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Tyrosine sulfation is one of the ubiquitous protein posttranslational modifications, where some sulfate groups are added to
the tyrosine residues. It plays significant roles in various physiological processes in eukaryotic cells. To explore the molecular
mechanism of tyrosine sulfation, one of the prerequisites is to correctly identify possible protein tyrosine sulfation residues. In
this paper, a novel method was presented to predict protein tyrosine sulfation residues from primary sequences. By means of
informative feature construction and elaborate feature selection and parameter optimization scheme, the proposed predictor
achieved promising results and outperformed many other state-of-the-art predictors. Using the optimal features subset, the
proposed method achieved mean MCC of 94.41% on the benchmark dataset, and a MCC of 90.09% on the independent dataset.
The experimental performance indicated that our new proposed method could be effective in identifying the important protein
posttranslational modifications and the feature selection scheme would be powerful in protein functional residues prediction

research fields.

1. Introduction

Tyrosine sulfation is one of the most prevalent posttrans-
lational modifications in transmembrane and secreted pro-
teins. Many lines of evidence have suggested that nearly 1%
of all tyrosine residues of the total proteins in an organism
can be sulfated [1]. Tyrosine sulfation has been found to
be participating in the interactions between proteins and
the modulations of intracellular proteins [2, 3]. Malfunction
or dysregulation of tyrosine sulfation would lead to several
serious diseases, such as atherosclerosis [4], lung diseases [5],
and HIV infections [6]. Therefore, identification of possi-
ble protein tyrosine sulfation substrates and their accurate
residues is valuable in exploring the intrinsic mechanism
of tyrosine sulfation in biological processes and therefore
arouses interests of biologists in these fields.

In view of the laborintensive and time-consuming bio-
chemical experiments, computational intelligence technolo-
gies are becoming more and more popular due to their

conveniences as well as efficiencies. In the past decades, many
computational methods have been proposed and successfully
applied in this field [7-14].

In 1997, Bundgaard et al. made the first attempt to predict
the tyrosine sulfation residues based on sequence compar-
isons by using synthetic peptides [7]. They pointed out
that the tyrosylprotein sulfotransferase was cell-specifically
expressed. In 2002, Monigatti et al. constructed the first
software tool named Sulfinator based on four different hidden
Markov models to identify tyrosine sulfation residues [8]. Yu
et al. developed a log-odds position-specific scoring matrix
(PSSM) to construct the prediction model [9]. They found
that tyrosine sulfation residues mostly located in extracellular
tail and extracellular loop 2. Subsequently, Monigatti et al.
gave an overview of sulfation in the context of modificomics
[10]. Chang et al. proposed a computational method named
SulfoSite based on support vector machine (SVM) [11]. Niu
et al. developed a method by using maximum relevance
minimum redundancy (mRMR) method to select the best



feature subset and nearest neighbor algorithm to construct
the predictor [12]. PredSulSite introduced two new encod-
ing schemes, namely, grouped weight and autocorrelation
function [13]. Jia et al. proposed a novel method named
SulfoTyrP by using undersampling approach and weighted
support vector machine [14].

All abovementioned methods facilitated the investiga-
tions on tyrosine sulfation; however, the accuracy was still
far from satisfactory and detailed analyses of the features
are lacking. Thus, it was significant to develop a powerful
predictor to identify the tyrosine sulfation residues.

In this paper, we focused on the challenging problem
of predicting tyrosine sulfation residues based on protein
sequences. Firstly, several informative sequence-derived fea-
tures were combined to construct the feature vector. Secondly,
relative entropy selection and incremental feature selection
(RES +1IFS) were adopted to perform the preevaluation of the
features, and then discrete firefly algorithm (DFA) and
SVM were introduced to perform the second-round feature
selection as well as build the predicted model. Experimental
results on the benchmark datasets and independent datasets
proved that our method was a powerful tool for tyrosine
sulfation residues prediction. A web-server of DFA_PTSs was
constructed and freely accessible at http://biolabxynu.zicp
.net:9090/DFA _PTSs/ for academic use.

2. Materials and Methods

2.1. Datasets. To reach a consensus assessment with previous
researches [8, 12, 13], two benchmark datasets were collected
in this work. The datasets were compiled from UniProtKB
(2013.09) [15] with the keyword “sulfotyrosine.” Then, these
proteins were clustered with no more than 30% similarities
by CD-HIT [16]. Finally, 137 experimental tyrosine sulfa-
tion residues from 79 protein sequences were collected. 68
proteins (119 tyrosine sulfation residues) were selected as
a training set and the remaining 11 proteins (18 tyrosine
sulfation residues) were selected as an independent test.

