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With the development of new sequencing technology, the entire N6-methyl-adenosine (m6A) RNA methylome can now be
unbiased profiled with methylated RNA immune-precipitation sequencing technique (MeRIP-Seq), making it possible to detect
differential methylation states of RNA between two conditions, for example, between normal and cancerous tissue. However, as
an affinity-based method, MeRIP-Seq has yet provided base-pair resolution; that is, a single methylation site determined from
MeRIP-Seq data can in practice contain multiple RNAmethylation residuals, some of which can be regulated by different enzymes
and thus differentially methylated between two conditions. Since existing peak-based methods could not effectively differentiate
multiplemethylation residuals locatedwithin a singlemethylation site, we propose a hiddenMarkovmodel (HMM)based approach
to address this issue. Specifically, the detected RNA methylation site is further divided into multiple adjacent small bins and
then scanned with higher resolution using a hidden Markov model to model the dependency between spatially adjacent bins for
improved accuracy. We tested the proposed algorithm on both simulated data and real data. Result suggests that the proposed
algorithm clearly outperforms existing peak-based approach on simulated systems and detects differential methylation regions
with higher statistical significance on real dataset.

1. Introduction

Although the presence of posttranscriptional biochemical
modifications to RNA has been established in 1960s [1], due
to historical limitations, RNA epigenetics is largely uncharted
territory until recently [2–4]. In 2012, a powerful sequencing
protocol methylated RNA immune-precipitation sequencing
(MeRIP-Seq or m6A-Seq) was developed [5, 6], in which
the fragmented mRNA fragments with N6-methyl-adnosine
(m6A) are pulled down with anti-m6A antibody and then
purified and passed to subsequent sequencing to generate the
so-called “IP sample” for profiling the transcriptome-wide
RNAm6Amethylome. Very often, a paired “input sample” is

generated as well using all the RNA for measuring the entire
transcriptome background (please refer to [7] for a more
comprehensive protocol of this approach). This technique
facilitates a number of research findings recently which
includes the following: the role of RNA methylation in
controlling the circadian clock [8], addiction [9], and stem
cell [10], and [2, 3, 5, 6, 8–16]. It also enabled the construction
of mammalian RNA methylation database [17] and systems
biology approaches for decomposing the RNA methylome
to unveil the latent enzymatic regulators of epitranscriptome
[18]. Software tools for RNA methylation site detection [19,
20] and for differential RNA methylation analysis [21] from
MeRIP-Seq data are now available in a rather user friendly
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manner. Nevertheless, as a newly arising technique, MeRIP-
Seq still poses computational challenges that call for novel
and sophisticated approaches.

Differential methylation analysis is of crucial importance
for epigenetics research. Differentially methylated regions
(DMRs), that is, regions that exhibit different methylation
levels between two experimental conditions, for example,
normal and cancerous, can be as small as a single base or
as large as an entire gene locus, depending on the biolog-
ical question of interest and the bioinformatics methods
used for their identification [22]. Differential methylation
analysis from MeRIP-Seq seeks to identify the differences
in RNA methylome in a case-control study (e.g., cancerous
and normal), which usually involves at least four high-
throughput sequencing (HTS) samples, including the IP and
input samples under both the case and control conditions.
For affinity-based methods developed for DNA epigenetics
(such as MeDIP-Seq and ChIP-Seq), since the absolute
amount of DNA is most likely to stay unchanged between
two conditions, the percentage of modified DNA molecule
is linearly correlated with the absolute amount; thus the
difference in methylation is consistent when measured in
relative (percentage) and absolute amount. However, in
MeRIP-Seq, due to the change in transcriptional expression
level between two conditions, it is possible that while the
absolute amount of methylated RNA increases, the relative
amount (percentage of methylated RNA) decreases as shown
in Figure 1. From computational perspective, the differential
methylation analysis of RNA is quite different from that of
DNA, and DNA differential methylation approaches [23],
such as MOABS [24] and DMAP [25], may not be directly
applicable to RNA. Until now, methods aiming at the differ-
ential analysis of MeRIP-Seq data do not extensively appear
in literature. exomePeak [19, 21] is dedicatedly developed for
differential RNAmethylation analysis fromMeRIP-Seq data.
The detection of DMRs is based on rhtest [26], which is
an extended version of hypergeometric test, computing the
statistical significance of the difference in the percentages
of methylated fragments between the two conditions, which
directly indicates the difference in enzymatic regulation.
Before the detection of DMRs, peaks (methylated regions)
are called firstly from the transcriptome by comparing the
IP with input sample by relative enrichment [7, 19, 27]. Only
with the detectedmethylation sites canwe effectively estimate
the methylation level.

