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Protein phosphorylation is one of the most widespread regulatory mechanisms in eukaryotes. Over the past decade, phosphory-
lation site prediction has emerged as an important problem in the field of bioinformatics. Here, we report a new method, termed
Random Forest-based Phosphosite predictor 2.0 (RF-Phos 2.0), to predict phosphorylation sites given only the primary amino acid
sequence of a protein as input. RF-Phos 2.0, which uses random forest with sequence and structural features, is able to identify
putative sites of phosphorylation across many protein families. In side-by-side comparisons based on 10-fold cross validation and
an independent dataset, RF-Phos 2.0 compares favorably to other popular mammalian phosphosite prediction methods, such as
PhosphoSVM, GPS2.1, and Musite.

1. Introduction

Protein phosphorylation, mediated by protein kinases, is
one of the most important posttranslational modifications
in eukaryotes. By modulating protein function via the addi-
tion of a negatively charged phosphate group to a serine
(Ser, S), threonine (Thr, T), or tyrosine (Tyr, Y) residue,
phosphorylation regulates many cellular processes, including
signal transduction, gene expression, cell cycle progression,
cytoskeletal regulation, and apoptosis [1].

It is estimated that at least 30% of the proteins in
the human proteome are regulated by phosphorylation.
Traditionally, phosphorylation sites in proteins have been
identified using experimental techniques, such as tandem
mass spectrometry (MS/MS) [2]. For instance, in a classic
study, MS/MS was used to map the phosphoproteome of
nine differentmouse tissues, identifying 36,000 distinct phos-
phorylation sites [3]. Indeed, MS/MS-based approaches have
yielded a wealth of information about phosphoproteomes.
Nonetheless, there are various technical challenges that make

identification of phosphorylation sites using MS/MS-based
approaches difficult [4]. For instance, low abundance cellular
proteins and proteins that are only transiently phospho-
rylated are often missed using MS/MS-based techniques
[2]. Moreover, MS/MS-based identification is very expensive
and labor intensive and requires specialized equipment and
technical knowledge. In this regard, phosphosite prediction
algorithms, which predict whether a residue-of-interest is
likely to be phosphorylated under cellular conditions, rep-
resent potentially valuable tools for annotating the entire
phosphoproteomes of a wide variety of species.

With the advent of next generation sequencing tech-
nologies, the development of accurate phosphorylation site
prediction tools has become exceedingly important. As a
consequence, several computational tools for the predic-
tion of phosphorylation sites have recently been developed
[5–26]. Hjerrild and Gammeltoft [6] provide an excellent
overview of both the computational and biological aspects
of phosphoproteomics while two recent reviews by Trost and
Kusalik [5] and Xue et al. [7] summarize phosphorylation site
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databases, various prediction tools, and challenges associated
with computational phosphorylation site prediction.

Phosphorylation site prediction can be broadly divided
into two classes: kinase-specific phosphorylation site predic-
tion and general (i.e., non-kinase-specific) phosphorylation
site prediction.While kinase-specific methods aim to predict
both the site of phosphorylation and the cognate kinasemedi-
ating the phosphorylation event, general phosphosite predic-
tion methods are designed to identify putative sites of phos-
phorylation irrespective of the kinase. Results of the latter are
analogous to those obtained by MS/MS-based experiments.
Importantly, kinase-specific methods are often restricted to
predictions for a relatively small subset of kinases. This is
likely due, in part, to the fact that the cognate kinase is known
for less than 3% of the phosphorylation sites annotated
to date, severely limiting the information needed to train
the algorithms [19]. Moreover, until recently, the consensus
phosphorylation sites upon which kinase-specific methods
rely were not available for themajority of human kinases [19].
Therefore, general phosphorylation site prediction methods
offer distinct advantages when the primary goal is to predict
whether or not a given site is phosphorylated [20].

Many existing general phosphorylation methods use
attributes based on protein features and biological obser-
vations. For instance, DISPHOS [27], one of the first gen-
eral phosphosite prediction algorithms developed, uses both
position-specific amino acid frequencies and disorder infor-
mation to predict sites of phosphorylation. The notion that
the degree of disorder may be an important determinant of
phosphorylation was based on the observation that a high
percentage of cell signaling and cancer-associated proteins
are predicted to have long, disordered regions [28].

Because most protein kinases catalyze the phosphoryla-
tion of a given S/T/Y residue when the residues surrounding
the phosphosite fit a specific, yet flexible, pattern [29], various
machine learning tools, such as artificial neural networks
(ANNs) and support vectormachines (SVMs), have also been
used to capture the complex and subtle patterns surrounding
the phosphorylated residues for phosphorylation site pre-
diction [8, 9, 21, 22]. For instance, the general phosphosite
predictor, Musite, integrates several parameters, including
local sequence similarities of known phosphorylation sites,
protein disorder scorers, and amino acid frequencies, as
features to train a support vector classifier [26]. Likewise,
both the general phosphosite prediction methods developed
by Swaminathan et al. [21] and Biswas et al. [20] combine
SVMs with position-specific scoring matrices (PSSMs) to
identify putative phosphosites. In the case of the Swami-
nathan method, the authors augment their sequence-derived
PSSMs with NMR-based solvent accessibility values and
secondary structure predictions. Meanwhile, the Phospho-
rylation PREDictor (PPRED) method developed by Biswas
et al. uses PSSMs based on evolutionary conservation of Ser,
Thr, andTyr residues to inform their SVMs. Finally, Phospho-
SVM, which is perhaps the most robust general phosphosite
prediction tool developed to date, combines eight different
sequence-level scoring functions using SVMs [22]. While
these methods have shown promise as general phosphosite
prediction tools, methods based on ANNs, and sometimes

SVMs, are often regarded as “black boxes” because it is
difficult to determine exactly how a complex neural network
or hidden Markov model reaches a particular solution [30].

