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The overall goal is to establish a reliable human protein-protein interaction network and develop computational tools to characterize
a protein-protein interaction (PPI) network and the role of individual proteins in the context of the network topology and their
expression status. A novel and unique feature of our approach is that we assigned confidence measure to each derived interacting
pair and account for the confidence in our network analysis. We integrated experimental data to infer human PPI network. Our
model treated the true interacting status (yes versus no) for any given pair of human proteins as a latent variable whose value was
not observed. The experimental data were the manifestation of interacting status, which provided evidence as to the likelihood of

the interaction. The confidence of interactions would depend on the strength and consistency of the evidence.

1. Introduction

Individual proteins cannot perform their biological functions
by themselves, and actually they need to perform their func-
tions in the biological process through interacting with other
proteins [1]. Usually the interaction between two proteins
means either they perform a biological function corporately
or there is physical direct contact between them [2]. Most
of the important molecular processes in cell, such as DNA
replication, need to be performed by a large number of
protein complexes. And these complexes are made up by
the interactions between proteins. The study of PPIs is also
considered to be a central problem in proteomics for living
cells. Due to the dynamic interaction between proteins, the
impact of surrounding environment should also be taken
into account. The study of human PPI network can help to
enhance the understanding of the disease but also provide a
theoretical foundation for finding new treatment.

With the continuous progress and development of high-
throughput experimental technology, more and more large
quantities of interactions between human proteins had been

confirmed by a variety of experimental methods. And many
kinds of biological interaction networks have been investi-
gated [3-7]. However, current high-throughput experimental
techniques also indicated the shortcomings of high error;
not only might the different experimental methods induce
different experimental results, but also even different research
groups using the same experimental method could not
guarantee the exact same result. Therefore, it was urgent to
integrate the data from different biological experiments, and
even different species, to construct a highly credible network
of PPIs. So in this paper, a Bayesian hierarchical model of
human PPI network was constructed with a variety of sources
of protein interaction data. Meanwhile, a Monte Carlo expec-
tation maximization algorithm was used to estimate the
parameters of the model. Then the confidence of protein
interaction relationship was calculated based on Bayesian
model, and human PPI network with high-confidence level
could be obtained.

Thereafter, the role of intrinsic disordered proteins (IDPs)
was investigated in the high-confidence PPI network. First
of all, different functional modules were obtained through
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FIGURE 1: Overall scheme to construct the human protein-protein interaction network. The interaction status of a given pair of human proteins
and their homolog in other organisms are unobserved (dashed box) and the experimental data and genomic features are observed evidence
(solid boxes). Solid arrows represent model hierarchy and dashed arrows represent inference steps.

TaBLE 1: Data sets or databases used to construct the human protein-
protein interaction network.

Method  Organism Reference

Y2H Human Stelzl et al. 8]

Y2H Human Rual et al. [9]

MPC Human Ewing et al. [10]

Literature ~ Human HPRD [11], http://www.hprd.org/
Y2H Yeast Ito et al. [12]

Y2H Yeast Uetz et al. [13]

MPC Yeast Gavin et al. [14]

MPC Yeast Ho et al. [15]

MPC Yeast Gavin et al. [16]

MPC Yeast Krogan et al. [17]

Literature ~ Multiple IntAct [18], http://www.ebi.ac.uk/intact/
Literature ~ Multiple MIPS [19], http://mips.gsf.de/proj/ppi/
Multiple Multiple DIP [20], http://dip.doe-mbi.ucla.edu

clustering of high-confidence PPI network based on the
network topology structure. Then we found the functional
modules which were significantly correlated with intrinsically
disordered proteins and analysed the effect of IDPs in these
functional modules, while searching for the associations
between these functional modules and diseases.

2. Materials and Methods

2.1. Data Collection. In Table 1, we show the experimental
data that will be used for the construction of the human
PPI network [8-20]. Note that the literature or text mining
approach represents most of the low-throughput experi-
mental studies of individual protein-protein interaction. It
is possible that the result from the same experiment will
be recorded in multiple databases. We will eliminate this
type of redundancy. It should be emphasized that the MPC
experiments provide result in the format of protein complexes
instead of pair-wise protein-protein interactions. Since pro-
teins located in the same complex might not interact with one
another directly, we will account for this factor in our model.

2.2. Statistical Modeling of Various Data Sources. The overall
scheme of our approach is illustrated in Figure 1. We consider
an empirical Bayes approach to integrate various sources of
evidence. Let Z;; be the binary indicator such that Z;; = 1
means that human proteins i and j have a direct physical
interaction and it is 0 otherwise. Hence, Z;; is the true
interacting status that is not observed. To infer Z;;, we
consider individual model for each type of observed data and
integrate the evidence to compute the probability of Z;; = 1.