Affinity-based approaches cannot provide single-base
resolution. Since multiple RNA methylation residuals may
locate in proximity and cannot be effectively differentiated
with peak calling procedure, they can appear as a single broad
methylation site in the peak calling result fromMACS [27] or
exomePeak [19]. Inmany cases, this discrepancy can be trivial
and does not significantly affect relevant study; however, it
can be disastrous in differential methylation analysis, because
multiple RNA methylation residuals can be regulated by
different enzyme complexes and thus may be differentially
methylated. Failing to identify the precise location of each
methylation residual can lead to large bias in the estimation

DNA mRNA
Methyl-group

Normal Normal

Cancer Cancer

Methyl-group

Figure 1: Comparison of the differential methylation analysis in
DNA and RNA.The first column shows the DNA related differential
analysis in ChIP-Seq or MeDIP-Seq, where the total DNA is often
considered the same under two experimental conditions, so the
differential analysis can be performed by directly comparing the
absolute amount of methylated RNAs in the two IP samples. In
contrast, for RNA (the second column), the background is total
RNA, which can vary significantly under different conditions, and
therefore, the absolute amount of methylated RNA for a specific
site does not necessarily correlate with the degree of methylation.
For the example shown in the above figure, while amount of
methylated RNA increases under the cancer condition, the relative
amount (percentage of methylated RNA) decreases, indicating a
hypomethylation at RNA level. As a result, the differential analysis of
RNAmethylome in MeRIP-Seq should be performed by comparing
the percentages of methylated RNA to reflect the influence of
methylation enzymatic regulation.

of its methylation level and in the comparison to a different
condition. Currently, all existing methods for RNA differen-
tial methylation fromMeRIP-Seq data are peak-based. In this
paper, based on the rhtest method developed in exomePeak
package [21], we proposed FET-HMM, a novel strategy for
spatially enhanced differential RNA methylation analysis
using hidden Markov model (HMM). When applying to the
RNAmethylation site detected from a peak calling algorithm,
FET-HMM breaks a single site into multiple adjacent small
bins and evaluates whether a specific bin is differentially
methylated or not between two experimental conditions with
spatial dependency incorporated by HMM. Figure 2 shows
the comparison between existing and our methods.

HMM is a statistical model that integrates multiple ran-
dom processes and has been widely used in DNA-templated
epigenetic analysis and in RNA methylation sites detection
(or peak calling) [28–30], but so far it has not been applied
for RNA differential methylation analysis. We applied the
newly developed approach FET-HMM on both simulated
and real datasets. The results on simulated data showed
that FET-HMM can effectively improve the performance
of rhtest in terms of the area under the curve (AUC)
when detecting differential methylation sites. When applied
to human MeRIP-Seq datasets, FET-HMM method returns
more biological meaningful results than exomePeak method.
The FET-HMM algorithm has been implemented in an open
source R package for differential methylation analysis from
MeRIP-Seq data and is freely available from GitHub. The
method is detailed in the following section.
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Figure 2: Comparison of differential methylation analysis methods.This figure shows the difference between existing peak-based differential
analysis method and the proposed method. Started from aligned reads, the left part of this figure shows how exomePeak conducts differential
analysis. It firstly identifies a single methylation site and then decides whether the methylation site as a whole is differentially methylated
or not. However, the newly proposed method will split the testing region into multiple adjacent small bins and then will integrate their
dependency with HMM for more accurate identification of differential methylation site. In the above example, the RNA methylation site
detected using exomePeak method may consist of two methylation residuals, and only the one on the right side is differentially methylated in
this case-control study. The proposed FET-HMMmethod is likely to work better than peak-based exomePeak method under this scenario.

