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Ischaemia/reperfusion (I/R) injurywill cause additional death of cardiomyocytes in ischaemic heart disease. Recent studies revealed
that renalase was involved in the I/R injury. So, the myocardial tissue-specific knockdown mouse models were needed for the
investigations of renalase. To establish the mouse models, intramyocardial injection of siRNAs targeting renalase was performed
in mice. The wild distribution and high transfection efficiency of the siRNAs were approved. And the renalase expression was
efficiently suppressed in myocardial tissue. Compared with the high cost, time consumption, and genetic compensation risk of
the Cre/loxP technology, RNA interference (RNAi) technology is much cheaper and less time-consuming. Among the RNAi
technologies, injection of siRNAs is safer than virus. And considering the properties of the I/R injury mouse models, the efficiency
and durability of injection with siRNAs are acceptable for the studies. Altogether, intramyocardial injection of siRNAs targeting
renalase is an economical, safe, and efficient method to establish myocardial tissue-specific renalase knockdown mouse models.

1. Introduction

Ischaemic heart disease is one of the most common coronary
artery diseases [1–3]. Restoration of blood flow can improve
the clinical outcomes [4, 5], but reperfusion after ischaemia
will cause additional death of cardiomyocytes in a process
known as I/R injury. Recent evidence has implicated the
potential protective roles of renalase in cardiomyocytes in the
process of I/R injury [6–10]. To investigate the function of
renalase, the technology of gene knockdown or knockout will
be used. Conventional gene knockdown or knockout animal
models are systemic and non-organ-specific. It will always
cause some unpredictable abnormalities in other organs
beside the target ones, which will influence the phenotypes
of the animalmodels. Instead, the animalmodels with organ-
specific gene knockdown or knockout will be a better choice.

Therefore, to investigate the roles of renalase in cardiomy-
ocytes in the process of I/R injury in vivo, specifically knock-
down or knockout of renalase in myocardial tissue of mouse
models will be the most effective method. Both the Cre/loxP
technology and the RNAi technology can be used to establish
the organ-specific knockdown or knockout mouse models.
Intramyocardial injection of siRNAs targeting renalase is
the most economical method, which is affordable for most
researchers. But the efficiency has not been sufficiently
demonstrated. In the present study, the operating method
and knockdown efficiency of the intramyocardial injection
of siRNAs targeting renalase were explored and verified
in mouse models. We demonstrated that intramyocardial
injection of siRNAs targeting renalase was an efficient and
economical way to generate the myocardial tissue-specific
renalase knockdown mouse models. This model provides a
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proper base for the researches of renalase in the process of
myocardial I/R injury.

2. Materials and Methods

2.1. Ethics Statement. All animal experiments were per-
formed in accordance with the National Institutes of Health
(NIH) Guide for the Care and Use of Laboratory Animals
published by theUSNational Institutes ofHealth (NIHPubli-
cation, 8th edition, 2011) and approved by the Ethics Com-
mittee of Tongji Medical College, the Huazhong University
of Science and Technology, China.

2.2. RNA Interference. Cy3-labeled cholesterol-conjugated-
specific siRNAs for renalase (sense: 5-GUGGCACCUCAA-
GGAAUUUCUdTdT-3; antisense: 3-dTdT CACCGU-
GGAGUUCCUUAAAGA-5) were purchased from Ribobio
Co., Guangzhou, China. RNLS (GTGGCACCTCAAGGA-
ATTTCT) was chosen as target region.