2.2.1. Human Y2H Data. It has been found that there are
a number of mechanisms that can lead to the expression
of the reporter gene in a Y2H experiment, which means
that an observed interaction might not necessarily mean a
true interaction. In our model, we consider the following
mechanisms: (a) true interaction; (b) self-activation; and (c)
unknown process. Let Y;; be the binary indicator such that
Y;; = 1if proteins i and j are observed to interact in a Y2H
experiment and it is 0 otherwise. Then Y;; = 1 only if at least
one of the three above mechanisms is functional. Let X; = 1if
protein i is a self-activation protein and let it be 0 otherwise.
We define

ap =Pr [a is functional | Z = 1] , 1)
ag = Pr [b is functional | X; + X;> 0] , (2)
oy = Pr[c is functional]. (3)

Then we have

Pr|v,=1|Z2X]

(4)

=1-(1- “1)217 (1- “s)Xi+Xj (1-ay).

2.2.2. Human MPC Data. MPC experiment reveals protein
complexes instead of individual pairwise PPI. We say protein
B is an n-step neighbour of protein A if the shortest path
between A and B in the PPI network is of length n. We con-
jecture that the bait will mostly fish out its 1-step neighbours,
and 2-step neighbours and distant proteins (at least three
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FIGURE 2: The optimization of Q and Qg for different . Red line
and green line correspond to Q,, and Qg separately.

step-away) are occasionally observed. Hence, we define the
following parameters for the bait proteins:

Pr [1-step neighbour is observed| = v,

€
Pr [2-step neighbour is observed| = y,.

Let C; be the set of proteins in a complex corresponding to
bait protein k. Denote by n,(cl), nl(f) the set of 1-step and 2-
step neighbours of the bait protein k under a given value of
Z. Then the probability of observing C; can be written as

follows:

Pr[Cy | Z]
(6)

[n\Cyl [nN\Cy|

A, "Onc,
:‘lfllkncl(l_%) ‘/lekncl(l_%) >

where | - | is the function that maps a set to its size.

2.2.3. Literature Data on Human PPIL. Let L;; be the interac-
tion status of proteins i and j reported. We will account for
the false positive rate (y, ;) and false negative rate (y, ,):

Z. 1-Z..
Pr [Hl] =1 | le] = Vl UYé U. (7)

2.2.4. Data from Other Organisms. We will also collect
(Y*,C*) from other organisms with corresponding unob-
served variables denoted by (Z*, X™). Similar models can be
used to model (Y, C, L) for inference of (Z*, X™). To connect
(Z*,X") to (Z, X), we consider the following models:

Pr(Zi, =112;]

= [, (]ii',jj’;‘/’l)]Zij [20 (]ii’,jj’;ﬁbo)]liZij) 8)

* X; 1-X;
Pr(Xi =11X]=[Q (L A)] 7 [Qo (Tis A0)]
where J;; ; is the joint sequence identity between i and i’ and

between j and j' and I,y is sequence identity between i and
i's Ay, Ay, Q,, and Q are functions of the joint or individual
sequence identities with parameters ¢,, ¢y, A, and A, which
can be modeled by parametric structure.

2.3. Construction of Hierarchical Bayesian Model. So far we
have introduced the distribution models for the experimental
data and genomic features that are conditional on the values
of Z and X. To finish the model, we also need to specify
the distributions of Z and X, which can be modeled with
independent Bernoulli distributions:

Pr (Zij = 1) =p,

Pr(X;=1)=r.

1

)

With the observed data and the unobserved variables, we can
infer the posterior probability of Z using the EM algorithm.
Note that there are multiple organisms and multiple data sets
for some of the organisms. Different parameters will be used
to account for difference in the data.