2. Methods

In this section, we firstly review the usage of rhtest, amodified
version of Fisher’s exact test (FET), for differential RNA
methylation analysis and then introduce spatially enhanced
approach FET-HMM.

2.1. Peak-Based Differential RNA Methylation Analysis with
Rhtest. To conduct differential RNA methylation analysis in
a case-control study, we should get four samples, that is, the IP
and input samples from both groups. Consider that there are
a number of RNAmethylation sites detectedwith peak calling

approaches [19, 20, 27] fromMeRIP-Seq.Thenwe can assume
that the number of reads within the 𝑔th RNA methylation
sites follows the Poisson distribution, with
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the more likely the 𝑔th RNA methylation site is differentially
methylated between two conditions.

2.2. Spatially Enhanced Differential RNAMethylation Analysis
with FET-HMM. The method developed in the previous
section could not effectively discriminate multiple RNA
methylation residuals located within a single RNA methyla-
tion site (as shown in Figure 1).We seek to enhance the spatial
resolution with hidden Markov model. Similar to various
formulation, for a particular RNAmethylation site, we firstly
divided it into 𝑁 mutually connected bins of length 𝐿. Then
we can still assume that the number of reads within the 𝑛th
bin follows the Poisson distribution, with
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are the reads counts of the input samples
for untreated and treated condition and consistently, 𝑌
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are the reads counts of the IP samples for untreated and
treated samples. Here, 𝑛 = 1, 2, . . . , 𝑁 indicates the 𝑛th bin.
The parameters (𝜆
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son means in a standard library, indicating the expectation
of the reads counts within a bin. Following the formulation
from previous study [26], we assume that 𝜆
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expressed RNA fragments that are modified in the untreated
and treated samples, respectively. 𝜂

0,𝑛
and 𝜂

1,𝑛
indicate the

percentage of RNA fragments mapped inside the bin that
carry the methylation mark. We can easily test whether
𝜂
1,𝑛

= 𝜂
0,𝑛

(whether differentialmethylation is observed) for a
specific bin; however, we should not neglect the dependencies
between the reads counts of adjacent bins within an RNA
methylation site; that is, if differentialmethylation is observed
on a specific bin, it is likely that differential methylation
can also be observed on bins adjacent to it and vice versa.
The dependency can be effectively incorporated with an
HMM formulation, and we thus developed a new strategy for
the identification of differential methylation regions (DMRs)
with improved spatial resolution.

To begin with, with respect to 𝑛th bin, the hidden
true states of differential methylation are denoted as 𝑆 =

{𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑁
}, where 𝑠

𝑛
∈ {0, 1} with 1 representing differ-

ential methylation state (DMS) and 0 otherwise. Considering
that a differential methylation region may span multiple
adjacent bins, we assume that the true hiddenDMS 𝑆 follows a
first order Markov chain, whose transition matrix𝐴 contains
entries defined as

𝐴
𝑖𝑗
= 𝑃 (𝑠

𝑛+1
= 𝑗 | 𝑠

𝑛
= 𝑖) , 𝑖, 𝑗 ∈ {0, 1} , (4)

where 𝐴
𝑖𝑗
denotes the probability for the hidden variable

switching from DMS 𝑖 at the 𝑛th bin to the DMS 𝑗 at the
(𝑛+1)th bin. In addition, the initial probability 𝑝(𝑆

1
= 0) = 𝑢

and 𝑝(𝑆
1

= 1) = 1 − 𝑢, which can be denoted as 𝜋 =

(𝑢, 1 − 𝑢). Next, the result of rhtest [21, 26] was used as the
observed variable of the HMM. However, the information
acquired from rhtest is a statistical significance of differential
methylation in terms of 𝑝 values and FDRs (False Discovery
Rates). We seek to enhance the differential methylation
results by incorporating spatial dependency. Specifically, 3
different strategies are developed for this purpose with their
own advantages and disadvantages, which are detailed in the
following.
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Figure 3: HiddenMarkovmodel. In FHB strategy, the “observation”
is a binary status reported from FET, and the emission probability is
Bernoulli distribution.

