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Thyroid cancer is a typical endocrine malignancy. In the past three decades, the continued growth of its incidence has made it
urgent to design effective treatments to treat this disease. To this end, it is necessary to uncover the mechanism underlying this
disease. Identification of thyroid cancer-related genes and chemicals is helpful to understand the mechanism of thyroid cancer. In
this study, we generalized some previous methods to discover both disease genes and chemicals. The method was based on shortest
path algorithm and applied to discover novel thyroid cancer-related genes and chemicals. The analysis of the final obtained genes
and chemicals suggests that some of them are crucial to the formation and development of thyroid cancer. It is indicated that the

proposed method is effective for the discovery of novel disease genes and chemicals.

1. Introduction

Thyroid cancer (TC) is a typical endocrine malignancy.
During the past three decades, its incidence has been nearly
tripled in the whole world, such as the United States and
other developed countries [1]. Thus, it has been a formidable
and urgent task to uncover the mechanism behind it, thereby
efficiently improving the medical treatment. Research has
been focused on the findings of possible driving genes of this
disease, especially those genes with high frequent mutations,
over-expressions, or fusions for a long time. Until recent
years, this research process just started to accelerate.

With the advent of advanced technology including the
next-generation sequencing technologies, findings of genetic
and epigenetic alterations are speeding up [2]. In other
words, the gradual accumulation of somatic mutations and
chromosomal rearrangements that are related to many crucial
tumor initiation and development genes has been found [3].
For example, high prevalence of mutations and gene fusions
in effectors of the PI3K-AKT and MAPK pathway occurred
in most patients with TC, suggesting its important contri-
butions to tumor initiation and development. Meanwhile,

dysregulation of hundreds of gene expressions, such as DPP4,
MET, LGALS3, and TIMP], have been common events in
this disease [4]. This achievement towards the uncovering
of mechanism behind TC is inspiring. However, despite the
unprecedented rate of discovery of novel mutations and gene
fusions in TC, evidence towards the tumor genesis of TC is
still not convincing because of the still large search space.

In addition to the influence of our genomes, it is evident
that cancer is also influenced by environmental chemicals
from our daily lives. This is partly because environmental
exposures can cause DNA mutations and change epigenetic
mechanisms [5]. For example, we might contact fluoride
and arsenic in drinking water, and toxic gases from burning
of fuel and industrial emissions. Current studies show that
outdoor air pollution and second-hand smoke often contain
chemicals, such as arsenic and polycyclic aromatic hydrocar-
bons, which further increase risks of numerous cancers [6].
Exposure to toxic level of arsenic can significantly increase
DNA methylation of pl6 and p53 promoter regions [7] and
change miRNA expression [8]. However, many chemicals’
effects towards cancer have not been researched and illus-
trated. Considering the important influences of chemicals



towards cancer, we are also interested in searching for novel
chemicals related to TC.

We realized that with the simple results from experi-
ments, it would be difficult to meet up our expectation on
the detection of novel genes and chemicals related to TC
due to the time- and money-consuming process. Thus, more
effective and rapid alternative methods must be used to
assist the searching process of genes and chemicals related to
TC. Considering the efficiency of computational approach,
it might be a potential way, which can be used to complete
this arduous searching task in a more effective and time-
saving way. Until now, several computational methods have
been developed in the field of biological network analysis and
other related areas, such as construction and analysis of gene
regulation, gene coexpression or other biological networks
[9-14], and drug designs [15-21]. Recently, some computation
methods were proposed to identify new candidate disease
genes based on the knowledge of the known disease genes
[22-25]. These methods only considered the disease genes.
However, it is easy to improve their methods to identify
both genes and chemicals that were related to certain disease.
In this study, we generalized their methods by constructing
a weighted graph containing the information of protein-
protein interactions, chemical-chemical interactions, and
chemical-protein interactions and applied this method to
study TC. Similar to the methods in [22-25], according to
known TC-related genes that were collected from TSGene
Database [26], UniPort [27], and NCI (National Cancer
Institute) [28] and known TC-related chemicals retrieved
from CTD (Comparative Toxicogenomics Database) [29],
some new candidate genes and chemicals were discovered by
our method. The analysis results of these new candidate genes
and chemicals showed that some of them are crucial to the
formation and development of TC. We hope that this method
could contribute to uncovering the mechanism of TC.

