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Objective. This study aimed to screen potential crucial IncRNAs and genes involved in aging. Methods. The data of 9 peripheral
white adipocytes, respectively, taken from male C57BL/6] mice (6 months, 14 months, and 18 months of age) in GSE25905 were
used in this study. Differentially time series expressed IncRNA genes (DE-IncRNAs) and mRNA genes (DEGs) were identified.
After cluster analysis of IncRNAs expression pattern, target genes of DE-IncRNAs were predicted from the DEGs, and functional
analysis for target genes was conducted. Results. A total of 8301 time series-related DEGs and 43 time series-related DE-IncRNAs
were identified. Among them, 41 DE-IncRNAs targeted 1880 DEGs. The DEGs positively regulated by DE-IncRNAs were mainly
related to the development of blood vessel and the pathways of cholesterol biosynthesis and elastic fibre formation. Furthermore, the
DEGs negatively regulated by DE-IncRNAs were correlated with protein metabolism. Conclusion. These DE-IncRNAs and DEGs

are potentially involved in the process of aging.

1. Introduction

Aging is an elevated risk of common diseases, including
obesity, hypertension, atherosclerosis, and diabetes [1-3].
Currently, about 800 million people are at least 60 years
old, which accounts for about 11% of the world’s population,
and aging population is estimated to increase to more than
2 billion by 2050 [4]. Aging is closely related to damaged
adipogenesis in various fat depots in humans [5, 6]. White
adipose tissue (WAT) is considered as an important regulator
for multiple physiological processes and highly linked to the
development of multiple morbidities [7-9]. Therefore, it is
significant and urgent to reveal the relationships of aging
and adipose, which is very important for understanding the
diseases in the elderly.

Previous studies have discovered a set of genes that
are implicated in the aging process in an adipose depot-
dependent manner. For example, age-related increase in IL-
6 (interleukin 6), which was related to stress responses and
cellular senescence, was observed in a fat depot-dependent
manner [5]. Sirt] (sirtuin 1) and SOD2 (superoxide dismutase
2), which were correlated with mitochondrial aging, were
significantly decreased in aging epididymal adipocytes [10].

Furthermore, the expression of MMP-3 (matrix metallopep-
tidase 3) was increased in mouse subcutaneous fat cells
and human skin fibroblasts with aging [11, 12]. Additionally,
decreased expression in PPARy (peroxisome proliferator-
activated receptor gamma) through declining fat mass has
been observed in monkey subcutaneous whole fat tissue
[13]. In addition to these genes mentioned above, roles
of long noncoding RNAs (IncRNAs) in age-related dis-
eases have attracted more attention recently [14, 15]. LncR-
NAs are defined as the largest transcript class in human
genome longer than 200 bp that lack protein-coding potential
[16, 17]. In aging murine aortas, mitochondrial IncRNA
ASncmtRNA-2 is induced by replicative senescence [18].
Abnormal expression of the telomeric repeat-containing
RNA IncRNA TERRA is responsible for premature senes-
cence and aging through controlling telomere elongation [19].
In spite of much effort, the IncRNAs with known functions
involved in aging remain rare.

Microarray technology has been widely used in molecular
studies of human diseases [20, 21]. Based on an age-related
gene expression profile GSE25905, Liu et al. have found
high expression of genes involved in inflammatory response
and low adipose-specific gene expression in bone marrow



adipocytes, and age has a greater influence on gene expression
in epididymal adipocytes than bone marrow adipocytes [22].
However, the effect of aging on expression of IncRNAs is still
elusive.

In the current study, to investigate the expression varia-
tion and functional roles of IncRNAs in aging, the microarray
data deposited by Liu et al. [22] were used to identify
the differentially time series expressed IncRNA genes (DE-
IncRNAs) and differentially time series expressed mRNA
genes (DEGs) in the process of aging. Additionally, DEGs
targeted by DE-IncRNAs and their functions were analyzed.
The results may provide new information for the molecular
investigation of aging and a deeper insight into aging.

2. Methods and Materials

2.1. Tissue Samples and Data Acquisition. The gene expres-
sion profile GSE25905 [22] was downloaded from the
Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih
.gov/geo/) database in National Center for Biotechnology
Information (NCBI). The microarray data were produced
on GPL6246 platform ([MoGene-1-0-st] Affymetrix Mouse
Gene 1.0 ST Array, Affymetrix, CA, USA). This dataset
contained 9 bone marrow adipocyte samples and 9 peripheral
white adipocytes, respectively, taken from male C57BL/6]
mice (6 months, 14 months, and 18 months of age), with
three replicates at each age point. In this study, only gene
microarray data of peripheral white adipocytes were used for
further analysis.

2.2. Data Preprocessing. The gene expression profile of
GSE25905 was preprocessed by the Robust Microarray Anal-
ysis (RMA) algorithm [23]. The Affy package (available
at http://master.bioconductor.org/packages/release/bioc/html/
affy.html) [24] of R. Probe IDs in CEL document was trans-
lated to corresponding gene symbols. If one gene symbol was
matched by multiple probe IDs, the mean expression value
was selected as the expression level of this gene.

2.3. Identification of DE-IncRNAs and DEGs. Based on anno-
tation information of IncRNAs in GENCODE (http://www
.gencodegenes.org/) [25] and the array platform GPL6246,
expression data of IncRNAs were obtained. Afterwards, the
BETR (Bayesian Estimation of Temporal Regulation) algo-
rithm in the BETR package (http://betterpackages.com/) [26]
was applied to identify DE-IncRNAs and DEGs at the three
time points, and this algorithm calculated the probability of
differential expression for each gene. The probability >0.9 was
set as the cut-off criterion.