2.3. FHB Strategy: Combine Fisher’s Exact Test and HMM
with Binary Observation. In FHB strategy, we use the binary
decisions received from FET as the observation of hidden
Markov model. The model essentially evaluates how likely a
true differential methylation state can be detected by FET,
or if FET reports a DMS with a significance level, how
likely it is true after incorporating spatial dependency. We
assume that a state can be correctly observed with probability
𝑝; and a mistake happens with probability (1 − 𝑝). Since
the observation from FET is considered as binary, a cut-off
threshold should be used to switch the FDR (False Discovery
Rate) value to generate the “observed” set of observed variable
𝑂 = (𝑜

1
, 𝑜
2
, . . . , 𝑜

𝑛
) with 𝑜

𝑛
∈ {0, 1}. Then according to the

standard HMM definition, these probabilities consist of an
emission matrix 𝐵, whose entries are defined as
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1 − 𝑝, 𝑖, 𝑗 ∈ {0, 1} , 𝑖 ̸= 𝑗.

(5)

The detailed structure of HMM is shown in Figure 3.
Finally, we applied the widely used Baum-Welch algo-

rithm [37–39] to estimate the unknown parameters of
the HMM. Baum-Welch algorithm applies the well-known
Expectation andMSaximization (EM) strategy to conduct the
process of estimation. The implementation steps of Baum-
Welch algorithm are as follows.

The Proposed Algorithm

(1) Initialization. Given the initial value of 𝐴
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𝑛=1
𝛾
𝑛 (𝑖)

, (11)

𝑏
𝑖

(𝑚+1)
(𝑘) =

∑
𝑁

𝑛=1
𝛾
𝑛 (𝑖) 𝐼{𝑜𝑛=𝑘}

∑
𝑁

𝑛=1
𝛾
𝑛 (𝑖)

. (12)

In (12),

𝐼
{𝑜𝑛=𝑘}

=
{

{

{

1 𝑜
𝑛
= 𝑘

0 𝑜
𝑛

̸= 𝑘

(13)

is the indicative function.

(3) Loop.Repeat the EM steps until the convergence of𝐴
𝑖𝑗
,𝜋
𝑖
,

and𝐵
𝑖𝑗
. After the procedures above, optimalmodel parameter

𝜆
(op) could be obtained. Let 𝑢

𝑛𝑘
= 1 if we are absolutely sure

𝑠
𝑛
= 𝑘 and 𝑢

𝑛𝑘
= 0 otherwise. What we focused on is the final

expectation of 𝑢
𝑛𝑘
, 𝑘 ∈ {0, 1}, which can be calculated as

𝐸 [𝑢
𝑛𝑘
| 𝑂, 𝜆
(op)

] = 𝑃 (𝑠
𝑛
= 𝑘 | 𝑂, 𝜆

(op)
) . (14)

Then we could obtain the posterior probability of a bin
being at a specific state, and the performance of FET-HMM
can be compared with that of exomePeak on simulated
dataset when the true state is available.

2.4. FHC Strategy: Combine Fisher’s Exact Test andHMMwith
Continuous Observation. In FHB strategy, we adopt a switch-
ing cut-off threshold to convert the statistical significance
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(𝑝 value from differential analysis with rhtest) into binary
states as the observation of HMM. This strategy has two
limitations. Firstly, we could hardly find the most reasonable
threshold for a dataset, and different threshold can lead to
different results. Secondly, some information gets lost in the
conversion from 𝑝 value to binary states; for example, both
𝑝 values 0.01 and 0.001 are converted as DMS state 1 after a
binary conversion with significance level 0.05; however, the
former is less confident. In addition, Bernoulli distribution
may not be the most suitable distribution for the emission
probability of observed variable.Therefore, a strategy seeking
to directly smooth the continuous statistical significance
without binary conversionmay be superior. For this purpose,
we use the 𝑝 values from FET to approximate the likelihood
of a bin with DMS state 0 and (1 − 𝑝 value) for its likelihood
with DMS state 1. The 𝑝 values generated from FET can be
used to estimate the emission probability of HMM directly
and then passed to HMM for smoothing purposes. It should
be denoted as

𝐵II =

[
[
[
[
[
[

[

𝑝 value
1

1 − 𝑝 value
1

𝑝 value
2

1 − 𝑝 value
2

.