The peptide segments of tyrosine sulfation residues and
non-tyrosine sulfation residues could be formulated by

P=R_R 1) RLR YR R, Ry Ry (1)

where & indicated the distance between the furthest residue
and the target residue and 2& + 1 would be the sliding window
length. In order to test the proposed model fairly as well as
keep consistent with previous studies [8, 12, 13], & was set
as 4 and the corresponding sliding window length would
be 9. However, in some cases, the upstream or downstream
number of residues for a tyrosine may be less than 4. The
lacking residues would be filled with dummy code X.

2.2. Feature Encoding

2.2.1. PSI-BLAST-Based Features. As is well known, the life
originated from ancient limited peptides. With the develop-
ment of evolution and nature selection, various sequences
began to appear and form the complex organisms. In the pro-
cess of sequence evolution, some unimportant peptides dis-
appeared while the important function-determinate regions
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were kept. Considering this, evolutionary conservation had
been widely used to explore the attributes of proteins, such
as predicting the extracellular matrix proteins [17] and iden-
tifying the epitopes [18] and cysteine S-nitrosylation residues
[19].

To obtain evolutional conservation profiles, PSSM was
generated by the program PSI-BLAST [20] with default
parameters (3 iterations and 0.0001 of E-value cutoff) against
the Swiss-Prot database (http://www.ebi.ac.uk/swissprot/).
The evolution conservation for a protein P with L residues
would be given as the following matrix:

Sl—>A Sl—>R e Sl—>V
SZ—>A 82—>R e 82—>V

Ppgsm = . . . > 2)
Sp—a Spor - SL—»V

where S;_, i i = 1,2,3,...,L, represented the frequency of
the ith position residues which was substituted by amino
acid j (j = 1,2,3,...,20) in the evolution history. The
positive scores indicated that this substitution appeared more
frequently than that expected, while the negative scores
meant the opposite. Usually, the aggregation of positive
scores indicated the important function zones in the proteins.
Considering this, to make the descriptor uniformly cover the
peptides, elements in the above equation for PSSM were used
to define a new matrix Mpggy, Which was formulated by

Z SA—»A Z SR—>A Tt Z SV—>A
Z SA—>R Z SR—)R e z SV—»R

Mpgsm = ) i ) , (3)
Z SA—»V Z SR—>V e z SV—>V

where } S;_,; indicated the sum of amino acids type i being
changed to amino acids type j in Ppgg),. Finally, 400 features
were obtained to describe the evolutionary conservation of
the adjacent regions of the tyrosine sulfation residues.

2.2.2. PSIPRED-Based Features. Previous researches figured
out that the proteins with the same structural class but low
sequence similarity may still keep some attributes in their
secondary structure. Hence, in this paper, the information
of secondary structure was adopted for identifying the tyro-
sine sulfation residues. PSIPRED [21], which applies two-
stage neural networks to predict secondary structures, has
found wide applications in computational biology, such as
solvent accessibility [22], epitope recognition [18], cysteine S-
nitrosylation sites [19], and protein folding kinetic types [23].
According to [21], the output files of PSIPRED were encoded
with terms of “C” for coil, “H” for helix, and “E” for strand.
Here, we quantified the total number, average length, and
percentage of each peptide, which were defined as follows:

T num, = Z «,
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Ave len, = Z—“.,
Y peptide,
Ya
Com_ = o———<— x100%,
P = S Y EY Y C °

(4)

where « = {H, E, C}. Finally, 9 features were derived to con-
struct the predicted secondary structure features.

2.2.3. Native Disorder Features. Natively disordered zone has
been proved to be connected with many various physiological
activities, such as epitope recognition, solvent accessibility,
and protein interaction [18, 24, 25]. Hence, they were often
used in researches of protein structures and functions. Here,
DISOPRED ([26] was used to predict the disorder status for
each residue in the peptides. In summary, 9 features were
obtained to construct the native disorder features.

2.2.4. Protein Physicochemical Features. As is well known,
the hydrophobic residues tended to form small patches on
the surface of the proteins to participate in the interaction.
Some residues with polarity and charge could play a critical
role in protein binding [22]. In addition, the flexibility and
accessibility of a residue strongly affected the protein func-
tional residues. Therefore, in this work, 6 physicochemical
properties (hydrophilicity, flexibility, accessibility, polarity,
exposed surface, and turns) were collected to predict protein
tyrosine sulfation residues.

