and rhythm during sleep. The
measurement system needs the BCG foil and a computer for
the algorithm. Excluding the attached computer, the costs for
the system remain below $100.

The BCG signal measures any mechanical vibration. To
receive the best results the longitudinal axis of the move-
ment of interest should be positioned perpendicular to the
measuring foil and other movements have to be excluded
because the signal is hampered by any other movement which
puts pressure on the foil. In real life conditions this will
not be possible so a robust and flexible algorithm is needed



BioMed Research International

1500
@ ° °
é 1000 ©° o °
L<p &ch% Oo o 0o
) 500 | 0 _+196SD:3937
Q
M

I 0r Mean: -29.2
E oL dgEEese
Py =500 - 21.96 SD: —452.1
<
(@] o
—1000
—-1500 h | | | 1 1
0 500 1000 1500 2000 2500
1/2 (ECG AF (ms) + BCG AF (ms))
(a)

1500
R o
£ 1000 o
% ° %o °°
Q 000 . ° O L0 _______ +L96SD:3549
2

I 0 Mean: ~28.5
\E —-500 |- S T T T T T T T T T T T T T T 196SD: 4119
< o
S -1000 %

23} [¢]
—-1500 CL 1 1 1 1 1
0 500 1000 1500 2000 2500
1/2 (ECG AF (ms) + BCG AF (ms))
Quality index > 0.25
()
1500 |
£ 1000 |
o L
o o
Z; 500 |- P °
Q L +1.96 SD: 235.7
&  f-----5%-@eopo-------mmommmomooo ]

I 0F Mean: ~34.8
g 500- ______ -@q;)__6___________________.—I.QGSD:—SOS.Z
o B o o
<< L L .

g -1000 |-
m -
—1500 il 1 1 1 1 1
0 500 1000 1500 2000 2500

1/2 (ECG AF (ms) + BCG AF (ms))
Quality index > 0.4

(e)

1500 |- o

1000

500 -

+1.96 SD: 286.6

Mean: 21.3

—1.96 SD: —244.1

=500 -

ECG SR (ms) — BCG SR (ms)

—-1000

2000

o[

500 1000 1500
1/2 (ECG SR (ms) + BCG SR (ms))

(b)
1500 o

1000

500

+1.96 SD: 214.2

Mean: 14.4

-1.96 SD: -185.4

=500

ECG SR (ms) — BCG SR (ms)

—1000

2000

o

500 1000 1500
1/2 (ECG SR (ms) + BCG SR (ms))
Quality index > 0.25

(d)

1500

1000

500 - o

+1.96 SD: 92.7
Mean: 1.8

=500 - <]

ECG SR (ms) — BCG SR (ms)

—1000 o . | . 1 . 1 . 1
0 500 1000 1500 2000
1/2 (ECG SR (ms) + BCG SR (ms))
Quality index > 0.4

()

FIGURE 5: Correlation of analyzed cycle length of ECG and BCG in different quality index steps. Left AE right SR (Bland-Altman Plot: y-axis:
mean of difference ECG-BCG and 95% limits of agreement +1.96 “SD): (a) all analyzed AF data; (b) all analyzed SR data; (c) AF data filtered
by quality index >0.25; (d) SR data filtered by quality index >0.25; (e) AF data filtered by quality index >0.4; (f) SR data filtered by quality

index >0.4.

to exclude artifacts and filter the signal of interest. Due to
the ambiguous nature of the BCG deflection our approach
does not search for a specific or defined signal appearance
but looks for repeating signal deflections. For this reason
no training is needed and a change of BCG deflection, for
example, after a body movement, does not aftect the analysis.