.

.
.
.
.

𝑝 value
𝑁

1 − 𝑝 value
𝑁

]
]
]
]
]
]

]

. (15)

After getting the matrix 𝐵II of size 𝑁 by 2 constructed from
FET 𝑝 values, the Baum-Welch algorithm introduced in FHB
can be applied to spatially enhance the local result, with
formula (12) omitted because matrix 𝐵II does not need to be
reestimated every iteration. Please note that using 𝑝 values
to approximate directly the probability matrix 𝐵II helps to
avoid the binary conversion and information loss, andwewill
show in the Result section that this trick indeed improves the
performance of algorithm.

2.5. FastFH Strategy: A High-Efficiency Strategy for Applying
FET-HMM on Big Omics Data. When the proposed method
is used in real MeRIP-Seq dataset, two problems would
emerge. What comes first was some reads would be mapped
into very short genes; thus the number of the bins would be
quite small. In other words, the length of someMarkov chains
would be too short for accurate estimation of parameters
and finally affects the results of DMRs detection. In addition,
computational time was another important factor that we
should take into consideration. Take the human hg19 data we
were going to test as an example. If there were more than
30000 detected RNA methylation sites in total, the Baum-
Welch algorithm would be performed more than 30000
times and the execution time might be too long. In order
to solve these two limitations, we could combine the two
strategies together. Firstly, the threshold used in FHB was
used here again to switch the FDR into binary DMS.Then we

could estimate transition matrix 𝐴 III directly from this DMS
information as shown in

𝜋III = (1 −
∑
𝑁

𝑖=1
DMS
𝑖

𝑁
,
∑
𝑁

𝑖=1
DMS
𝑖

𝑁
) ,

𝐴 III = [
𝑃 (𝑆
𝑛+1

= 0 | 𝑆
𝑛
= 0) 𝑃 (𝑆

𝑛+1
= 1 | 𝑆

𝑛
= 0)

𝑃 (𝑆
𝑛+1

= 0 | 𝑆
𝑛
= 1) 𝑃 (𝑆

𝑛+1
= 1 | 𝑆

𝑛
= 1)

] ,

(16)

where 𝑃(𝑆
𝑛+1

| 𝑆
𝑛
) denotes the conditional probability for

the transition from 𝑆
𝑛
to 𝑆
𝑛+1

, which can be conveniently
estimated by scanning all the states of differentialmethylation
𝑆 = {𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑁
} on all RNA methylation sites. For every

single gene, the emission probability 𝐵III has the same form
as 𝐵II in FHC strategy. By doing this, the 𝐴 III matrix can
be estimated in a single step instead of an iterative manner
so as to save computation load. This result should be also
more robust on short RNAmethylation siteswith less number
of bins than previous strategy. Secondly, we chose the Estep
in FHB strategy to compute the final expectation defined in
formula (14) for every single bin on every RNA methylation
sites of real RNA epigenetics data. FastFHC strategy applied
Estep after estimating transitionmatrix and initial probability
for all genes.𝜋III and𝐴 III are considered the same on different
RNA methylation sites and are estimated like FHB with
binary converted observation. Although some information
can be lost in the conversion step, since tens of thousands
of RNA methylation sites are pooled together for estimation
of 𝜋III and 𝐴 III, it should be still relatively accurate. The 3
strategies are summarized in Figure 4.

3. Result

3.1. Test on Simulated Data. For MeRIP-Seq, as the ground
truth is not available for the differential RNA methylation
status in real data, the performance of our proposed method
(FHB and FHC strategy) was first validated on simulated
datasets. Specifically, the reads counts for the IP and input
samples under two experimental conditions were generated
from model assumptions, respectively. In every set of data,
100 RNA methylation sites are generated, each with 1000
adjacent bins. The sequencing depths were all set 108, and
the normalized Poisson mean 𝜆