2. Materials and Methods

2.1. Materials. The TC-related genes were collected
from three sources: 209 TC-related genes were
achieved  from  UniProt  (http://www.uniprot.org/)
[27] after we input “human thyroid cancer reviewed”
as the keywords; 16 genes were chosen in the
catalogue of thyroid cancer from TSGene database
(http://bioinfo.mc.vanderbilt.edu/TSGene/search.cgi)
[26]; 251 TC-related genes were retrieved from NCI
(https://gforge.nci.nih.gov/, released April 2009) [28]. After
integrating the above 476 genes, we finally obtained 444
different TC-related genes, which were provided in Online
Supporting Information (see Sl in Supplementary Material
available online at http://dx.doi.org/10.1155/2015/964795).
The TC-related chemicals were retrieved from CTD
(http://ctdbase.org/) [29], which included the interactions
between chemicals and genes and their associations with
diseases that were manually curated from 110,142 arti-
cles (http://ctdbase.org/about/dataStatus.go, accessed 2014
August). Only the 44 chemicals that were markers of TC,
were therapeutic to TC, or had known mechanism in TC
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FIGURE 1: An example to display the construction of the weighted
graph, where a, b, and ¢ represent chemicals and d, e, f, and g
represent proteins.

were analyzed. The pubchem IDs of these chemicals were also
provided in Online Supporting Information SI.

2.2. A Weighted Graph Constructed from Interactions of Chem-
icals and Proteins. The core idea of our method is to construct
a hybrid weighted graph containing the information of
proteins, chemicals, and their associations. This idea has been
applied to our previous study on assigning chemicals and
enzymes to metabolic pathway [30]. To do that, we employed
the information of protein-protein interactions, chemical-
chemical interactions, and chemical-protein interactions.

The information concerning protein-protein interaction
was retrieved from STRING (Search Tool for the
Retrieval of Interacting Genes/Proteins, version 9.,
http://string.embl.de/) [31], a large scale database containing
direct (physical) and indirect (functional) interactions
of proteins, which are derived from genomic context,
high-throughput experiments, (conserved) coexpression,
or previous knowledge (refer to http://string.embl.de/).
Some computational models have been built based on these
information [32-35]. Each obtained interaction contains
two proteins and one score, which measures the strength
of the interaction, that is, the likelihood of the interaction’s
occurrence. For latter formulation, let us denote the score of
the interaction between proteins p; and p, by S,,(p;, p,)-
In particular, if proteins p, and p, cannot comprise an
interaction according to the current data in STRING,
Spp(P1> P2) Was set to zero.

The information concerning chemical-chemical interac-
tion and chemical-protein interaction was retrieved from
STITCH (Search tool for interactions of chemicals, version
4.0, http://stitch.embl.de/) [36], a sister project of STRING
which provides the known and predicted interactions of
chemicals and proteins. These interactions are confirmed
by evidence derived from experiments, databases, and the



BioMed Research International

hsa05120: epithelial cell signaling in helicobacter pylori infection
hsa04920: adipocytokine signaling pathway

hsa05215: prostate cancer

hsa05221: acute myeloid leukemia

hsa00830: retinol metabolism

hsa05220: chronic myeloid leukemia

hsa00982: drug metabolism

hsa00980: metabolism of xenobiotics by cytochrome P450
hsa04630: Jak-STAT signaling pathway

hsa04722: neurotrophin signaling pathway

hsa05211: renal cell carcinoma

hsa05200: pathways in cancer

5 10 15 20

FIGURE 2: The top twelve KEGG pathways that were enriched by 169 significant candidate genes.

GO0:0031328~positive regulation of cellular biosynthetic process
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GO0:0010647~positive regulation of cell communication
GO0:0051173~positive regulation of nitrogen compound metabolic process
GO0:0032101~regulation of response to external stimulus
GO:0002684~positive regulation of immune system process
GO:0010033~response to organic substance

G0:0010604~positive regulation of macromolecule metabolic process
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FIGURE 3: The top ten GO terms that were enriched by 169 significant candidate genes.

literature (refer to http://stitch.embl.de/). Each obtained
chemical-chemical interaction contains two chemicals and
five scores: “Similarity;” “Experiment;” “Database;” “Textmin-
ing,” and “Combined_score;,” which measure the strength of
the interaction from different aspects, such as their struc-
tures, activities, reactions, cooccurrence in literature, and
integration of the above information. To widely indicate the
interaction between chemicals, we used the last score, that
is, “Combined_score,” to measure the strength of the inter-
action. For two chemicals ¢; and ¢,, the “Combined_score”
of the interaction between them was denoted by S..(¢;,¢,).
Similarly, S..(¢;,c,) was set to zero if ¢, and ¢, do not
occur as an interaction in STITCH. Each obtained chemical-
protein interaction contains one chemical, one protein,
and five scores. With the similar argument, we used the
“Combined_score” to indicate the strength of the interaction
between one chemical and one protein. Let S, (c, p) denote
the “Combined_score” of the interaction between chemical ¢