In contrast, random forest- (RF-) based algorithms,
which have been applied to various bioinformatics prob-
lems, are able to discriminate between features and to offer
insights into the relative importance of each [31]. Indeed,
feature importance is built into the RF framework. For this
reason, RF classifiers have recently been applied to several
phosphosite prediction methods. For example, to develop a
kinase-specific predictor, Fan et al. conducted a systematic
and hierarchy-specific prediction of phosphorylation sites
in which kinases are clustered into hierarchical structures
employing random forest as a classifier [18]. Likewise, the
general phosphosite predictor PHOSFER [23] employed
random forests to make phosphorylation site predictions in
plants.

Despite steady progress in the field, the performance
of existing general phosphosite prediction algorithms is not
yet satisfactory with respect to parameters such as accuracy,
specificity, and/or selectivity [5, 7, 22]. Importantly, in most
cases, existing algorithms sacrifice one parameter for the
other(s) (e.g., high specificity may come at the cost of low
sensitivity or vice versa). Previously, we used random forest
to integrate different combinations of 8 feature vectors to
predict protein phosphorylation sites given only the primary
amino acid sequence as input [24, 25]. While these methods
performed as well or better than existing methods, their
performance was still not ideal.

Here, we improve upon our previous methods by devel-
oping a general protein phosphorylation site prediction
method that uses RF to integrate 10 distinct sequence and
structure-based attributes.This method, which we term Ran-
dom Forest-Based Phosphosite predictor 2.0 (RF-Phos 2.0),
achieved uniformly high accuracy, specificity, and sensitivity
scores using both 10-fold cross validation and an independent
dataset. As a consequence, RF-Phos 2.0 compares favorably to
existing state-of-the-art algorithms in its ability to accurately
and efficiently predict phosphorylation sites given only the
primary amino acid sequence as input.

2. Materials and Methods

2.1. Benchmark Dataset. The protein sequences with known
Ser, Thr, and Tyr phosphorylation sites were downloaded
from the PhosphoSVM website [22]. These sequences were
originally obtained from P.ELM version 9.0 [32]. All phos-
phorylation sites in these sequences have been experimen-
tally identified.The redundant sequenceswere removed using
skipredundant [33] using a 30% cutoff. Namely, any sequence
with identity more than 30% was removed to improve the
prediction quality. Table 1 shows the number of benchmark
sequences and the number of known phosphorylation sites.

Different sized sequence windows (e.g., 5, 7, 9, 11, 15,
19, and 21 residues in length) were prepared with a given
phosphorylation site residue in the middle of the window.
Both positive windows, that is, those in which a known
phosphosite is in the middle of the window, and negative
windows, that is, those that have a S, T, or Y in the middle
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Table 1:The benchmark sequences of known phosphorylation sites.

Residue Number of sequences Number of sites
Ser 6,635 20,964
Thr 3,227 5,685
Tyr 1,392 2,163

Table 2: The number of windows before and after redundancy
removal for size = 9.

Residue Positive windows Negative
Before After Used

Ser 20577 1554 1543
Thr 5596 707 453
Tyr 2124 267 226

of the window but for which no phosphosites have been
annotated, were included. As before, to avoid redundancy,
the windows with high similarity were removed from both
positive and negative windows. This was achieved using
skipredundant [33] with a range of acceptable threshold
percentage similarity between 0 and 20% and with a 10.0
gap opening penalty and 0.5 gap extension penalty. Once the
redundant windows had been removed, features were then
extracted from the remaining windows. Table 2 shows the
number of windows (for windows of size 9) corresponding
to positive phosphorylation sites for each residue before and
after redundancy removal and for negative windows after
redundancy removal.

2.2. Protein Sequence Features. Sequence features are ob-
tained by the process of feature extraction, which refers
to extracting numeric information from protein sequences.
The features are the values that can be used to learn the
underlyingmodel. Feature extraction is often themost critical
step in determining whether the method will ultimately be
successful. The features from windows of protein sequences
were extracted using different amino acid descriptors. Some
of the chosen descriptors were proposed by previous studies
for phosphorylation site prediction, as it has been found that
they contributewith varying degrees of information about the
phosphosite. The descriptors implemented in this study are
summarized as follows.