0
of untreated input was set

to 10−6, unless otherwise clarified. To simulate differential
expression, reads counts of each gene in both the IP and the
input control sample also vary in a certain range compared
with the untreated condition, respectively; and we assume
its log2 fold change follows a uniform distribution between
[−3, 3]. To mimic differential methylation, the methylation
reads counts log2 odds ratio follows a uniform distribution
between [−3, 3] for differential methylation bins and 0 for
nondifferential bins. In order to impose dependency of
adjacent bins on the simulated data, we applied a definite
HMM to generate the labels used as the hidden DMS of the
1000 adjacent bins to indicate whether a bin is differential
methylated or not. Then the label was used to generate
the data and also used as the ground truth for evaluating
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Input the reads counts of IP and input

Yes
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No Yes

FHB FHC

samples on experiment and control conditions 

Calculating the p values of every bin on RNA using
Fisher’s exact test

Is the high-efficiency
strategy needed?

Is the HMM with
continuous observations

needed?

Changing the p values
into the

binary DMS information

Doing the estimation of
the 𝜋, A, and B of HMM

using Baum-Welch
algorithm and calculating
the posterior probability

of the differential
methylation status of

Obtaining the emission
probability matrix B

using p values
approximately

Doing the estimation of
the 𝜋 and A of HMM using

Baum-Welch algorithm
and calculating the

posterior probability
of the differential

methylation status
of every bin

Judging the differential methylation status according to
appropriate thresholds

Changing the p values into
the binary DMS information
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probability vector 𝜋
and transition matrix
A based on the binary
DMS information

Calculating the posterior
probability of the
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RNA according to the
method for FHC
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every bin 

Figure 4: Comparison of different strategies. FHB strategy is the most naı̈ve and straightforward; FHC is the most time consuming and
performs better than FHB but is less robust. With FastFHC, the algorithm can now be applied to genome scale dataset in a timely and robust
manner.

the performance of the proposed FET-HMM approach. The
transition matrix 𝐴 sim was set as

𝐴 sim = [
0.9 0.1

0.1 0.9
] (17)

unless otherwise stated, and the initial probability 𝜋 =

(0.5, 0.5) due to the lack of prior information. We consid-
ered three factors that may affect the performance of the
algorithm, that is, the cut-off threshold applied to FET result
for switching FDR (or 𝑝 values) to the binary observed
state (only for FHB), the transition matrix (degree of spatial
dependency) used to generate the ground truth, and the
sequencing depth (library size) of the data. The area under
receiver operating characteristics curve (AUC) is calculated
to evaluate the performance of the proposed algorithms
under different settings of the 3 key factors to be tested.

In the first experiment, we tested the impact of cut-
off threshold on the FHB strategy. As shown in Figure 5,
although the choice of threshold does affect the performance
of the algorithm, by incorporating spatial dependency, the
proposed FHB strategy effectively improves the DMRs detec-
tion performance under all cut-off thresholds tested.

In the second experiment, we tested the impact of
transition matrix, which indicates the degree of dependency
between adjacent observations (bins). As shown in Figure 6,
the performance of FHB and FHC strategies heavily relies

0.900

0.925

0.950

0.975

0.005 0.05
Threshold

AU
C

Method
FHB
exomePeak
(rhtest)

5e − 07 5e − 06 5e − 05 5e − 04

Figure 5: Boxplot of AUCs for different thresholds applied to switch
FDR to the binary state. This figure shows that with the variation
of thresholds, the performance of FHB outperforms exomePeak in
AUC on 100 datasets. exomePeak does not use the cut-off threshold
so its performance remains the same. The performance is evaluated
at bin level rather than peak level in all experiments.
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Figure 6: Boxplot of AUCs for different transition matrices used
to generate the ground truth. The performance of FHB and FHC
strategies heavily relies on the transition matrix setting, which
reflects the degree of dependence between adjacent bins; and FHC
strategy outperforms FHB and exomePeak under different settings
tested.

on the transition matrix setting, which reflects the degree of
dependence between adjacent bins; and FHC strategy outper-
forms FHB and exomePeak under different settings tested.