Asillustrated in (10), the complete log likelihood function
of our model can be expanded below, and the factor of (10)
can be substituted by (3)~(9):

Lc®) = f(HYW,Z,X,LLY W Z" . X" |0)=f(H|Z0) fY | Z,X.0) fW| Z,0) f(L|Z,0)

012 X0 f (W1 Z5,6) f (2, X 1 2,X,0) f(Z.X10) = [] f(Hyl20)

[1 [ﬁf (Y5 1 2y Xi’Xi’e)]

G.j)esy Li=1 (i,))eSy Lt=1
ri’; e;}

T (T 1z xixg6) | 1 (TS
(i,j)€Sy+ | t=1 G,j)esy | t=1

[T [Tl 1200350012,

(i,)€Sy

e

t=1

. i .
(W™ 12;,.0) y F (W) |Zij’9)] [T 7(zy124.06)
=1 (i.])eS,

[1 f(Z1z0) [ 15 1%.0) [] F(z510)[]£(x:16)

(i,j)€S* i€S; (i,j)€S

i€Sy



+

(J’)_e[sy[l -(1-a)” (1
(i,Jl')_e[SH (n"n _Z"") (19

[1 [1 C(1-a)% (1-a) 5 (1 —OCU)]YJ*
(1)) €Sy

[1 [1//1 " (1-
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XX Y Z X+X Y;j
— o) j(l_“U)] ’ [(1_“1) T(1- )™ j(l_“U)]

i KA ~Z )Wy _ijw
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#%

(1= @) (1= )™ (1= )|

(1-Z;wj, Z; 1-Z; z; 1-z;\'7Hy
[T (ow )" (=i ™)
(1)) €Sy
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(i,j)eS* ieSy

where the parameter vector 0 = {p,7,a;, &g, ay> V15 Vs Vs

Yor B> Bo> 1> Po> A1> Ao}

2.4. Monte Carlo Expectation Maximization for Parameter
Estimation. In the model, it was not possible to estimate
the true value of potential variables and model parameters
directly. In order to effectively estimate the potential variables
and model parameters, this paper used the Monte Carlo
expectation maximization algorithm based on incomplete
parameter estimation, as illustrated in Algorithm 1.

In the E-step of Algorithm 1, we use Gibbs sam-
pling to sample (Z,X,Z*,X"*) from f(Z,X,Z*, X" |
H,Y,W,L,Y*,W*,8,) in turn. Repeat the sampling process
until the estimations of missing data are obtained. Then
in the M-step of Algorithm 1, the parameter vector 6 =
{y1> Vo» &1 g5 017 B> Bo» D15 D> A1» Ayl is estimated by Greedy
Hill Climbing. Finally the iteration is stopped when diff >
0.01.

3. Results

All the protein names were mapped to the Entrez IDs. Finally
we got 32540 proteins, and there were 144603 interactions
between these proteins.

3.1. Construction of the Human PPI Network with Reliable
Confidence Measure. Four models were established sepa-
rately using high-throughput Y2H experimental data, high-
throughput MPC experimental data, human PPI data, and all
the PPI data. The comparisons among these four models were
listed in Table 2.

After the estimation of parameter vector @ by Monte Carlo
EM, we recalculated the posterior probability of Z, which is
Pr(Z | H,Y,W,L,Y*,W"], with 6 and the observed values
H,Y,W,L,Y*,W*. And for each pair of PPI, we considered

(10)

them as reliable confidence interaction if Pr[Zi]- =1 |
H,Y,W,L,Y*,W*] > 0.8. Then we got 48361 PPIs with
reliable confidence measure among 23286 proteins.

3.2. Characterization of Network and Roles of IDPs Based
on Network Topology. We analysed the role of IDPs in the
human PPI networks with reliable confidence measure. A
IDP was defined as a protein with continuous intrinsically
disorder region whose length was larger than 40 amino acids.
And 8735 IDPs were identified from 23286 proteins after
predictions.

Firstly, the human PPI network was cut into subnetworks
or modules by SCAN. SCAN obtained modules based on the
similarity between common neighbors. Then we used modu-
larity and similarity-based modularity as metrics. Modularity
is a statistical measure of the quality of network clustering,
which is defined as follows:

Sl (d )
= S_ (X 1
Q ZI[L <2L)], (1)
where N is the number of clusterings, L is the number of
edges, [, is the number of edges for s, module, and d; is
the degree of all the nodes in sy, module. We could obtain

the best clustering by optimizing Q. And similarity-based
modularity is the supplementary for the modularity, which is