2.2.1. Shannon Entropy (Feature 1). Shannon Entropy (𝐻) is
known in information theory as a measure of randomness
and diversity of a set of objects distributed into a space. It
was defined by Shannon as a unique function that represents
the average amount of information for a set of objects
according to their probabilities [34]. It has been widely
used in bioinformatics to score residue conservation [35].
However, in this study, instead of using position-specific
entropy, which is calculated with position-specific scoring
matrix (PSSM) [36], we used window-wise entropy that is
calculated with probabilities of the individual amino acids

in the window to generate one numeric feature. It can be
calculated as

𝐻 = −

20

∑
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𝑝
𝑖
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𝑖
) , (1)
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𝑖
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is computed as the total number of amino acids 𝑖 divided by
the length of the window assuming that the probability of any
amino acid that does not exist in the window is zero. Entropy
ranges between zero, where only one type of residue in the
entire sequence is found, and 3.17, where all types of amino
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where 𝑝
0
= 1/9 is the uniform distribution of the amino acid

occurrence.
RE is always nonnegative and becomes zero if and only

if 𝑝
𝑖
= 𝑝
0
. As entropy, the RE is represented by one feature

for each window. We again assumed that the probability of
any amino acid that does not exist in the window is zero.
The REwas used in previous studies to identify the conserved
position [37, 38].

2.2.3. Information Gain (Feature 3). Information gain (IG)
can be computed by subtracting RE from entropy. It canmea-
sure the transformation of information from the background
or random state to the state influenced by the class whether
the sequence is positive or negative. IG is given by

IG = 𝐻 − RE. (3)

2.2.4. Solvent Accessible Surface (ASA) (Features 4–12). The
amino acids of a protein sequence can be either buried
or exposed based on their position in the 3-dimensional
structure of the protein. Usually, the buried residues do not
undergo posttranslational modification because they are not
expected to interact with the modifying enzymes. Therefore,
phosphorylation sites in the protein are expected to be
exposed amino acids. Rvp-net [39], software for prediction
of ASA, was used to extract ASA features from the bench-
mark protein sequences. ASA features were predicted before
dividing the sequences into windows.

2.2.5. Overlapping Properties (Features 13–102). Overlapping
properties (OP) capture the common physicochemical prop-
erties shared by the amino acids in the protein sequence
[22, 40].The amino acids were classified based on ten physic-
ochemical properties: polar (NQSDECTKRHYW), positive
(KHR), negative (DE), charged (KHRDE), hydrophobic
(AGCTIVLKHFWYM), aliphatic (IVL), aromatic (FYWH),
small (PNDTCAGSV), tiny (ASGC), and proline (P). An
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amino acid may fall into more than one group (i.e., be over-
lapping). Each amino acid was encoded with 10-bit, where
each bit in the 10-bit code represents a group, respectively.
The position of the bit is set to 1 if the amino acid belongs to
the corresponding group and 0 if it does not. For example,
histidine (H) is encoded with 1101101000, which indicates
that it belongs to polar, positive, charged, hydrophobic, and
aromatic groups. The number of features extracted with this
method is 𝑛 × 10 where 𝑛 is the window size [40]. For the
sequence window of size 9, the number of features is 90.

2.2.6. Average Cumulative Hydrophobicity (Features 103–106).
The average cumulative hydrophobicity (ACH) has been
used in previous studies as a protein descriptor to predict
phosphorylation sites [22, 41]. ACH quantifies the tendency
of the amino acids that surround the phosphorylation sites
to interact with solvents.The Eisenberg hydrophobicity scales
[42] have been used where

A: 0.62, C: 0.29, D: −0.90, E: −0.74, F: 1.19, G: 0.48, H:
−0.40, I: 1.38, K: −1.50, L: 1.06, M: 0.64, N: −0.78, P:
0.12, Q: −0.85, R: −2.53, S: −0.18, T: −0.05, V: 1.08, W:
0.81, Y: 0.26.

The number of ACH features depends on the size of
the window. For a window of size 9 the ACH is computed
by averaging the cumulative hydrophobicity indices of the
amino acids around the putative phosphorylation site for the
subwindows of the sizes 3, 5, 7, and 9, respectively, where
S/T/Y is always in the center of the window. For example, to
calculate ACH for the sequence KAGVSPHED, we need first
to create the subwindowsAGVSPHE,GVSPH, andVSP.Then
we can calculate the feature of each window as

𝑓 =
∑
𝑛

𝑖=1
𝑃
𝑖

𝑛
, (4)

where 𝑛 is the subwindow size and 𝑃
𝑖
is hydrophobicity index

for the amino acid in the position 𝑖 in the window. For this
example the number of features is four.

2.2.7. Sequence Features (Features 107–286). Sequence fea-
tures (SF) [22] are another form of amino acid compo-
sition and they have been used recently with other fea-
ture types to predict phosphorylation sites. SF features are
extracted by encoding each amino acid with a unique 20-
bit of one position as 1 and other positions as zeros (e.g.,
00100000000000000000). The number of the SF features
depends on thewindow size. For instance, for a sequencewith
a window size of 9, the number of features will be 9× 20 = 180.

2.2.8. Composition, Transition, and Distribution (Features
287–433). To extract the composition, transition, and dis-
tribution (CTD) features [43, 44], first the 20 amino acids
are categorized into 3 groups based on one out of seven
physicochemical properties each time. The seven amino acid
properties are hydrophobicity; normalized Van der Waals
volume; polarity; polarizibility; charge; secondary structures;
and solvent accessibility [44]. Based on each property, the
amino acids are encoded as 1, 2, or 3. For example, the

sequence MVKELRTA is encoded as 33113122 based on
hydrophobicity.