2.3. Discrete Firefly Optimization Algorithm. The firefly algo-
rithm (FA) [27] is a novel heuristic optimization algorithm
inspired by the natural behaviors of fireflies. FA has been
proved to be a very effective optimization algorithm to search
the global optima. The DFA is the modified traditional firefly
algorithm which could be used in solving discrete opti-
mization problems. The pseudocode of the DFA was shown
in Procedure 1.

Distance. The distance between any two fireflies f; and f; was
defined as follows:

d
=[x = 2 e - xj,k)z’ ©)
k=1
where x; ;. was the kth component of the ith firefly.

Attractiveness. The attractiveness of a firefly was determined
by its lightness, which implied how strong it attracted the
adjacent fireflies:

B(r) =Py, m=1, (6)

where r was the distance between two fireflies, 3, was the
attractiveness, and y was a fixed light absorption coeflicient.

Movement. The movement of a firefly was determined by the
attractiveness from other fireflies. It was formulated as

—yr? 1
X;=X;+Bxe VT"J'(Xj—X,-)—(xx<rand—z>. (7)

Discretization. If firefly i moved toward j, the position of
firefly i changed from a binary number to a real number. In
this study, the sigmoid function was used to constrain the
position value to the interval [0, 1]:

1
S () = Tro (®)

where S(x;;) indicated the probability of x;;.

Fitness Definition. In this paper, the prediction accuracy and
the number of selected features were the two criteria to design
a fitness function. Therefore, the fitness function had two
predefined weights, w, for the prediction accuracy (in this
paper, we chose the MCC) and wy for the selected features,
which were formulated as follows:

ﬁt,»:w“xMCC,-+w/;><[1— 9)

()

2.4. Relative Entropy Selection and Incremental Feature Selec-
tion. Although the combination of different types of features
would provide a more powerful predictor, some unwanted
noise features which were called “bad” features may also be
brought in at the same time. These unwanted noise features
may decrease the prediction and generalization performance
of the classifiers. To reject the bad features as well as keep
the good features, we here adopted relative entropy selection
(RES) (i.e., Kullback-Leibler divergence) [28] to select the
optimal feature subset. For the algorithm, relative entropy was
defined as follows:

DKL (P | Q) +DKL(Q | P), (10)

where P and Q were the conditional probability density
functions of a feature under two various categories; DKL(P ||
Q) was the K-L divergence of Q from P and DKL(Q || P) was
the K-L divergence of P from Q [19]. A feature list L would be
obtained after the relative entropy selection:

L={fi fo foreos fir--

where the index i indicated the importance of f; in the feature
list L.

Once the ranked feature list was obtained, the incremen-
tal feature selection (IFS) procedure was used to search for the
optimal feature subset for the predictor. During the IFS, the
features in the list L would be added one by one from the head
to the tail. In each iteration, a new feature would be added and
form a new feature subset. For each new feature subset, we
built a new classifier using 10-fold cross-validation. Then, 472
individual classifiers would be obtained for the 472 feature
subsets. As a result, a table named IFS, with one column for
the feature index and the other columns for the prediction
performance, was produced. The IFS curve was drawn based
on the IFS list to identify the best prediction efficiency as well
as the corresponding optimal feature subsets.

3, ie€{1,2,3,...,N}, (1)

2.5. Support Vector Machine. In statistical prediction, three
cross-validations, namely, independent test, subsampling
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Begin
Input: firefly population X; (i = 1,2,...
While (t < MG)
Fori=1:n
For j=1:i
If (L P> L),
move firefly i towards j;
Else

End if

End for
End for
Find the current best firefly
End while
Output: the global best firefly(solution)
End

,n), lightness L ; light absorption coefficient y, MaxGeneration MG.

Attractiveness varies with distance r viae *"

Evaluate new populations & update lightness

PROCEDURE 1: Pseudocode of the DFA.

(k-fold cross-validation) test, and jackknife test, are often
adopted to assess the performance of a predictor. In order
to remain consistent with [8, 12, 13], 10-fold cross-validation
was used to assess the proposed method. The benchmark
dataset was initially randomly divided into 10 equal subsets.
In each iteration, nine subsets were used for training and the
remaining one was used for testing. The procedure would
be repeated 10 times and the final results were calculated by
averaging the 10 testing results.

Support vector machine (SVM) was a successful super-
vised learning method which found extensive use in clas-
sification and regression problems. In this work, LibSVM
[29] was adopted to perform all the experiments. The system
architecture of the proposed model was illustrated in Figure 1.