and protein p. Also, S, (c, p) = 0 if c and p cannot comprise
a chemical-protein interaction. It is necessary to point out
that all chemicals in the retrieved chemical-chemical and
chemical-protein interactions must have records in KEGG
(Kyoto Encyclopedia of Genes and Genomes) [37] because
the number of chemicals in STITCH is too large and most
of chemicals have few associations with human tissues.
Based on the information concerning protein-protein
interactions, chemical-chemical interactions, and chemical-
protein interactions, a weighted graph G = (V, E) was con-
structed as follows: V' contained all proteins and chemicals
occurring in the above three kinds of information and E
consisted of all pairs of nodes such that the corresponding
proteins or chemicals can comprise an interaction. It is easy
to know that each edge in G represented an interaction. On
the other hand, as mentioned in the above paragraph, each
interaction was assigned a score to indicate its strength; that
is, different interactions may have different strength. To note



this fact in G and use the shortest path algorithm to search for
new candidate genes and chemicals, each edge was labeled a
weight as follows. Since the range of the interaction scores is
between 1 and 999, the weight of an edge e with endpoints n,
and n, was defined by

w(e)

1000 - S, (p1> p2)
If n, and n, represented proteins p, and p,
1000 - S, (¢, p)
] If n, and n, represented chemical ¢ and protein p

1000 — Scc (Cl’ Cz)

| If n, and n, represented chemicals ¢; and ¢,.

@

To clearly display the procedures of construction of the
graph, a small example is shown in Figure 1. In the example,
there are three chemicals g, b, and ¢ and four proteins d, e,
f>and g. The interactions, including their “Combined_score,”
between them are listed in the table of Figurel and the
constructed graph based on these interactions is shown at the
top of Figure 1.

2.3. Method for Discovery of New Candidate Genes and
Chemicals. The following method for finding new candidate
TC-related genes and chemicals was almost same as that in
our previous study [25]. The only difference was that the input
of the current method contained both genes and chemicals,
while the method in [25] only considered genes. Readers can
refer to our previous study [25] for the detailed procedures of
the method and its principle. For the integrity of this study,
the brief description of the method was as follows: (I) search
all shortest paths connecting any pair of TC-related genes
and chemicals using Dijkstra’s algorithm [38]; (II) for each
node (gene or chemical) in G, count its betweenness that was
defined as the number of paths containing it as an inner node;
(IIT) select the nodes (genes or chemicals) with betweenness
larger than zero as candidate genes and chemicals; (IV)
produce 1,000 sets by randomly selecting nodes (genes or
chemicals) from G; the numbers of genes and chemicals in
each set were the same as those in known TC-related gene
and chemical set; (V) for each set, search all shortest paths
connecting any pair of genes or chemicals in G; (VI) count
the betweenness of candidate genes and chemicals on each
randomly produced sets; (VII) for each candidate gene and
chemical, compare its betweenness on known TC-related
gene and chemical set and those on randomly produced sets,
thereby calculating its permutation FDR that was defined
as “the number of randomly produced sets on which the
betweenness was larger than that on the known TC-related
gene and chemical set”/1000.

3. Results and Discussions
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3.1. Candidate Genes and Chemicals. Of the 444 TC-related
genes and 44 TC-related chemicals, we searched the shortest
paths in G such that the endpoints of them were TC-related
genes or TC-related chemicals. Accordingly, the betweenness
of each gene and chemical in G was computed, obtaining
636 candidate genes and 174 candidate chemicals whose
betweenness was larger than zero; that is, these genes and
chemicals occurred in at least one shortest path as inner
nodes. These genes and chemicals are listed in Online
Supporting Information S2, in which their betweenness is
also provided.

To exclude false discoveries, the permutation test was
executed by constructing 1,000 randomly selected gene and
chemical sets for calculating the permutation FDR of each
candidate gene and chemical, which is also provided in
Online Supporting Information S2. Then, we selected 0.05 as
a threshold to exclude false discoveries, obtaining 169 can-
didate genes and 49 candidate chemicals with permutation
FDRs smaller than 0.05. The information of these genes and
chemicals is available in Online Supporting Information S3.
For convenience, we termed these genes and chemicals as
significant candidate genes and significant candidate chem-
icals, respectively. The following discussion was based on
these significant candidate genes and significant candidate
chemicals.

3.2. Gene Enrichment Analysis. DAVID [39] is a powerful
tool that could be used to make integrative and systematic
of large gene lists. Thus, it was used in this study to
analyze the 169 significant candidate genes. The analysis
results included two parts: KEGG pathway enrichments
(Online Supporting Information S4) and gene ontology
(GO) enrichments (Online Supporting Information S5).
GO enrichments include three parts: biological process
enrichment (BP enrichment), cellular component enrich-
ment (CC enrichment), and molecular function enrichment
(MF enrichment). Since our method was mainly based on
protein-protein interactions, BP enrichment analysis was
more convincing, while other two results were not very
reasonable. Thus, we only gave the discussion based on the
BP enrichment.