The last factor that may affect the simulation results is
the sequencing depth (the total number of reads). In our
simulation, the sequencing depths (SD) of the four samples
varied from 109 to 106. From Figure 7, we can see that
the performances of FHB, FHC, and exomePeak are all
satisfactory when sequencing depth is high enough (SD =
109); their performance all decreases together with the
sequencing depth. Among the 3 methods tested, FHC gives
the best performance and the advantage of FET-HMM over
exomePeak is the most prominent when the sequencing
depth is low. When the sequencing depth is very low, none
of the 3 approaches can identify DMRs effectively.

We also consider here another scenario of unbalanced
sequencing depth; that is, only one of the 4 samples has very
large or small sequencing depth, and the results are highly
consistent with previous result. As shown in Figure 8, the
performance of all 3 approaches decreases as the sequencing
depth decreases and FHC strategy outperforms FHB and
exomePeak on most settings.

In general, the computational complexity of the pro-
posed approaches increases together with the number of
the genes, the length of the genes, and the resolution of
the analysis (the size of the bin); and since FHB and FHC
require iterative refinement, their computational complexity
is also proportional to the number of iterations required to
research convergence. To further evaluate the computational
complexity of the 3 strategies, we conducted one additional
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exomePeak
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Figure 7: Boxplot of AUCs for different sequencing depths.The per-
formance of all 3 approaches decreases together with the sequencing
depth. FHC strategy gives the best performance and the advantage
of FET-HMMover exomePeak is themost prominent when the data
is of mediocre sequencing depth.

0.4

0.6

0.8

1.0

Sequencing depth (treated IP)

AU
C

1e + 06 2e + 06 5e + 06 8e + 06 1e + 07 1e + 08 1e + 09

Method
FHB
FHC
exomePeak
(rhtest)

Figure 8: Boxplot of AUCs for different unbalanced sequencing
depths. The performance of all 3 approaches decreases as the
sequencing depth decreases andFHC strategy outperforms FHBand
exomePeak on most settings. In this test, the sequencing depth of
IP sample under treated condition varies with that of the other 3
samples unchanged.
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Table 1: Comparison of different approaches.

Method AUC Time
FHB 0.960 4.39 s
FHC 0.987 0.85 s
FastFHC 0.962 0.12 s
exomePeak (rhtest) 0.924 0.02 s

Table 2: MeRIP-Seq data used.

Dataset Cell Treatment Replicates
(IP/input) Reference

1 Hela Control 4 & 4 [40]
2 Hela METTL3 K/O 2 & 2 [40]
3 Hela METTL14 K/O 2 & 2 [40]

experiment. In this experiment, we simulated a dataset of 7
genes, each with a different length (50, 100, 150, 200, 250,
300, and 350) and themethylation state transition probability
is set to be 0.95. A total of 10 datasets are generated for
evaluation purposes and the average performance and time
consumption are calculated. As it can be seen from Table 1,
on the simulated setting, FastFHC is comparable to FHB and
FHC in performance, but much faster, making it a reasonable
choice for genome-scale data withmore than a few thousands
of genes.

3.2. Test on MeRIP-Seq Data. In order to test our proposed
method in real applications, we chose the human MeRIP-
Seq data from Hela cells and from METTL3/METTL14
knockout conditions [40] as shown in Table 2. Previous study
shows that METTL3 and METTL14 are components of RNA
methyltransferase complex [40, 41], and we would like to
identify their respective targeted RNAmethylation sites from
the following analysis. The original raw data in SRA format
was downloaded directly from Gene Expression Omnibus
(GEO) GSE46705, which consists of 8 IP and 8 Input MeRIP-
Seq replicates obtained under wild type condition and after
METTL3 or METTL14 knockout, respectively (a total of 16
libraries). The short sequencing reads are firstly aligned to
human genome assembly hg19 with Tophat2 [42], and then
the same types of samples obtained under the same condition
are merged together for differential RNA methylation analy-
sis.

Differential RNA methylation is predicted using exome-
Peak R/Bioconductor package [21] with UCSC gene annota-
tion database [43] andwith FastFHC strategy for comparison.
Since METTL3 and METTL14 are methyltransferase, their
target sites should exhibit hypomethylation under knockout
condition. The hypomethylation sites under knockout con-
dition (targeted RNA methylation sites) are then extracted
and their sequences are submitted to MEME-ChIP for motif
discovery. The identified motifs are summarized in Table 3.
The enriched motifs are quite different in both datasets,
indicating that there are multiple regulatory avenues to
regulate the RNA methylome through sequence specificity.