2.6. Assessment of Prediction Accuracy. Five routinely used
assessment criteria were adopted here, that is, sensitivity
(SN), specificity (SP), accuracy (ACC), Mathews correlation
coeflicient (MCC), and AUC (area under Receiver Operating
Characteristic curve):

TP
N=—
TP + FN

1IN
" TN +FP’

TP + FP + TN + EN’

SP

ACC =

MCC

B TP x TN — FP x FN
/(TP + FN) (TP + FP) (TN + FP) (TN + FN)

where TP, TN, FP, and FN were the abbreviations of true
positives, true negatives, false positives, and false negatives.
In this paper, MCC was used as the major evaluation index to
evaluate the performance of the new proposed predictor. The
ROC (Receiver Operating Characteristic) curve was to plot

the true positive rate against false positive rate, and the AUC
was a reliable measure for evaluating performance.

3. Results and Discussion

3.1. Preevaluation of the Features. After finishing the relative
entropy selection, two lists, one called coefficient value list
and the other called feature list, were obtained. In the relative
entropy feature lists, a feature with a bigger coeflicient index
indicated that it is more important for predicting tyrosine
sulfation residues. Subsequently, 472 predictors were built
one after another by adding features one by one from the
top of the list to the bottom. The mean MCC value for
each predictor was given in Figure 2. When 103 features were
given, the mean MCC values reach the peak value of 0.88738.

3.2. Features Selection and Parameters Optimization. In this
work, we used RES + IFS to perform preevaluation of
initial feature set and DFA to perform feature selection and
parameters optimization. To evaluate the performance of this
scheme, we compared our method with minimum Redund-
ancy Maximum Relevance together with incremental feature
selection (mMRMR + IFS) in the preevaluation procedure and
genetic algorithm (GA) [30] and discrete particle swarm opti-
mization (DPSO) [31] in the second-round feature selection
procedure. The experiments of RES + IFS and mRMR + IFS
would use grid search to search parameters. GA, DPSO, and
DFA would use the preselected 103 features obtained from
RES +1FS to perform the second-round feature selection pro-
cedure. The parameter configurations were listed in Table 1.
The experimental results were given in Table2 and
Figure 3. RES + IFS selected 103 features and gave a MCC
of 88.74%, while the mRMR + IFS produced a MCC of
84.65% based on 127 features. In addition, RES + IFS was
much faster than mRMR + IFS. Thus, we choose RES + IFS
procedure to perform the preevaluation of features. The GA
algorithm obtained a MCC of 91.69% and an AUC of 88.33%
and selected an optimal feature subset of 73 features. The
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FIGURE 1: The system architecture of the proposed model.
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FIGURE 2: IFS scatter plot for 472 features. .
Max generation 1000

DPSO algorithm produced a slight improvement of a MCC
of 92.66% and an AUC of 91.79% while it selected the least
62 features. Generally, the DFA performed the best among
these three optimization algorithms (a MCC of 94.41% and an
AUC 0f92.45%). Although DFA selected 3 more features than
DPSO did, it produced the highest MCC of 94.41%. Actually,
DFA used the least computational time to converge. Thus,
in this work, the DFA was chosen as the final optimization

algorithm.

3.3. Analysis of the Optimal Feature Subset. In this part,
we analyzed the final optimal feature subset in detail and

investigated the various contributions of different features.
Figure 4 displayed the various contributions of different types
of features. Among the 65 best features, 49 pertained to the
evolutionary conservation, 3 to the secondary structure, 2 to
the native disorder, and 11 to the physicochemical properties.
Obviously, evolutionary conservation occupied the
largest part in prediction of tyrosine sulfation residues.
As is known to all, various biological species originated
from the limited peptides in ancient oceans. Evolution and
selection existed in the whole story of life. The evolution in
protein includes the mutations, insertions, and deletions of
a single residue or some peptides. With the accumulation



TaBLE 2: The prediction performance of four algorithms.

SN (%) SP (%) ACC (%) MCC (%) Features
RES+IFS! 9149  96.01  94.67 88.74 103
mRMR+IFS® 8671  91.66  90.08 84.65 127
GA® 9255 9717 94.28 91.69 73
DPSO* 9373 9759 95.04 92.66 62
DFA® 9537 98.67  97.41 94.41 65

'C = 64,y = 0.03125 using Gauss kernel function; °C = 64, y = 0.04268
using Gauss kernel function; >°C = 128, y = 0.003790 using Gauss kernel

function; *C = 128, y = 0.01136 using Gauss kernel function; C = 128,
y = 0.005062 using Gauss kernel function.