defined as follows:
2
12
-G | @

Qs—Z

As shown in Figure 2, on one hand, the modularity monoton-
ically decreased from the position nearby zero, and it could
not be maximized. On the other hand, the similarity-based
modularity could be maximized while the threshold € equals
0.61. Conditional on the ¢ = 0.61, the reliable human PPI
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(1) i = 0, initialize the parameters
(2) while (diff > 0.01) {
(3) j=0 /] E-Step
(4) while (j < T) {
(5) Sample XUV from f(z, X, Z*P, Xx*9 | H,Y,W, L, Y*,W*,6,)
(6) Sample ZU*Y from f(z, XUV, z*D, x*U | H,Y,W, L, Y*,W*,6,)
(7) Sample ZU*Y from f(ZUV, XU, 72D X* | H,Y,W,L,Y*,W*,6,)
(8) Sample ZU*Y from f(ZU*V, XU, z* x*UD | H,Y,W, L,Y*,W*,0,)
) j=j+1
(10)
(11) calculate Q function
Y i 1 = * * m m m)x m)x
Q616" , WLy, W") = ¥ZIOgLC(6|Y,W,L,Y W,z X, 2 X
m=1
(12) /I M-Step
(m)
i 18 Z(ij)es Zij
(13) ~(i+1) —— >
N PH T
(m)
FD) _ li Yies, Xi
T2\ s * *
(m) €jj ik €ji jk *(m) €ij ik €ji ik
S ZT: (iesy Zij ( ot Wi+ 20 sz )+Z(1,j)es;;,, Z; ( e Wi+ 2 sz )
1//1 =T (m) *(m) * *
T = Z(i,j)GSM Zi]"“ (eij + eji) + Z(i,j)esjw Zij " (eij + eﬁ)
M\ (N ik, i arik w(m) € yariks | N0 yarike
1 i Z(i,j)ESM (1 —Zj )( P Wz; + 26l W )+Z(i,j)és;‘,1 (1 —Zj )( ket Wzl; + 26 W )
: T (m) YR
= Tiesu (1= 257) (e + €0) + Tages;, (1= Z) (€5 + €5)
(14) k= 0;
change” = 0.
(15) hange” = 0.01
(16) 0= 00 = o, a0, 000, B9 B0, 60, 40,19, 19)
(17) while (1) {
(18) a;‘” = argmaxQ (aI,(x’S‘,zx(k])
(19) océ“ = argmax Q (oc;‘“,ocs,oc’[‘])
oclz,+1 = argmax Q ((x];“,(x];“,ocU)
(20) change' = Q (Gk“) -Q (Qk)
(21) if (abs(change**™') < abs(change®/20))
(22) break
(23) k=k+1
(24)
6 QU+ _ a 210}
Q(6D)
6) i=i+l
27)  T=T=+11
(28) '}
ArLcoriTHM 1: Monte Carlo expectation maximization for parameter estimation.
network was cut into 241 modules. Under the significant level However, due to the fact that acquisition of functional

a = 0.05, the p value of each module was calculated by the =~ modules is only dependent on the network topology, we

formula below:

analysed the modules with known diseases. And the overlap

M N of PPI in hela cell and a functional module which was highly

p-value = Z( ) (N (13) related with IDPs was shown in Figure 3. The weight of
s O each side is the posterior probability of the real value Z. If

a node with more than 5 neighbours was defined as a hub

where N is the number of all the proteins and M is the = node in this subnetwork, a total of 69% of the hub nodes
number of all the IDPs. 33 modules among 241 modules were ~ were IDPs. It is verified that IDPs were easy to become hub
significantly associated with IDPs. nodes of the protein interaction network due to the flexibility
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FIGURE 3: A reliable subnetwork for hela cell. Circles correspond to IDPs. And the degree of grey corresponds to the length of intrinsically

disordered region for IDP.

TaBLE 2: Comparison of parameters based on different data.

Parameters ’[hI‘I(_)Illlgg};lput thriILllgg}}lxput lilirz:tr; A(lilafl
Y2H MPC

6.8x107° 19x107°  61x107° 1.4x1072
r 77 x107° — 53x107°  89x107°
o 0.658 — 0.543 0.933
o 0.426 — 0.496 0.852
oy 45%107° — 9.7x107* 0.007
v, — 0.738 0.755 0.809
v, — 0.623 0.764 0.788

of the structure, revealing an important role of IDPs in the
regulation of cervical cancer hela cell.

4. Discussion

Our model is unique and novel in the following perspectives.
First, it integrates Y2H and MPC data in a cohesive and
unified model that connect the two types of data through
the unobserved true status of direct physical interaction Z.
Second, the model allows a natural calculation of the confi-
dence of each interacting pair via the posterior probability.
This is a critical measurement in downstream analysis and
will be accounted for. To our knowledge, no previous study
has considered uncertainty in the PPI network analysis.

The inference of the interacting probability involves a
large number of latent variables. The combinatorial effects
make it impractical to compute the expectation of the missing
variables analytically during the E-step. It is likely that various
data sets carry different amount of information regarding
the true interaction status. Hence, the inference can be
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made by appropriately weighing data of various types instead
of treating them equally. This can be achieved by setting
parameter constrain.
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