Composition is defined as the global percent for each
encoded group in a sequence based on the property 𝑝, where
𝑝 is any of the seven properties. There are 21 composition
features (3 features for each one of the seven physicochemical
properties). The composition is calculated as

𝐶
𝑟,𝑝
=
𝑛
𝑟

𝑛
, 𝑟 = 1, 2, 3, (5)

where 𝑛
𝑟
is the number of group codes 𝑟 in the window and

𝑛 is the number of amino acids in the window.
Transition is defined as the percent frequency with which

a code (𝑟) is followed by another code (𝑠). Since there are three
possible codes, the possible transitions are (1, 2), (1, 3), and (2,
3). The number of features is 21 (3 for each one of the seven
physicochemical properties). The transition can be given as
follows:

𝑇
𝑟𝑠
=
𝑛
𝑟𝑠
+ 𝑛
𝑠𝑟

𝑁 − 1
, (6)

where𝑁 is the length of the window.
Distribution is defined as the distribution of each encoded

group (1, 2, and 3) in the sequence for the first, 25%, 50%, 75%,
and 100% distributions of a particular property. The number
of feature elements for the distribution is 105 (15 for each
one of the seven physicochemical properties). The residue
position is calculated by

𝑅 = Frequency of the group × 𝐷, (7)

where 𝐷 is 25%, 50%, 75%, or 100%. The distribution is then
calculated by dividing 𝑅 by the length of the sequence and
multiplying by 100.

2.2.9. Sequence Order Coupling Numbers (Features 434–
493). Sequence order coupling features are calculated using
Schneider-Wrede chemical distancematrix [45]. For a protein
window of𝑁 amino acids, the sequence order effect [46, 47]
can be approximately computed as

𝜏
𝑘
=

𝑁−𝑘

∑

𝑖=1

(𝑑
𝑖,𝑖+𝑘
)
2

, 𝑘 = 1, 2, 3, . . . , 𝑚, (8)

where 𝜏
𝑘
is the 𝑘th rank of the sequence order coupling

number (SOCN), 𝑚 is maximum lag, and 𝑑
𝑖,𝑖+𝑘

is the
chemical distance between the residue in position 𝑖 and
position 𝑖 + 𝑘. SOCN has 60 feature elements.

2.2.10. Quasi Sequence Order (QSO) (Features 494–593). The
first 20 features of QSO [46, 47] are the frequencies of amino
acids in the window and calculated by

𝑋
𝑖
=

𝑓
𝑖

∑
20

𝑖=1
𝑓
𝑖
+ 𝑤∑

𝑚

𝑑=1
𝜏
𝑑

, (9)

where 𝑖 = 1, 2, . . . , 20, 𝑓
𝑖
is the normalized frequency of the

amino acid 𝑖, and 𝑤 is a weighting factor (𝑤 = 0.1).
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The features from 21 and upward reflect the sequence
order using four physicochemical properties; hydropho-
bicity, hydrophilicity, polarity, and side-chain volume and
the Schneider-Wrede chemical distance matrix [48]. These
parameters are calculated by

𝑋
𝑖
=

𝑤𝜏
𝑘−20

∑
20

𝑖=1
𝑓
𝑖
+ 𝑤∑

30

𝑘=1
𝜏
𝑘

, (10)

where 𝑘 = 21, 22, . . . , 30,𝑤 is theweight = 0.1, and 𝜏
𝑘
is the 𝑘th

rank of the sequence order coupling as shown above.QSOhas
100 feature elements. After extracting the features, the feature
vector for each window can be represented as
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,

(11)

where the subscript numbers are the position indices of the
feature (𝑓) of the corresponding descriptor.The total number
of features, based on 9-amino-acid window size, is 593.

2.3. Random Forest. Random forest (RF) [31] is a popular
tree-based ensemble machine learning technique that is a
highly adaptive method for high dimensional datasets. RF
has been applied in many structural bioinformatics contexts,
such as fold recognition [49], protein-protein interaction
prediction [50, 51], and protein-RNA binding site prediction
[52]. Essentially, the RF is a combination of a number of
decision trees. Each tree is constructed with a bootstrap
sample from the training dataset. It is composed of a root
node, internal nodes, and terminal nodes (or leaves). Each
node represents a feature that is selected based on a particular
criterion. A node may have two branches. Each branch
corresponds to a range of values for that selected feature.
The leaves have no branches since they represent a terminal
class.The node branching of the decision tree is performed by
computing the Gini index for each feature.Then only the best
feature that splits the training data into positive and negative
sequences is selected to represent a node. Finally, the ranges
of values that split the sequences will be chosen to form the
decision rules.

Sequencewindows are classifiedwhether they are positive
phosphorylation sites or negative sites by traversing the tree
starting from the root node down to a leaf where the path
is determined according to the outcome of the splitting
condition at each node.We then determine towhich outgoing
branch the observed value of the given feature corresponds.
The next node in the path is the one at the end of the chosen
branch. We repeat the same operations for this node and
traverse the tree until we reach a leaf. The classification is
based on the general agreement of most decision trees rather
than only one.

The Gini impurity index (GII) measures how often ran-
domly chosenwindows from the dataset would be incorrectly
classified if they were randomly classified according to the

distribution of the class in the subset of the training dataset
based on the feature.The feature with theminimum impurity
index will be selected for splitting.

2.3.1. Feature Importance and Feature Selection. Since the
Gini impurity for each feature is considered for splitting, then
the feature importance can be estimated as the sum of the GII
reduction over all nodes in which the specific feature is used
to split the dataset. The overall importance of a feature is the
average of its importance value among all trees in the forest
[31, 53]. Only the most important features that split the data
with less impurity are selected as predictors.