For the KEGG pathway enrichment analysis results, 169
candidate genes are enriched in 19 KEGG pathways (see
Online Supporting Information $4). Among these 19 KEGG
pathways, twelve of them were with P value (modified
Fisher exact P value) less than 0.05. Figure 2 shows these
twelve KEGG pathways and the number of enriched genes
among the significant candidate genes (“count”). Hsa05200
(pathways in cancer, “count” = 20) is the most significant
pathway, which enriched 20 significant candidate genes,
such as FGFR2, FGF6, DVL3, EPASI, and PPARG. Since all
these genes enriched in this pathway were reported related
to cancer formation and development, it further revealed
the validity of our method. Hsa05211 (renal cell carcinoma,
“count” = 7) is the second significant pathway with 7 genes
related to renal cell carcinoma. Hsa04722 (neurotrophin sig-
naling pathway, “count” = 7) is the third significant pathway,
enriching 7 genes, such as KRAS, PLCGI, and NTF3. Among
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them, NTF3 in neurotrophin signaling pathway has been
reported with the association to cancer [40]. Other pathways,
such as hsa05221 (acute myeloid leukemia, “count” = 5) and
hsa05215 (prostate cancer, “count” = 6), also revealed that the
significant candidate genes are associated with cancer.

For the BP enrichment analysis, results are shown in
Online Supporting Information S5. Ranked by P value, top
ten BP GO terms are depicted in Figure 3. The mainly
enriched GO terms are associated with cell proliferation.
For example, genes in GO:0042127 (regulation of cell pro-
liferation, “count” = 35) and GO:0008284 (positive regu-
lation of cell proliferation, “count” = 25) are all reported
related to cell proliferation. Also, GO:0010604 (positive
regulation of macromolecule metabolic process, “count” =
34) and GO:0051173 (positive regulation of nitrogen com-
pound metabolic process, “count” = 26) are associated with
metabolic process. Since proliferative signaling and activating
metastasis are two hallmarks of cancer [41], it is convincing
that the result of BP enrichment analysis further supports the
validity of our method.

Thus, this enrichment analysis further proved the impor-
tance of genes discovered by our method. We hope that it
could be used to gain better understandings of the mecha-
nism of TC.

3.3. Analysis of Some Significant Candidate Genes. Among
169 significant candidate genes, we selected some important
genes to elucidate their potential values to be TC-related
genes. Since they have been reported to be associated with
the tumorigenesis or development of other types of cancers,
we thought it might lend credence to our method and make
our findings more convincing.

The gene CYP2B6 (cytochrome P450, family 2, subfam-
ily B, polypeptide 6) mainly encodes enzymes which are
involved in many reactions, specifically in anticancer drug
metabolism. A report based on one Japanese population
showed that polymorphism of CYP2B6 is significantly associ-
ated with prostate cancer risk [42]. Also, decreased expression
of CYP2B6 is shown in prostate cancer, and it has been
recognized as growth inhibitory [43].

FURIN, also known as PACE, encodes furin protein.
High expression of furin has been detected in different
cancer types, such as ovarian cancer [44] and head and
neck cancer cells [45]. And the inhibition of its expression
can help decrease the tumorigenesis of cancers [46]. Also,
furin overexpression can promote cell invasion in human
hepatoma cell lines, which plays a role in the development
of hepatocellular carcinoma [47]. Moreover, the gene may
involve in the activity of Notch, and the Notch pathway is
important during the medullary thyroid cancer (MTC) [48].

MERTK (c-mer proto-oncogene tyrosine kinase)
is a protein-coding gene, which belongs to the
MER/AXL/TYRO3 receptor kinase family and encodes
cell-surface transmembrane receptors that contain regulated
kinase activity [49]. Research has found that MERTK is
overexpressed in a variety of cancers, such as prostate cancer,
non-small-cell lung cancer, and breast cancer [50]. Also,
its overexpression can result in the activation of oncogenic

signaling pathways and drive cell transformation in cancer
cells [51].

OAS2 (2'-5'-oligoadenylate synthetase 2, 69/71kDa) is
involved in immune response of viral infection, because it
activates RNase L as a result of the elimination of viruses. In a
recent study of cervical cancer, researchers found that genes
related to antiviral response were increasingly expressed,
including OAS2 which is directly involved in viral RNA
degradation [52].

PPARG (peroxisome proliferator-activated receptor
gamma) is a member of PPAR subfamily of nuclear
receptors, which plays a crucial role in the regulation of gene
transcription and adipocyte differentiation. Currently, the
activation of PPARG has been recognized as one key step in
colorectal cancer progression [53], and its deacetylation can
determine lipid synthesis and growth in breast tumor [54].

To summarize, even though these 169 significant candi-
date genes have not been found associated with TC until now,
a wealth of evidence has proved their relations to other types
of cancer. Therefore, previous researches have validated the
reliability of our method and the importance of our findings.
We hope our method will be helpful to search novel TC-
related genes and be further promoted to the exploration of
other biological questions.