In clinical practice patients are advised to remain motionless
during ECG recording; this would probably also improve the
BCG signal quality but was not tested. The algorithm at this
point does not offer a qualitative analysis of the heartbeat
characteristics and is not able to distinguish between SR and
AFE
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FIGURE 6: Examples of cycle length detection by synchronized ECG and BCG with corresponding quality index. ECG (black signal) and
synchronized BCG (blue signal). (a) AF shows a good correlation of the ECG and synchronized BCG interval detection. BCG#2 indexing a
change in heartbeat cycle length resulting in an inaccurate BCG cycle length detection with corresponding decreased quality index. (b) SR
after cardioversion with a near-perfect ECG and BCG cycle length correlation resulting in a high quality index for each heartbeat above 0.4.
(c) SR after cardioversion with a premature atrial contraction (BCG#3). The corresponding quality index indicates a poor BCG quality for
the premature contraction (BCG#3) and the following beat (BCG#4) due to a change in the deflection pattern and a good quality of BCG
signal in normal SR. (d) SR after cardioversion with a good BCG cycle length detection interrupted by a high-energy artifact, most likely a
moving artifact with a BCG interval marked as corrupt (BCG#3). The consecutive beats are all detected with an improving ECG and BCG
cycle length correlation and an increasing quality index. Although the BCG pattern changed after the moving artifact no training phase was
necessary for cycle length detection. *BCG: ballistocardiogram; QI: quality index.

In contrast to photoplethysmographic sensor technolo-
gies, BCG measures the mechanical movements of the organ
of interest. Peripheral pulse deficits due to low blood pressure,
increased peripheral resistance, venous return, sympathetic
arousal, temperature, or centralization of circulation do
not interfere with the signal as much as they do for the
photoplethysmographic sensors [15]. Due to different filling

conditions and an irregular heartbeat during AF the match
between consecutive heartbeats in the BCG signal alternates.
Thus, arrhythmia heartbeat detection is challenging for the
algorithm and resulted in a decreased quality index (0.41)
during AF in contrast to sinus rhythm (0.52) as described in
Table 1. The lower quality index during AF or premature ven-
tricular contraction compared to sinus rhythm could hamper
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the recognition and differentiation of true heartbeats in con-
trast to artifacts. However, we were able to calculate cutoffs for
the quality index to differentiate between quality index values
during AF and quality index values during artifacts. Thus,
the algorithm remains robust in its signal detection under
different filling conditions and motion sequences of the heart
such as during AF or premature ventricular contractions
(Figures 6(a)-6(d)).

We have seen encouraging results with a good baseline
correlation of the BCG signal to the synchronized ECG.
The algorithm needs no training for heartbeat detection and
offers almost real-time cycle length analysis with a delay
of less than 2 seconds. So in addition to the recording
opportunities like a Holter ECG a bedside application seems
possible too. Interestingly and in contrast to our own previous
results, the baseline BCG signal during SR offers a lower
quality index and correlation coeflicient than expected. This
is caused by the direct recording after cardioversion during
the awaking period in which there is some body movement.
These movement artifacts could be filtered easily by the
quality index, resulting in a high correlation coeflicient. In
contrast to our expectations, the BCG signal also offers good
interval recognition during AF even though different filling
conditions and a beat-to-beat change of cycle length during
AF can hamper the BCG signal. This shows the strength and
flexibility of the used algorithm.

4.1. Limitations. The number of patients included in this
feasibility study was low. However, the number of heartbeats
analyzed in the study was high. The filter includes means
to filter the organ and frequency of interest and distinguish
artifacts so the algorithm works in the frequency we are
interested in (for this investigation from 30 to 180 beats per
minute). Other cycle lengths could have been neglected but
were not present during the data collection. In addition,
the algorithm presented in the study provides no qualitative
assessment of the rhythm so a differentiation between SR and
AF is not presented to the user. However, the aim of the study
was not to distinguish between SR and AF but to assess the
feasibility of cycle length analysis during SR and AF.

5. Conclusion

In conclusion, we demonstrated that the heartbeat cycle
length detection by our novel algorithm with a ballistocardio-
graphic sensor is feasible in AF and SR with a good correlation
to a synchronized ECG. Artifacts can be filtered by using a
quality index of each analyzed heartbeat in the BCG signal.
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