As the feature selection is integrated in the RF algorithm
and is based on the feature importance, we used such scores to
select the 100most important features andwe then used them
to train our model to see whether the use of only the top 100
features introduces any improvement to the performance.

2.3.2. RF Parameters. For better results, RF requires the num-
ber of trees in the forest to be optimized. To choose the best
value for the number of trees, different values were evaluated
and the performancewas recorded each time.Then the values
that contribute to the best performance were selected.

2.3.3. Phosphosite Prediction. The RF is a robust learner and
less prone to generalization error and overfitting. The pre-
diction of the phosphorylation site depends on probabilistic
averaging of the decision trees rather than voting for a single
class. A vector of probabilities corresponding to the class
will be given at each prediction process. A sequence will be
assigned the most probable class, either positive or negative.

2.4. Model Evaluation. The goal of the model evaluation is to
assess the models thoroughly for prediction performance. In
this study, both 10-fold cross validation and independent test
sample were used and the evaluation metrics were calculated
accordingly.

(i) 10-Fold Cross Validation. The 10-fold cross validation was
conducted to construct and test the classification model. The
windows were split randomly into ten equal partitions, from
which nine partitions were used to construct the model and
one was used to test the model each time repeatedly.

(ii) Independent Test Set. An independent test dataset was also
used to evaluate RF-Phos 2.0 and other phosphosite predic-
tion methods. The sequences for this test dataset were also
downloaded from the P.ELM database. To avoid overfitting,
this dataset does not contain any sequences that are in the
Benchmark Dataset. The features were extracted from the
test sequences in the same way as described above. Features
corresponding to a window size of 9, with positive S/T/Y in
themiddle of the window, were prepared as a positive dataset.
A negative dataset for each residue was prepared by using
features of windows with S/T/Y in the middle that are not
annotated as phosphosites. Window size of 9 was chosen for
subsequent analysis based on our performance calculation for
various window sizes, namely, 7, 9, 11, 13, 15, 17, 19, and 21
(see Supplementary Materials for the results, available online
at http://dx.doi.org/10.1155/2016/3281590). To use balanced
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Table 3: Independent test set.

Residue Positive/negative
Ser 307/307
Thr 68/68
Tyr 51/51

positive and negative test datasets, a number of negative win-
dows equal to the number of corresponding positivewindows
were selected randomly. Table 3 shows the numbers of the
positive and negative windows in the independent test set (86
sequences total).

2.4.1. Description of Existing Phosphosite Prediction Tools.
Several popular general phosphosite prediction tools de-
signed to predict mammalian phosphorylation sites were
evaluated. These methods, which are based on various learn-
ing methods, are described briefly below.NetPhos is a general
phosphosite predictor that uses structural information as
features to train an ANN [8].Musite integrates local sequence
similarities of known phosphorylation sites, protein disorder
scorers, and amino acid frequencies as features to train the
support vector classifier [26]. The method developed by
Swaminathan et al. uses SVMs to integrate experimentally
derived solvent accessibility values and secondary structure
prediction methods. PPRED uses SVM and PSSMs based
on evolutionary conservation of S, T, and Y phosphosites
to predict putative sites of phosphorylation within a protein
sequence. Finally, PhosphoSVM is a general prediction tool
that uses support vector machine (SVM) to make classifi-
cation decisions that distinguish between phosphorylation
and nonphosphorylation sites [22]. It combines eight amino
acid properties as features to make decisions about phospho-
sites.

In addition to the general phosphosite prediction tools
described above, we also included two popular kinase-
specific tools in the comparison. It is important to note that,
for the purposes of this study, we were only interested in
assessing the ability of these kinase-specific tools to predict
sites of phosphorylation (therefore, we were not interested
in whether they correctly predicted the cognate kinase).
The kinase-specific methods are described below. NetPhosK
is a kinase-specific prediction tool that uses an artificial
neural network (ANN) predictor to identify putative sites
of phosphorylation based on consensus phosphorylation
motifs [54]. GPS 2.1 is kinase-specific phosphorylation site
prediction tool that uses motif length selection (MLS) [7]
and uses an amino acid substitution matrix BLOSUM62
and then applies clustering to identify potential phospho-
sites.

2.4.2. Evaluation Metrics. In the case of both 10-fold cross
validation and the independent test set, the phosphorylation
site in a test window is predicted each time and annotated
as either a positive or negative site. This gives rise to four
frequencies: true positive (TP), false positive (FP), true neg-
ative (TN), and false negative (FN). Those four frequencies
were used to calculate the evaluation metrics for each type of
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Figure 1: Accuracy versus number of tree for serine.

evaluation. The metrics included accuracy, precision, sensi-
tivity, specificity, 𝐹1 score, Matthew’s correlation coefficient
(MCC), and the area under the ROC curve (AUC):

Accuracy = TP + TN
TP + TN + FP + FN

× 100,

Precision = TP
TP + FP

× 100,

Sensitivity = TP
TP + FN

× 100,

Specificity = TN
TN + FP

× 100,

𝐹1 score = 2 ×
Precision × Sensitivity
Precision + Sensitivity

,

MCC

=
(TP) (TN) − (FP) (FN)

√ (TP + FP) (TP + FN) (TN + FP) (TN + FN)
.