3.4. Analysis of Some Candidate Chemicals. Besides the
significant candidate genes, we also discovered 49 significant
candidate chemicals that are deemed to be related to thyroid
cancer development. Most of them (29 out of 49) can be sup-
ported by published literatures. Here, we only gave detailed
discussions for three of them. All of these 29 chemicals are
briefly discussed in Online Supporting Information S6.

Chloride ion (CID000000312) is a common ion in human
cells, which plays a crucial role in cell invasion due to its
ability to change the osmotic balance between the inner-
and extra-cellular space [55]. The reason behind invading
cancer cells that can pass though extracellular matrix is partly
because it has the ability to reduce its volume. Several major
chloride channels on the cell membrane are responsible for
this invasive behavior of cancer cells. Research has found that
inhibition of the sodium-potassium-chloride cotransporter
isoform-1 (NKCC1) can decrease cell invasion by 50% [56].

Hydrogen cyanide (HCN, CID000000768) is the product
of various tobaccos, existing in the smoke as a colorless gas.
In the study of gastroesophageal cancer based on selected ion
flow tube mass spectrometry (SIFT-MS), hydrogen cyanide
is significantly different between cancer and healthy groups
[57]. Hydrogen cyanide is also recognized to have cardio-
vascular and respiratory toxicity, which might be a potential
factor to cause lung cancer [58].

Aniline (CID000006115) consists of a phenyl group
attached to an amino group, and it is the precursor of
industrial chemicals. It is reported that the incidence of
bladder cancer is clearly related to exposure to aniline [59].
Potential reasons might be due to an increase in iron overload
in the spleen and upregulation of TNF-«, IL-1, and IL-6.
Also, the expression of cyclin dependent kinases (CDKs) is
upregulated by aniline [60].



4, Conclusion

During the fight with thyroid cancer, discovery of its related
genes and chemicals and uncovering the mechanism behind
it are important to today’s research and future’s drug design
for designing effective treatments. Only with the assistance of
experiment methods would be an onerous and low efficient
way. In this study, we sufficiently used known resource, such
as protein-protein interactions, chemical-chemical interac-
tions, chemical-protein interactions, and known thyroid
cancer-related genes and chemicals, to search new can-
didate thyroid cancer-related genes and chemicals by the
shortest path algorithm. The proposed method generalized
our previous method that can only discover disease genes.
Further analysis of the selected genes and chemicals implies
that some of them have direct or indirect relationship with
the formation and development of thyroid cancer, thereby
suggesting the effectiveness of our method. We hope that
our method and the findings could shed new light on the
mechanism research of thyroid cancer.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Authors’ Contribution

Yang Jiang and Peiwei Zhang contributed equally to this work.

Acknowledgments

This paper is supported by National Natural Science Founda-
tion of China (81372696), China Postdoctoral Science Foun-
dation (2013M541314), Jilin Provincial Science & Technol-
ogy Department (20090175 and 20100733), Natural Science
Fund Projects of Jilin province (201215059), Development
of Science and Technology Plan Projects of Jilin province
(20100733 and 201101074), Scientific Research Foundation for
the Returned Overseas Chinese Scholars, State Education
Ministry (2009-36), Scientific Research Foundation (Jilin
Department of Science & Technology, 200705314, 20090175,
and 20100733), Health and Family Planning Commission of
Jilin Province (2010Z068), Human resources and Social Secu-
rity Department of Jilin Province (2012-2014), Postdoctoral
Science Foundation of Jilin Province, and Human resources
and Social Security Department of Jilin Province (2012).

References

[1] Y. E. Nikiforov and M. N. Nikiforova, “Molecular genetics and
diagnosis of thyroid cancer;,” Nature Reviews Endocrinology, vol.
7, no. 10, pp. 569-580, 2011.

[2] M. A. Ginos, G. P. Page, B. S. Michalowicz et al., “Identification
of a gene expression signature associated with recurrent disease
in squamous cell carcinoma of the head and neck, Cancer
Research, vol. 64, no. 1, pp. 55-63, 2004.

BioMed Research International

[3] A. Mathur, W. Moses, R. Rahbari et al, “Higher rate of
BRAF mutation in papillary thyroid cancer over time: a single-
institution study,” Cancer, vol. 117, no. 19, pp. 4390-4395, 2011.

[4] S. Chevillard, N. Ugolin, P. Vielh et al., “Gene expression
profiling of differentiated thyroid neoplasms: diagnostic and
clinical implications,” Clinical Cancer Research, vol. 10, no. 19,
Pp. 6586-6597, 2004.

[5] A. Baccarelli and V. Bollati, “Epigenetics and environmental
chemicals,” Current Opinion in Pediatrics, vol. 21, no. 2, pp. 243-
251, 2009.