2.3. In Vivo Delivery of siRNAs. In vivo siRNAs delivery was
performed as previously described [10–12]. Male C57BL/6
mice, aged 6–8 weeks, were purchased from Beijing Univer-
sity (Beijing, China) and maintained on a chow diet in a
12 h light/12 h dark environment at 25∘C at the Tongji Med-
ical College Animal Care Facility. Mice were anaesthetized
with pentobarbital sodium (50mg/kg) by an intraperitoneal
injection, orally intubated, and connected to a rodent ven-
tilator. Different concentrations (0mM, 1mM, 2mM, and
3mM) of 20𝜇L Cy3-labeled cholesterol-conjugated-specific
siRNAs for renalase (Ribobio Co., Guangzhou, China) were
intramyocardially injected with a 32G needle into the left
ventricle (LV) in approximately five sites surrounding the
initiation part of the left anterior descending (LAD) coro-
nary artery (Figure 1). The siRNAs solutions were prepared
according to the manufacturer’s instructions. At the time
point of 12 h after the siRNAs injection,mice were euthanized
with pentobarbital sodium (200mg/kg) by an intraperitoneal
injection, and myocardial tissue of the LV was isolated and
used for further assays. Furthermore, at different time points
(0 h, 6 h, 12 h, and 24 h) after the siRNAs injection (3mM,
20𝜇L), mice were euthanized andmyocardial tissue of the LV
was isolated and used for further assays. Frozen sections and
fluorescent microscope imaging were performed to detect
the distributions and transfection efficiencies of siRNAs.
Western blotting and real-time qPCR were performed to
detect the protein levels and mRNA expressions of renalase
in myocardial tissue of the LV.

2.4. In Vivo Myocardial I/R Model. Surgical induction of
myocardial I/R was performed as previously described [10,
13, 14]. Briefly, mice were anaesthetized by an intraperitoneal
injection with pentobarbital sodium (50mg/kg), orally intu-
bated, connected to a rodent ventilator, and placed in the
supine position. A left thoracotomy was performed. Left
anterior descending (LAD) coronary artery was visualized
and ligated using a 6-0 silk suture around fine PE-10 tubing
with a slip knot. Mice were subjected to 30min of LAD

Figure 1: Intramyocardial injection into the LV in approximately
five sites surrounding the initiation part of the LAD coronary artery.
The injectors indicate the injection sites.

ischaemia followed by varying periods of reperfusion, respec-
tively. In the sham group, a suture was passed under the
LAD but not tied. After experiments, mice were euthanized
with pentobarbital sodium (200mg/kg) by an intraperitoneal
injection, and the ischaemic-reperfused tissue was isolated
and used for histological analysis.

2.5. Histology. The myocardial tissues were subjected to
frozen sections. Fluorescent microscope imaging was used
for the detection and characterization of the distributions
and transfection efficiencies of the Cy3-labeled cholesterol-
conjugated siRNAs. Fluorescence was detected at excitation
and emission wavelengths of 554 nm and 574 nm, respec-
tively. The tissue sections were imaged under a fluorescent
microscope (IX71, Olympus). The density of fluorescent was
analyzed by Image J 1.44p software.

2.6. Western Blot and Antibodies. As described in previous
studies [15, 16], total tissues were lysed using RIPA buffer, and
the protein concentration was determined with a BCA pro-
tein assay kit (Pierce Company, Rockford, IL, USA). Protein
extracts were used for SDS-PAGE (Invitrogen, Carlsbad, CA,
USA), and the proteins were transferred to a polyvinylidene
fluoride membrane (Millipore, Billerica, MA, USA), which
was incubated with primary antibodies (renalase GTX89570,
GeneTex, diluted 1 : 1000) overnight at 4∘C. After incubation
with secondary antibodies (goat IgG antibody GTX228416-
01, GeneTex, diluted 1 : 5000) for 1 h at room temperature,
the membranes were treated with ECL reagents (170-5061,
Bio-Rad, Hercules, CA, USA) prior to visualization using
a FluorChem E imager (Cell Biosciences, San Jose, CA)
according to the manufacturer’s instructions. The specific
protein expression levels were normalized to𝛽-tubulin on the
same nitrocellulose membrane.

2.7. RNA Extraction and Real-Time qPCR. As previously
described [2, 17], total RNA was isolated using Trizol reagent
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Table 1: The sequences of primers for real-time qPCR.