(12)

3. Results and Discussion

3.1. RF Parameters

3.1.1. The Number of Trees in the Forest. The number of trees
in the random forest is an important parameter that needs
to be optimized in order to obtain the best results. In order
to find an optimal number of trees, we plotted the accuracy
versus the number of trees for the three different types of
phosphosites (Figure 1). The number of trees that achieved
the greatest accuracy is 100. Importantly, the accuracy does
not increase even if the number of trees is further increased
beyond this number. The minimal number of trees that was
found to achieve the greatest accuracy is 100.

3.2. Feature Importance and Feature Selection. In RF, Gini
feature importance is implemented to estimate the feature
importance. Each feature will have a weight that indicates
the level of importance. Thus, the features were first indexed
from 1 to 593 and the distributions of feature importance
for Ser, Thr, and Tyr were determined (Figure 2(a)). While
parts of several features, including Shannon entropy (𝐻),
relative entropy (RE), information gain (IG), quasi sequence
order (QSO), and composition, transition, and distribution
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Figure 2: Feature distribution. (a) Distribution of the feature importance of all 593 features for Ser (top), Thr (middle), and Tyr (bottom).
Features and corresponding indices are noted. Dashed lines represent boundaries between feature indices. (b) Top ten important features Ser
(top), Thr (middle), and Tyr (bottom). The bar labels indicate the feature type to which the important features belong. CTD: composition,
transition, and distribution; ASA: accessible surface area; SF: sequence features; ACH: average cumulative hydrophobicity; OP: overlapping
properties.

(CTD), appear to be important for all three residues, over-
lapping properties (OP) and sequence features (SF) exhibit
a high degree of importance for Ser and Thr but not Tyr.
Interestingly, the feature importance profiles for Ser and Thr
appear to mirror one another, while that of Tyr is more
divergent. This is consistent with the notion that Ser andThr
are biochemically more similar to one another than to Tyr.

To gain further insights into the molecular determinants
governing phosphosite selection, next we examined the top
ten features for each residue (Figure 2(b)). While only the
top ten features are shown, it is important to note that other
important features, not included within the top ten, might
also be selected for internal node splitting in the training
process. Nonetheless, this approach allowed us to observe
general trends about the importance of the various features.
Consistent with the overall feature distribution observed in
Figure 2(a), four of the top five most important features are
shared between Ser and Thr (specifically, QSO

569
, QSO

577
,

SF
220

, and OP
71
). The fact that these features are all related to

patterns in the sequence order and/or physicochemical prop-
erties of the amino acids is consistent with the observation
that Ser/Thr kinases tend to recognizewell-defined consensus
phosphorylation motifs present in their substrates while Tyr
kinases are generally more promiscuous.

Interestingly, the top ten feature distributions for both
Tyr and Thr are dominated by CTD (6 of the top 10 for
Tyr; 5 of 10 for Thr) (Figure 2(b), Table 4). This prevalence
of CTD is particularly evident within the “second tier” of
Thr features (features 6–10), where 4 of the 5 features corres-
pond to CTD. Though this feature domain is less prominent
among the top ten features for Ser (only 2 of 10), it is apparent
from Figure 2(b) that CTD still plays an important role in
phosphosite prediction. Together, these data suggest that
CTD is a determining factor in improving the phosphory-
lation site prediction. Likewise, the high profile of QSO for
Ser and Thr suggests that it is likely a determining factor
in improving phosphorylation site prediction for these two
residues. Interestingly, the IG, which is calculated using both
Shannon entropy and relative entropy, was the fourth most
important feature for Tyr.

Once the relative feature importance was determined,
we next asked if the performance of our algorithm would
benefit by training it with only the top 100 features instead
of the full complement of 593 features. We hypothesized that,
by limiting the number of features to those that are most
important, we may be able to reduce the noise, leading to
better predictions.Therefore, we trained themodel twice.The
first time, we used the entire set of 593 features, allowing the
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Table 4: Feature types and their count percentage in the top-ten important features for each phosphosite.

Residues Features
S ASA (30%), CDT (20%), QSO (20%) ACH (10%), OP (10%), and SF (10%)
T CTD (50%), OP (20%), QSO (20%), and SF (10%)
Y CDT (60%), ASA (20%), IG (10%), and OP (10%)
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Figure 3: The receiver operating characteristic (ROC) curve of RF-
Phos 2.0 using 10-fold cross validation.

integrated feature selection to select the features that best split
the data into their corresponding classes, as guided by the
algorithm. The second time, we trained the model with only
the top 100 features based on feature weights. A comparison
of the evaluation metrics obtained during 10-fold cross vali-
dation of eachmodel revealed that, overall, themodel trained
using the entire set of features performed slightly better than
that trained using only the top 100 features (Table 5). For
instance, in the case of Ser, the model trained using the full
complement of features scored 3–6% higher in all areas than
the model trained with only the top 100 features. Similar
results were observed for Thr, with some notable exceptions.
For instance, there was a 15.5% decrease in Thr sensitivity
when the number of features used for training was reduced
to 100. However, there was also a slight (4.6%) increase in
specificity and a corresponding increase in the𝐹1-score (2.1%
increase) when the top 100 features were used. Finally, in the
case of Tyr, there did not appear to be a major impact on
performance since nometric varied bymore than 3% in either
direction. Therefore, since the overall performance of the
model trained with the full complement of features appeared
to be slightly better than that trainedwith only the top 100 fea-
tures, we used the entire set of features to train RF-Phos 2.0.