[6] A. Priiss-Ustiin, C. Vickers, P. Haefliger, and R. Bertollini,
“Knowns and unknowns on burden of disease due to chemicals:
a systematic review; Environmental Health: A Global Access
Science Source, vol. 10, no. 1, article 9, 2011.

[7] S. Chanda, U. B. Dasgupta, D. GuhaMazumder et al., “DNA
hypermethylation of promoter of gene p53 and pl16 in arsenic-
exposed people with and without malignancy;” Toxicological
Sciences, vol. 89, no. 2, pp- 431-437, 2006.

[8] C.J. Marsit, K. Eddy, and K. T. Kelsey, “MicroRNA responses
to cellular stress,” Cancer Research, vol. 66, no. 22, pp. 10843—
108438, 2006.

[9] J. M. Stuart, E. Segal, D. Koller, and S. K. Kim, “A gene-coex-
pression network for global discovery of conserved genetic
modules,” Science, vol. 302, no. 5643, pp. 249-255, 2003.

[10] L. Chen, B.-Q. Li, and K.-Y. Feng, “Predicting biological
functions of protein complexes using graphic and functional
features,” Current Bioinformatics, vol. 8, no. 5, pp. 545-551, 2013.

[11] D. Warde-Farley, S. L. Donaldson, O. Comes et al., “The Gen-
eMANIA prediction server: biological network integration for
gene prioritization and predicting gene function,” Nucleic Acids
Research, vol. 38, no. 2, Article ID gkq537, pp. W214-W220,
2010.

[12] L. Chen, W.-M. Zeng, Y.-D. Cai, and T. Huang, “Prediction of
metabolic pathway using graph property, chemical functional
group and chemical structural set,” Current Bioinformatics, vol.
8, no. 2, pp. 200-207, 2013.

[13] D. Marbach, J. C. Costello, R. Kiiffner et al., “Wisdom of crowds
for robust gene network inference,” Nature Methods, vol. 9, no.
8, pp. 796-804, 2012.

[14] T. Huang, L. Chen, Y.-D. Cai, and K.-C. Chou, “Classification
and analysis of regulatory pathways using graph property,
biochemical and physicochemical property, and functional
property,” PLoS ONE, vol. 6, no. 9, Article ID €25297, 2011.

(15] L. Chen, W.-M. Zeng, Y.-D. Cai, K.-Y. Feng, and K.-C. Chou,
“Predicting anatomical therapeutic chemical (ATC) classifica-
tion of drugs by integrating chemical-chemical interactions and
similarities,” PLoS ONE, vol. 7, no. 4, Article ID e35254, 2012.

[16] Y. C. Wang, N. Deng, S. Chen, and Y. Wang, “Computational
study of drugs by integrating omics data with kernel methods,”
Molecular Informatics, vol. 32, no. 11-12, pp. 930-941, 2013.

(17] Y. Yamanishi, M. Araki, A. Gutteridge, W. Honda, and M. Kane-
hisa, “Prediction of drug-target interaction networks from the
integration of chemical and genomic spaces,” Bioinformatics,
vol. 24, no. 13, pp. i232-i240, 2008.

[18] L. Chen, J. Lu, T. Huang et al., “Finding candidate drugs for
hepatitis C based on chemical-chemical and chemical-protein
interactions,” PLoS ONE, vol. 9, no. 9, Article ID e107767, 2014.

[19] F Napolitano, Y. Zhao, V. M. Moreira et al., “Drug repositioning:

amachine-learning approach through data integration,” Journal
of Cheminformatics, vol. 5, article 30, 2013.



BioMed Research International

[20] L. Chen, J. Lu, N. Zhang, T. Huang, and Y.-D. Cai, “A hybrid
method for prediction and repositioning of drug anatomical
therapeutic chemical classes,” Molecular BioSystems, vol. 10, no.
4, pp. 868877, 2014.

[21] L. Wu, N. Aj, Y. Liu, Y. Wang, and X. Fan, “Relating anatomical
therapeutic indications by the ensemble similarity of drug sets,”
Journal of Chemical Information and Modeling, vol. 53, no. 8, pp.
2154-2160, 2013.

[22] B.-Q. Li, T. Huang, L. Liu, Y.-D. Cai, and K.-C. Chou, “Iden-
tification of colorectal cancer related genes with mRMR and
shortest path in protein-protein interaction network,” PLoS
ONE, vol. 7, no. 4, Article ID 33393, 2012.

[23] M. Jiang, Y. Chen, Y. Zhang et al., “Identification of hepato-
cellular carcinoma related genes with k-th shortest paths in
a protein-protein interaction network,” Molecular BioSystems,
vol. 9, no. 11, pp. 2720-2728, 2013.

J. Zhang, M. Jiang, E Yuan et al, “Identification of age-
related macular degeneration related genes by applying shortest
path algorithm in protein-protein interaction network,” BioMed
Research International, vol. 2013, Article ID 523415, 8 pages,
2013.