TaBLE 3: Comparisons of the proposed method with other methods.

SN (%) SP(%) ACC (%) MCC (%)
Sulfinator [8] 44.44 8750 74.14 35.44
SulfoSite [12] 83.33 8750 86.21 68.94
PredSulSite [13]  89.89 9750 94.83 87.80
This method 93.33 97.50 96.66 90.09

of time, some unimportant zone may disappear, but the
functional regions may remain because they always share
some common attributes. This explains why evolutionary
conservation played the most important role in the optimal
subset.

Although only 3 and 2 features were selected from the
secondary structure and native disorder, respectively, one
could not regard that the secondary structure and native dis-
order played less important roles in identifying the tyrosine
sulfation residues. Actually, nearly 84.75% of features were
from the evolution conservation, and only 1.91% of features
were from the secondary structure and native disorder. In
addition, almost 33.33% and 22.22% among the secondary
structure and native disorder were selected in the optimal fea-
ture subset. Listed in Supporting Information S1 (see Supple-
mentary Material available online at http://dx.doi.org/10.1155/
2016/8151509) were the selected features.

3.4. Comparison with Other Methods. Listed in Table 3 were
the experimental results performed by state-of-the-art meth-
ods on the independent dataset. Sulfinator [8] used sequence
alignment; SulfoSite [12] used solvent accessibility area and
maximum weight algorithm; and PredSulSite [13] used sec-
ondary structure, grouped weight, and autocorrelation func-
tion to construct the training features, respectively. In this
paper, we adopted various informative sequence-derived fea-
tures, namely, evolutional conservation, secondary structure,
native disorder and physicochemical properties, and DFA
algorithm and SVM, to construct the predicted model. Over-
all, our method exhibited the best prediction performance.
The excellent performance could be ascribed to two
aspects: (i) the informative features, which included evolu-
tional conservation, secondary structure, native disorder, and
physicochemical properties (these features have been proven
to be able to successfully distinguish the tyrosine sulfation
residues from nonsulfation residues), and (ii) the powerful
feature selection and parameter optimization method (this
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FIGURE 4: Various contributions of different features. The black bars
indicated the proportion of the feature in the whole feature matrix;
the grey ones represented the percentage of the selected features
accounting for the corresponding feature type; and the white ones
represented the percentage of the selected features accounting for
the final optimal feature subsets.

method included the preevaluation of the features using
RES + IFS procedure and the second-round feature selection
together with parameters optimization by using DFA).

3.5. Web-Server of DFA_PTSs. DFA_PTSs has been con-
structed and deployed as a free available web-server at
http://biolabxynu.zicp.net:9090/DFA_PTSs/. Here, we pro-
vided a step-by-step guide for biology experimental scientists.

Step 1. Open the web-server and you will find the home page
(Figure 5). Click on the “Introduction” link to see a detailed
description about the server.
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Your email address

—

Loy

FIGURE 5: The home page of DFA_PTSs.

Step 2. Either type or copy and paste the query protein
sequences into the input box. DFA_PTSs accepts both single
or multiple sequences input, which accords with standard
FASTA format.

Step 3. Type your email address, and the predicted results will
be sent to your email after finishing calculation.

Step 4. Click on the Query button to submit the request.
In general, it takes no more than 2 minutes for a protein
sequence with less than 300 amino acids.

4. Conclusions

In this paper, we presented a novel method to identify protein
tyrosine sulfation residues. The proposed predictor achieved
promising results and outperformed many other state-of-
the-art predictors. The excellent performance should be
ascribed to two aspects. The first aspect was the introduction
of the informative features. These features included evolu-
tional conservation, secondary structure, native disorder, and
physicochemical properties. The second was the effectiveness
of elaborate feature selection and parameter optimization
schemes. This scheme included two procedures, namely,
preevaluation of the features using RES + IFS procedure and
the second round of feature selection using DFA. Finally, an
optimal set of 67 features, which significantly contributed to
the identification of tyrosine sulfation residues, were selected.
Our predictor achieved the mean MCC of 94.41% on the
benchmark dataset using 10-fold cross-validation,and a MCC
0£90.09% on the independent dataset. The experimental per-
formance indicated that our new proposed method could be
useful in assisting the discovery of important protein modifi-
cations and the feature selection scheme would be powerful in
protein function and structure prediction research domains.
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