Name Use Orientation Sequence

Renalase Real-time qPCR F 5-AGTGAACGCCAGAGGGAGCAA-3

R 5-TAGCGGCAGGACCAAGGGAC-3

𝛽-Actin Real-time qPCR F 5-AACAGTCCGCCTAGAAGCAC-3

R 5-CGTTGACATCCGTAAAGACC-3

(Invitrogen, Carlsbad, CA, USA) according to the man-
ufacturer’s instructions. 2 𝜇g of total RNA was reversely
transcribed using RNA PCR Kit (Takara Biotechnology,
Otsu, Japan), and the resulting cDNA was used as a PCR
template. The mRNA levels were determined by real-time
qPCR with an ABI PRISM 7900 Sequence Detector system
(Applied Biosystem, Foster City, CA, USA) according to the
manufacturer’s instructions and normalized to 𝛽-actin gene
expression. The experiment was performed in triplicate. The
sequences of primers for real-time qPCR are listed in Table 1.

2.8. Statistical Analysis. As described in previous studies [18–
20], the statistical analysis was performed with the Statistical
Package for Social Sciences (version 13.0; SPSS, Chicago, IL).
All the datawere expressed asmean± SD (standard deviation,
SD) and the difference was analyzed by one-way ANOVA.
Statistical analysis was performed using Student’s 𝑡-test for
paired data. The difference was considered as statistically
significant when 𝑝 value was less than 0.05.

3. Results

3.1. The Cy3-Labeled Cholesterol-Conjugated-Specific siRNAs
Can Spread Wildly into the Myocardial Tissue of the LV
by the Method of Intramyocardial Injection. We isolated the
myocardial tissue which had been injected with the Cy3-
labeled cholesterol-conjugated-specific siRNAs for renalase.
Frozen sections and fluorescent microscope imaging were
performed. We found that the red fluorescence of Cy3 is dis-
tributed wildly in the myocardial tissue of the LV (Figure 2).
The fluorescent density increased after the siRNAs injection
in a dose-dependent and time-dependent manner. As shown
in Figure 2, under the condition of the same injection volume
(20𝜇L), the fluorescent density increased significantly with
the increase of the siRNAs concentration (𝑝 < 0.01; Figure 2).
Meanwhile, under the same concentration and injection
volume, at different time points, the fluorescent density
increased significantly with time (𝑝 < 0.01; Figure 2).

3.2. Intramyocardial Injection of the Cy3-Labeled Cholesterol-
Conjugated-Specific siRNAs Targeting Renalase Can Efficiently
Knock Down Renalase in Myocardial Tissue. We isolated the
myocardial tissue which had been injected with the Cy3-
labeled cholesterol-conjugated-specific siRNAs for renalase.
Myocardial tissue samples were examined by Western blot
analysis and real-time quantitative PCR (real-time qPCR).
Overall, these results revealed that renalase protein levels
(𝑝 < 0.01; Figure 3) and mRNA expressions (𝑝 < 0.01;
Figure 3) were significantly attenuated in myocardial tissue

samples in a dose-dependent and time-dependent manner.
Under the condition of the same injection volume (20𝜇L), the
protein levels and mRNA expressions of renalase decreased
significantly with the increase of the siRNAs concentration
(𝑝 < 0.01; Figure 3). Meanwhile, under the same concen-
tration and injection volume, at different time points, the
protein levels and mRNA expressions of renalase decreased
significantly with time (𝑝 < 0.01; Figure 3).

3.3. The Spared Area and Transfection Efficiencies of the
Cy3-Labeled Cholesterol-Conjugated-Specific siRNAs Target-
ing Renalase Are the Same between the Sham and I/R
Operation Groups. To compare the spared area and transfec-
tion efficiencies of the Cy3-labeled cholesterol-conjugated-
specific siRNAs targeting renalase between the sham and
I/R operation groups, in vivo myocardial I/R models
were performed 24 h after intramyocardial injection of the
Cy3-labeled cholesterol-conjugated-specific siRNAs (3mM,
20𝜇L) for renalase. Myocardial tissue was isolated; frozen
sections and fluorescent microscope imaging were per-
formed. We found that the red fluorescence of Cy3 is
distributed wildly in the myocardial tissue of the LV in both
the sham and I/R operation groups (Figure 4). There is no
significant difference of fluorescent density between the sham
and I/R operation groups (𝑝 > 0.05; Figure 4). The renalase
expression of both the sham and I/R operation groups was
efficiently suppressed by the siRNAs (data not shown).