3.3. RF Prediction Results. As can be seen from the 10-fold
cross validation results shown in Figure 3 and Table 5, RF-
Phos 2.0 accurately predicts phosphorylation sites for the
residues Ser, Thr, and Tyr, exhibiting rates of 80%, 84%, and

Table 5: Evaluation metrics obtained from 10-fold cross validation
for themodel trained using either the entire set of 593 features (“all”)
or the top 100 features (“100”). Results using all 593 features are
shown in boldface.

Metrics
Residues

S T Y
All 100 All 100 All 100

Accuracy 83.00 80.00 87.00 84.00 86.00 85.00
Precision 84.00 79.00 89.00 87.00 86.00 88.00
Sensitivity 84.00 81.00 83.00 87.00 83.00 84.00
Specificity 85.00 80.00 94.00 79.00 88.00 84.00
𝐹1-score 84.00 80.00 85.00 87.00 84.00 86.00
MCC 0.65 0.61 0.70 0.66 0.70 0.69
AUC 0.88 0.85 0.90 0.85 0.91 0.88

84% respectively. This indicates that our model is able to
predict, with reasonably high confidence, whether a given
site is positive or negative. Likewise, RF-Phos 2.0 achieved
precision scores ranging from 81% to 85%, suggesting that
it is able to identify true positives while minimizing false
positives. Finally, RF-Phos 2.0 also performed well with
respect to both sensitivity, which measures the percentage
of positive sites that are predicted correctly out of all known
positive sites (Ser: 84%; Thr: 83%; Tyr: 83%), and specificity,
which measures the model’s ability to correctly identify
negative sites (Ser: 85%; Thr: 94%; Tyr: 88%).

Given its uniformly high scores in the above areas, it is
not surprising that RF-Phos 2.0 also performed well based
on composite scoring methods, such as the 𝐹1-score, which
combines both precision and sensitivity into one score as an
unbiased measure for dichotomous datasets. Indeed, during
the 10-fold cross validation, RF-Phos 2.0 achieved 𝐹1-scores
of 82%, 80%, and 82% for Ser, Thr, and Tyr, respectively.

Likewise, RF-Phos 2.0 exhibited Matthew’s correlation
coefficients (MCC) of 0.59, 0.67, and 0.69 for Ser, Thr, and
Tyr, respectively. As a correlation index, the MCC reflects
the agreement between the observation and the prediction,
where 1.0 indicates perfect agreement, −1.0 means complete
disagreement, and 0 is the score that can be achieved with
random prediction. Therefore, the MCC scores achieved
by RF-Phos 2.0 imply fairly good agreement between the
observed phosphosites and those predicted by RF-Phos 2.0.

3.4. Comparison with Existing Methods. Next, we asked how
well RF-Phos 2.0 performed relative to several existing gen-
eral phosphosite prediction methods, such as NetPhos [8],
Musite [26], and PhosphoSVM [22], as well as to the popular
kinase-specific methods, NetPhosK [54] and GPS2.1 [7]. To
this end, we compared RF-Phos 2.0 to the other methods
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Table 6: Scoring metrics using 10-fold cross validation.

Methods Residue = S
AUC Sen (%) Sp (%) MCC

NetPhosK 0.63 50.9 67.8 0.08
GPS 2.1 0.74 33.1 93.3 0.20
Swaminathan 0.70 31.3 88.7 0.13
NetPhos 0.70 34.1 86.7 0.12
PPRED 0.75 32.3 91.6 0.17
Musite 0.81 41.4 93.7 0.25
PhosphoSVM 0.84 44.4 94.0 0.30
RF-Phos 0.88 84.0 85.0 0.65

Methods Residue = T
AUC Sen (%) Sp (%) MCC

NetPhosK 0.60 62.0 56.8 0.07
GPS 2.1 0.70 38.1 92.3 0.20
Swaminathan 0.72 28.0 92.5 0.14
NetPhos 0.66 34.3 83.7 0.09
PPRED 0.73 30.3 91.0 0.13
Musite 0.78 33.8 94.8 0.22
PhosphoSVM 0.82 37.3 95.0 0.25
RF-Phos 0.90 83.0 94.0 0.70

Methods Residue = Y
AUC Sen (%) Sp (%) MCC

NetPhosK 0.60 39.5 74.2 0.08
GPS 2.1 0.61 34.5 78.9 0.08
Swaminathan 0.62 60.5 57.0 0.09
NetPhos 0.65 34.7 84.5 0.13
PPRED 0.70 43.0 82.7 0.17
Musite 0.72 38.4 86.7 0.18
PhosphoSVM 0.74 41.9 87.3 0.21
RF-Phos 0.91 83.0 88.0 0.70

using both 10-fold cross validation and an independent
dataset generated using MS-MS data curated from P.ELM. In
both cases, RF-Phos 2.0 performed very well compared to the
existingmethods (Tables 6 and 7). For instance, in the 10-fold
cross validation, RF-Phos 2.0 exhibited the highest AUC and
MCC scores among all of the methods evaluated.

It should be noted that the AUC of many of the existing
methods is close to 0.5, which would be expected from
random prediction alone. Likewise, the MCC of the existing
methods are close to zero. In contrast, RF-Phos 2.0 exhibited
AUCs ranging from 0.88 to 0.91 and MCCs between 0.65
and 0.70 (Figure 3; Table 6).This represents an approximately
25–50% improvement over existing methods with respect to
AUC and an approximately 3- to 8-fold improvement over
existing methods with respect to MCC.