10

20

30

40

50

METT3 METTL14
Factor (gene)

exomePeak
FastFHC

Method

−
lo

g(
E

-v
al

ue
)

Figure 9:𝐸 values of motifs identified from differential methylation
regions. The figure shows the motif 𝐸 values from exomePeak and
FastFHC strategy. With spatially enhanced differential methylation
analysis, FastFHC identifies RNA methylation sites that are more
biologicallymeaningful, indicating higher specificity comparedwith
the exomePeak result.

Despite the difference in sequences, as shown in Figure 9,
the motifs identified by FastFHC results are more statistically
significant than that from exomePeak, indicating higher
sequence specificity, which is achieved by spatial enhance-
ment with HMM in FET-HMM approach. The increased
sequence specificity will be invaluable for decoding the
structure of RNA methylation/demethylation enzymes.

We then checked the distribution of METTL3 and
METTL14 targeted RNA methylation sites on mRNA and
lncRNA. As shown in Figure 10, the targeted RNA methyla-
tion sites of METTL3 and METTL14 are relatively enriched
near stop codon of mRNA. Interestingly, compared with
METTL14 targets, METTL3 targets are relatively enriched on
untranslated regions (5 and 3UTR), which is never reported
before. Although existing studies suggest METTL3 and
METTL14 function as an RNAmethylation complex together
with WTAP, our observation suggests that they may have
their own respective functions as well. On lncRNA, their tar-
gets are almost uniformly distributed on the entire RNAwith
slight enrichment on 5 end, whose reason is not yet clear.

4. Conclusion

In this paper, we developed an HMM-based method, FET-
HMM, for spatially enhanced detection of differentially
methylated region from MeRIP-Seq data. Compared with
existing peak-based approaches which perform differential
analysis on the entire methylation site, FET-HMM seeks
to increase the resolution of detection to some extent by
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Table 3: Motifs for target sites of METTL3 and METTL14.

Rank exomePeak FET-HMM
Motif 𝐸-value Motif 𝐸-value
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Figure 10: Distribution of METTL3 and METTL14 targeted RNA methylation sites. For both METTL3 and METTL14, their targeted RNA
methylation sites are relatively enriched near stop codon of mRNA; however, compared withMETTL14 targets, METTL3 targets are relatively
enriched on untranslated regions (5 and 3UTR). On lncRNA, their targets are unfirmly distributed with slightly enriched on 5 end.
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dividing the single RNA methylation site into multiple
adjacent bins (as shown in Figure 1), resulting in the
improved detection performance. We developed 3 different
strategies for this purpose, each with different advantage
and disadvantages, and the FastFHC strategy can be directly
applied to genome scale dataset. We show on the simulated
and real datasets that the proposed approaches outperform
original approach in detection performance and report more
statistically significant DMRs on real MeRIP-Seq data.

It is important to note that exomePeak, which adopts a
hypothesis testing scheme, relies on a cut-off threshold to
report differential methylation sites, while FET-HMM,which
assumes a hidden Markov model, needs a cut-off threshold
for posterior probability. Although their performances can be
compared underAUC, the two approaches are fundamentally
different. It is suggested that both exomePeak and FET-HMM
are used when analyzing specific datasets rather than using
one approach only.

The proposed approach still has a number of limitations,
many of which are shared by other existing MeRIP-Seq data
analysis software. Firstly, the proposed approach could not
model the within-group variation and thus cannot effectively
take advantage of biological replicates. Currently, replicates
are merged together which loses the biological variability.
Secondly, the proposed approach cannot discriminate dif-
ferent isoforms of the same genes. MeRIP-Seq intrinsically
poses very limited information regarding the methylation
states of different isoform transcripts. Thirdly, even with the
proposed approach, the spatial resolution is still not base-
pair resolution. To obtain true base-pair solution, a more
advanced computational approach needs to be developed
to further combine the nucleotide sequence information
(motif).
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