[25] Y.-E Gao, Y. Shu, L. Yang et al., “A graphic method for iden-
tification of novel glioma related genes,” BioMed Research
International, vol. 2014, Article ID 891945, 8 pages, 2014.

[26] M. Zhao, J. Sun, and Z. Zhao, “TSGene: a web resource for
tumor suppressor genes,” Nucleic Acids Research, vol. 41, no. 1,
pp. D970-D976, 2013.

[27] UniProt Consortium, “Update on activities at the Universal
Protein Resource (UniProt) in 2013,” Nucleic Acids Research, vol.
41, pp. D43-D47, 2012.

[28] S. McNeil, A. Budhu, N. Grantees et al., Imaging, National
Cancer Institute, 2013.

[29] A. P. Davis, C. G. Murphy, R. Johnson et al., “The comparative
toxicogenomics database: update 2013, Nucleic Acids Research,
vol. 41, no. 1, pp. D1104-D1114, 2013.

[30] Y. E Gao, L. Chen, Y. D. Cai, K. Y. Feng, T. Huang, and Y.
Jiang, “Predicting metabolic pathways of small molecules and
enzymes based on interaction information of chemicals and
proteins,” PLoS ONE, vol. 7, no. 9, Article ID e45944, 2012.

[31] L.J.Jensen, M. Kuhn, M. Stark et al., “STRING 8—a global view
on proteins and their functional interactions in 630 organisms,”
Nucleic Acids Research, vol. 37, no. 1, pp. D412-D416, 2009.

[32] L. Hu, T. Huang, X.-J. Liu, and Y.-D. Cai, “Predicting protein
phenotypes based on protein-protein interaction network,
PLoS ONE, vol. 6, no. 3, Article ID e17668, 2011.

[33] L.-L. Hu, T. Huang, Y.-D. Cai, and K.-C. Chou, “Prediction of
body fluids where proteins are secreted into based on protein
interaction network,” PLoS ONE, vol. 6, no. 7, Article ID 22989,
2011.

[34] P. Gao, Q.-P. Wang, L. Chen, and T. Huang, “Prediction of
human genes’ regulatory functions based on proteinprotein
interaction network,” Protein and Peptide Letters, vol. 19, no. 9,
pp. 910-916, 2012.

[35] L.L.Hu, T. Huang, X. Shi, W.-C. Lu, Y.-D. Cai, and K.-C. Chou,
“Predicting functions of proteins in mouse based on weighted
protein-protein interaction network and protein hybrid prop-
erties,” PLoS ONE, vol. 6, no. 1, Article ID el4556, 2011.

[36] M.Kuhn, C. von Mering, M. Campillos, L.]. Jensen, and P. Bork,
“STITCH: interaction networks of chemicals and proteins,
Nucleic Acids Research, vol. 36, no. 1, pp. D684-D688, 2008.

[24

[37] M. Kanehisa and S. Goto, “KEGG: kyoto encyclopedia of genes
and genomes,” Nucleic Acids Research, vol. 28, no. 1, pp. 27-30,
2000.

[38] T. H. Gormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Eds.,
Introduction to Algorithms, MIT Press, Cambridge, Mass, USA,
1990.

[39] D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Bioinfor-
matics enrichment tools: paths toward the comprehensive func-
tional analysis of large gene lists,” Nucleic Acids Research, vol. 37,
no. 1, pp. 1-13, 2009.

[40] A.A.Bapat, G. Hostetter, D. D. von Hoff, and H. Han, “Perineu-
ral invasion and associated pain in pancreatic cancer,;” Nature
Reviews Cancer, vol. 11, no. 10, pp. 695-707, 2011.

[41] D.Hanahanand R. A. Weinberg, “Hallmarks of cancer: the next
generation,” Cell, vol. 144, no. 5, pp. 646-674, 2011.

[42] T. Kurosaki, M. Suzuki, Y. Enomoto et al., “Polymorphism of
cytochrome P450 2B6 and prostate cancer risk: a significant
association in a Japanese population,” International Journal of
Urology, vol. 16, no. 4, pp. 364-368, 2009.

[43] J. Kumagai, T. Fujimura, S. Takahashi et al., “Cytochrome P450
2B6 is a growth-inhibitory and prognostic factor for prostate
cancer;,” The Prostate, vol. 67, no. 10, pp. 1029-1037, 2007.

[44] R. E. Page, A. J. P. Klein-Szanto, S. Litwin et al., “Increased
expression of the pro-protein convertase furin predicts
decreased survival in ovarian cancer;” Cellular Oncology, vol.
29, no. 4, pp. 289-299, 2007.

[45] D. E. Bassi, H. Mahloogi, R. L. de Cicco, and A. Klein-Szanto,
“Increased furin activity enhances the malignant phenotype of
human head and neck cancer cells,” The American Journal of
Pathology, vol. 162, no. 2, pp. 439-447, 2003.