Similar results were obtained when an independent
dataset was used to compare the methods (Table 7). Impor-
tantly, RF-Phos 2.0 also exhibited sensitivity and specificity
scores that were comparable to those of the highest per-
forming methods in each category. In other words, RF-
Phos 2.0 does not sacrifice sensitivity for specificity and vice
versa. As a consequence, RF-Phos 2.0 achieved the highest

Table 7: Scoring metrics using an independent test dataset.

Methods Residue = S
Sen (%) Sp (%) MCC

NetPhosK 80.13 38.79 0.10
GPS 2.1 94.79 28.62 0.14
NetPhos 76.55 54.20 0.16
PHOSFER 74.59 65.51 0.22
Musite 55.70 87.39 0.31
PhosphoSVM 63.84 81.76 0.29
RF-Phos 72.00 70.00 0.41

Methods Residue = T
Sen (%) Sp (%) MCC

NetPhosK 69.12 50.82 0.06
GPS 2.1 95.59 20.84 0.07
NetPhos 54.41 77.43 0.12
PHOSFER 77.94 64.77 0.14
Musite 48.53 93.55 0.26
PhosphoSVM 70.59 78.16 0.19
RF-Phos 79.00 80.00 0.50

Methods Residue = Y
Sen (%) Sp (%) MCC

NetPhosK 25.49 83.23 0.04
GPS 2.1 98.04 21.42 0.09
NetPhos 64.71 67.50 0.13
PHOSFER 62.75 59.29 0.08
Musite 47.06 88.77 0.20
PhosphoSVM 82.35 64.18 0.18
RF-Phos 61.00 62.00 0.29

MCC scores among all of the methods. This metric, which
integrates information about TP, TN, FP, and FN rates, serves
as a comprehensive indicator of performance. Together, these
data suggest that RF-Phos 2.0 is a potentially powerful new
tool for general phosphorylation site prediction.

4. Conclusion

We have developed a general phosphorylation site prediction
method, termed RF-Phos 2.0, which uses RF to integrate
various sequence and structure-based attributes to identify
phosphorylation sites in proteins given only the primary
amino acid sequence as input. The use of RF allowed us to
calculate the relative importance of each feature (Figure 2(a)),
revealing that Shannon entropy (𝐻), relative entropy (RE),
quasi sequence order (QSO), sequence order coupling num-
ber (SOCN), and composition, transition, and distribution
(CTD) are some of the most important features for phospho-
rylation site prediction using our method. Among these, 𝐻
and RE are quite different from the features used in previous
phosphorylation site prediction methods. Importantly, these
features do not rely on position-specific scoring matrices
(PSSMs), which would impart a heavy computational cost
on the algorithm. Indeed, those two descriptors, with their
simple form, had a substantial effect on the predictive power
of RF-Phos 2.0 (Figure 2(a)). Likewise, in this study, QSO
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and SOCN are used for the prediction of phosphorylation
sites for the first time. As illustrated in Figure 2, both QSO
and SOCN positively impact the predictive power of our
model. This is particularly evident in the case of Ser andThr.
Moreover, because RF-Phos 2.0 uses RF, which is an assembly
of classifiers created from bootstrap sampling of the same
dataset, the prediction is more robust and not influenced by
outliers compared to other machine learning methods that
depend on a uniclassifier.

To evaluate our model, both a 10-fold cross validation
strategy and an independent test dataset were used to cal-
culate a comprehensive set of evaluation metrics. Compared
to several existing mammalian general phosphorylation site
prediction methods (e.g., NetPhos, Musite, and PhosPho-
SVM) and two popular kinase-specific methods (i.e., Net-
PhosK and GPS 2.1), RF-Phos 2.0 performed better in overall
performance (i.e., MCC) and comparably in all other areas.
In addition to the factors outlined above, this may be due to
the fact that we used the largest number of nonredundant
sequences for training and testing among the other studies.
This was done to avoid overfitting, which widens the gener-
alization error. Recently, similar results were observed when
PHOSFER, an RF-based phosphosite prediction method
trained against plant phosphoproteomes, was compared to
existing Arabidopsis phosphosite prediction tools [23].

It should be noted that, though RF-Phos 2.0 exhibited the
highest MCC among all of the methods tested, the fact that
it achieved scores ranging from 0.29 to 0.50 (depending on
the residue) using an independent test set suggests that there
is still plenty of room for improvement. In the future, we will
explore other parameters (e.g., evolutionary conservation of
putative phosphorylation sites) that may further improve the
predictive power of our model. Likewise, kinase information
may be integrated into the model. Indeed, recent studies
have shown that when information exists about the kinase(s)
that phosphorylate a given target protein (irrespective of the
specific site(s) of phosphorylation) or when knowledge of
the species- or group-specific classification of the target is
known beforehand, general phosphosite prediction methods
that integrate this information perform particularly well [7].

Together, this work will help annotate and mark the
most probable phosphorylation sites in a protein sequence,
potentially reducing the time and cost required for positive
phosphosite identification using experimental methods. To
facilitate its use by the signaling community, RF-Phos 2.0 is
freely available at http://bcb.ncat.edu/RF Phos/.
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