4. Discussion

Increasing evidence has implicated the potential roles of
renalase in ischaemic heart disease. Renalase knockdown or
knockout animal models, especially organ-specific or tissue-
specific knockdown or knockout, were urgently needed. In
the current study, we focused on the operating method and
knockdown efficiency of intramyocardial injection of siRNAs
targeting renalase. Attenuated myocardial renalase levels and
enhanced Cy3-fluorescent density in myocardial tissues were
found in the mouse models. The cholesterol-conjugated-
specific siRNAs can spread wildly into the myocardial tissue.
And the transfection efficiency and knockdown efficiency of
renalase by siRNAs in vivo are high enough to suppress the
expression of renalase. Our findings suggest that intramy-
ocardial injection of siRNAs targeting renalase is an effi-
cient method to generate myocardial tissue-specific renalase
knockdown mouse models. It provides a proper base for the
researches of renalase in the myocardial I/R injury mouse
models. And its efficiency and feasibility have been proved
after myocardial I/R operation. Theoretically, this method is
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Figure 2:The fluorescent density increased in a time-dependent and dose-dependentmanner.Myocardial tissues at 12 h after intramyocardial
injection of different concentrations (0mM, 1mM, 2mM, and 3mM) of 20 𝜇L Cy3-labeled cholesterol-conjugated-specific siRNAs and at
different time points (0 h, 6 h, 12 h, and 24 h) after the siRNAs injection (3mM, 20 𝜇L) were subjected to frozen section and fluorescent
imaging.The fluorescent density of each group was analyzed. Scale bar represents 200 𝜇m. ∗∗ indicates significant differences; 𝑝 < 0.01. Data
are plotted as the mean ± SD from five independent experiments. Bars indicate the standard deviation of the mean.

a better choice, compared with the Cre/loxP technology and
intramyocardial injection of virus, to establish a basic mouse
model (renalase knockdown) for I/R operation.

Cre/loxP technology [21] has allowed the generation of
organ-selective, tissue-selective, or cell-selective knockout
models targeting a specific gene [22].The site-specific recom-
binase Cre (cyclization recombination) from the bacterio-
phage P1 was used in this technology. The Cre is used to
induce recombination between two recognition sites (termed
loxP-sites, locus of crossing [X-ing] over in P1) inserted
in the genome. Two inverted repeat sequences surrounding
a core sequence are contained in loxP-sites, whose direc-
tionality was given by the sequences. LoxP-sites are often
described as arrowheads in genomic sequences because of
their directionality. Two transgenic mouse strains are needed
to generate an organ or tissue-selective knockout: one strain
in which the Cre recombinase is expressed under the control
of a suitable organ or tissue-selective promoter and a second
strain in which the target gene, or a functionally critical exon,
is flanked by two loxP-sites (“floxed”). After one round of