[46] D. E. Bassi, R. L. de Cicco, H. Mahloogi, S. Zucker, G. Thomas,
and A. J. P. Klein-Szanto, “Furin inhibition results in absent
or decreased invasiveness and tumorigenicity of human cancer
cells;” Proceedings of the National Academy of Sciences of the
United States of America, vol. 98, no. 18, pp. 10326-10331, 2001.

[47] R.-N. Chen, Y.-H. Huang, Y.-C. Lin et al., “Thyroid hormone
promotes cell invasion through activation of furin expression
in human hepatoma cell lines;” Endocrinology, vol. 149, no. 8,
pp. 3817-3831, 2008.

[48] M. Cook, X.-M. Yu, and H. Chen, “Notch in the development of
thyroid C-cells and the treatment of medullary thyroid cancer,”
American Journal of Translational Research, vol. 2, no. 1, pp. 119-
125, 2010.

[49] A. Verma, S. L. Warner, H. Vankayalapati, D. J. Bearss, and S.
Sharma, “Targeting Axl and Mer kinases in cancer,;” Molecular
Cancer Therapeutics, vol. 10, no. 10, pp. 1763-1773, 2011.

[50] C. T. Cummings, D. DeRyckere, H. S. Earp, and D. K. Graham,
“Molecular pathways: MERTK signaling in cancer;” Clinical
Cancer Research, vol. 19, no. 19, pp. 5275-5280, 2013.

[51] K. Q. Nguyen, W. L. Tsou, D. A. Calarese et al., “Overexpression
of MERTK receptor tyrosine kinase in epithelial cancer cells
drives efferocytosis in a gain-of-function capacity;” The Journal
of Biological Chemistry, vol. 289, no. 37, pp. 25737-25749, 2014.

[52] K.L.Mine, N. Shulzhenko, A. Yambartsev et al., “Gene network
reconstruction reveals cell cycle and antiviral genes as major
drivers of cervical cancer; Nature Communications, vol. 4,
article 1806, 2013.

[53] L. Sabatino, A. Fucci, M. Pancione et al., “‘UHRFI coordinates
peroxisome proliferator activated receptor gamma (PPARG)
epigenetic silencing and mediates colorectal cancer progres-
sion,” Oncogene, vol. 31, no. 49, pp. 5061-5072, 2012.



8 BioMed Research International

[54] R. Pestell, L. Tian, C. Wang et al., “Abstract P2-06-02: Pparg
deacetylation by SIRT1 determines breast tumor lipid synthesis
and growth,” Cancer Research, vol. 73, p. P2-06-02, 2014.

[55] O. Veiseh, E M. Kievit, R. G. Ellenbogen, and M. Zhang,
“Cancer cell invasion: treatment and monitoring opportunities
in nanomedicine,” Advanced Drug Delivery Reviews, vol. 63, no.
8, pp. 582-596, 2011.

[56] B. R. Haas and H. Sontheimer, “Inhibition of the sodium-
potassium-chloride cotransporter isoform-1 reduces glioma
invasion,” Cancer Research, vol. 70, no. 13, pp. 5597-5606, 2010.

[57] S.Kumar, J. Huang, J. R. Cushnir, P. Spanél, D. Smith, and G. B.
Hanna, “Selected ion flow tube-MS analysis of headspace vapor
from gastric content for the diagnosis of gastro-esophageal
cancer; Analytical Chemistry, vol. 84, no. 21, pp. 9550-9557,
2012.

[58] P. J. Branton, K. G. McAdam, D. B. Winter, C. Liu, M. G.
Duke, and C. J. Proctor, “Reduction of aldehydes and hydrogen
cyanide yields in mainstream cigarette smoke using an amine
functionalised ion exchange resin,” Chemistry Central Journal,
vol. 5, no. 1, article 15, 2011.

[59] T. Carre6n, M. Hein, K. Hanley, S. Viet, and A. Ruder,
“0094 Bladder cancer incidence among workers exposed to
o-toluidine, aniline and nitrobenzene at a rubber chemical
manufacturing plant,” Occupational & Environmental Medicine,
vol. 71, pp. A9-A10, 2014.

[60] S. Kannan, R. Fielder, J. Tristan, E. Longoria, and A. Castillon,
“Molecular mechanism of aniline induced bladder cancer,” The
FASEB Journal, vol. 27, pp. 793-791, 2013.



o

International Joumal of

Peptide

BioMed Stem Ce||5 | ~ International \ urnal of
Research International International ( Genomics

Journal of

Nucleic Acids

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journalo 2 The SCientiﬁC
Signal Transduction World Journal

Anatomy y International Journal of Bio(jhemistry Advances in i
Research International Mlcroblology Research International Bioinformatics

Enzyme International Journal of Molecular Biology

Archaea Research Evolutionary Biology International Marine Biology