crossbreeding, double transgenic progeny carrying both the
floxed transgene and the Cre transgene can be selected. In
the second round of breeding, these double transgenic mice
are either inbred or crossbred with the original floxed mice.
In the resulting F2 generation, pups that are homozygous
for the floxed allele and that carry the Cre transgene (either
in homozygous or in heterozygous state) are selected. In
the latter animals, the floxed gene/exon will be excised
selectively in the cell types that express Cre recombinase
[22]. Therefore, establishing animal models using Cre/loxP
technology is extremely expensive and time-consuming.
Recently, it was reported that deleterious mutations, known
as gene knockouts, would induce genetic compensation [23].
Genetic compensation is a mechanism of cells to adapt their
environment by fine-tuning their transcriptome. It is gene
expression control to compensate for gene dosage in cells.
Once a gene was deleteriously mutated or knocked out by
other technics, other related genes will be upregulated to
compensate or replace the role of the mutated gene in cells.
Genetic compensation will cause invalid gene knockout,
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Figure 3: Renalase protein levels and expressions were suppressed by the siRNAs in a time-dependent and dose-dependent manner.Western
blot analysis and real-time qPCR of renalase in myocardial tissues at 12 h after intramyocardial injection of different concentrations (0mM,
1mM, 2mM, and 3mM) of 20𝜇LCy3-labeled cholesterol-conjugated-specific siRNAs and at different time points (0 h, 6 h, 12 h, and 24 h) after
the siRNAs injection (3mM, 20𝜇L). Densitometric analysis of Western blot of renalase was carried out. ∗∗ indicates significant differences;
𝑝 < 0.01. Data are plotted as the mean ± SD from five independent experiments. Bars indicate the standard deviation of the mean.
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Figure 4: There is no difference of fluorescent density between the
sham and I/R operation groups. 24 h after intramyocardial injec-
tion of Cy3-labeled cholesterol-conjugated-specific siRNAs (3mM,
20 𝜇L), sham and I/R operations were performed;myocardial tissues
were subjected to frozen section and fluorescent imaging. The
fluorescent density of each group was analyzed. Scale bar represents
200 𝜇m. Data are plotted as the mean ± SD from five independent
experiments. Bars indicate the standard deviation of the mean.

which results in animalmodels without phenotypes. But gene
knockdowns would not induce the genetic compensation

mechanism. Thus, using gene deleterious mutation or Cre/
loxP technology to generate a gene knockout animal model
has the risk of inducing the genetic compensation mecha-
nism, whichmay lead to invalid gene knockout. Additionally,
RNAi technology is much cheaper and less time-consuming,
and its efficiency is acceptable in most situations. Therefore,
using RNAi technology to generate organ or tissue-specific
gene knockdown models may be a better choice compared
with the knockout or Cre/loxP technology.

Selectively knockdown of renalase in myocardial tissue
can be achieved by intramyocardial injection of either siR-
NAs targeting renalase or virus (adenovirus, lentivirus, or
adenoassociated virus which contains the plasmid of shRNAs
targeting renalase). Intramyocardial injection of virus is
usually used in myocardial infarction models or other long-
term investigations. It aims to establish a myocardial tissue-
specific knockdown mouse model which can stably express
shRNAs targeting the gene of interest [24–26]. Once the
virus is injected and the mouse models are established, the
expression of the target gene can be stably and persistently
suppressed. Instead, injection of siRNAs can establish a
tissue-specific knockdown mouse model rapidly [12, 27, 28].
Correspondingly, the suppressive effect to the expression of
the target gene will not last for a long time, just several
days or weeks. And the knockdown efficiency will attenuate
with time. In our studies, it just needs several hours to
establish the in vivomyocardial I/R models [10, 13, 14]. Thus,
it is unnecessary to using virus to establish the renalase
stably knockdown mouse models. Furthermore, the safety
of virus using either to mouse or to researchers needs to
be considered. It has been reported that local myocardial
inflammation and fibrosis in the LV were proportional to
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transduction efficiency in intramyocardial injection of virus
[24]. Additionally, operating with virus, researchers will be
at risk of infection. Therefore, intramyocardial injection of
siRNAs targeting renalase will be an economical, a little time-
consuming, and relatively safe method to establish myocar-
dial tissue-specific renalase knockdown mouse models. And
the knockdown efficiency and durability are acceptable.

In conclusion, our study showed that intramyocardial
injection of siRNAs targeting renalase could successfully
establish myocardial tissue-specific renalase knockdown
mouse models. This method is economical and efficient. The
required materials are accessible and affordable for most
researchers. Furthermore, the knockdown efficiency of rena-
lase is high enough to effectively suppress the expression of
renalase. Therefore, it is a suitable myocardial tissue-specific
renalase knockdown mouse model for the researches of the
myocardial I/R injury.
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