2.4. Cluster Analysis of DE-IncRNAs Expression Pattern. Hier-
archical clustering is an analytical tool applied to discover
the closest associations between gene profiles and speci-
mens under evaluation [27, 28]. In our study, the BHC
(Bayesian Hierarchical Clustering) package (http://master.bio-
conductor.org/packages/release/bioc/html/BHC.html) [29]
of R was utilized to perform clustering of DE-IncRNAs and
construct the cluster heat map of DE-IncRNAs and samples.
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2.5. Prediction of DE-IncRNA Target Genes. Pearson cor-
relation coeflicient (PCC) [30] was used to calculate the
expression similarity of DE-IncRNAs and DEGs at differ-
ent time points. For each pair of DE-IncRNA and DEGs,
significant correlation pairs with [PCC| > 0.95 and p
value < 0.05 were used to construct the DE-IncRNA/DEG
regulatory network which was then visualized by Cytoscape
(http://js.cytoscape.org/) [31].

Furthermore, DE-IncRNA target genes that were known
to be associated with aging were identified based on the infor-
mation in AGEMAP (Atlas of Gene Expression in Mouse
Aging Project), which is a gene expression database for aging
in mice (http://cmgm.stanford.edu/~kimlab/aging_mouse)
[32]. Subsequently, the regulatory network of DE-IncRNAs
and the known aging-related targets was visualized by
Cytoscape.

2.6. Functional Analysis. Gene Ontology (GO) functional
and pathway enrichment analyses for genes positively and
negatively regulated by DE-IncRNAs were carried out using
TargetMine (http://targetmine.mizuguchilab.org/) [33]. The
p value of each GO and pathway term was adjusted by
the Holm-Bonferroni method [34], and adjusted p value <
0.05 was considered statistically significant. Additionally, the
pathway network was constructed using Cytoscape.

3. Results

3.1. Identified DE-IncRNAs and DEGs. Based on the anno-
tation information in GENCODE and GPL6246 platform, a
total of 203 probes were annotated as IncRNA genes, and
20564 probes were annotated as mRNA genes. With the
cut-off of probability >0.9, 8301 time series DEGs and 43
DE-IncRNAs were identified in peripheral white adipocyte
samples.

3.2. Clusters of DE-IncRNAs Expression Pattern. To further
explore the changes of the DE-IncRNAs expression levels
at the three time points in peripheral white adipocytes, the
cluster analysis was conducted. The samples at different time
points were distinguished by DE-IncRNAs. The expression
values of nearly half of DE-IncRNAs showed an uptrend
in 6-14 months and a downtrend in 14-18 months (e.g.,
ENSMUSG00000086859 and ENSMUSG00000061510); a set
of DE-IncRNAs were expressed in a decline trend (e.g.,
ENSMUSG00000087540 and ENSMUSG00000032048); and
a small fraction of DE-IncRNAs were expressed in a rising
trend (e.g., ENSMUSG00000066057) (Figure 1(a)).

According to the results of clustering analysis, 41 DE-
IncRNAs were divided into 11 clusters (Table 1). It was clearly
observed that, with the increase of age in mice, DE-IncRNAs
in clusters 7 and 10 were expressed in a rising trend, whereas
DE-IncRNAs in clusters 2, 4, and 8 were expressed in a decline
trend. Clusters 5 and 11 showed an uptrend in 6-14 months
and a downtrend in 14-18 months (Figure 1(b)).

3.3. DEGs Targeted by DE-IncRNAs. LncRNAs have critical
roles in the transcriptional regulation via modulating the
gene expressions. To further investigate the regulatory
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FIGURE 1: Heat maps of differentially expressed IncRNA genes. (a) Heat map of differentially expressed IncRNA genes in peripheral white
adipocytes samples from male C57BL/6] mice being 6 months, 14 months, and 18 months of age. Each row represents a single gene; each
column represents a sample. The gradual color change from red to green represents the changing process of expression level from upregulation
to downregulation. (b) Heat map of clusters of differentially expressed IncRNA genes at 6, 14, and 18 months. Each row represents a cluster;
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TaBLE 1: Differentially time-series expressed long noncoding RNA genes in each cluster.
Cluster . . . . .
Count Differentially time-series expressed long noncoding RNA gene ID
number
1 ENSMUSG00000079407, ENSMUSG00000072686, ENSMUSG00000032048
2 ENSMUSG00000072679, ENSMUSG00000073067
3 8 ENSMUSG00000056145, ENSMUSG00000090086, ENSMUSG00000074071, ENSMUSG00000046463,
ENSMUSG00000055972, ENSMUSG00000053957, ENSMUSG00000048824, ENSMUSG00000053117
4 6 ENSMUSG00000046005, ENSMUSG00000021874, ENSMUSG00000056699, ENSMUSG00000059244,
ENSMUSG00000056716, ENSMUSG00000086788
1 ENSMUSG00000061510
3 ENSMUSG00000087540, ENSMUSG00000074146, ENSMUSG00000020033
4 ENSMUSG00000050538, ENSMUSG00000054618, ENSMUSG00000038152, ENSMUSG00000089829
3 6 ENSMUSG00000054135, ENSMUSG00000053656, ENSMUSG00000086859, ENSMUSG00000086712,
ENSMUSG00000074415, ENSMUSG00000021268
9 6 ENSMUSG00000085385, ENSMUSG00000066057, ENSMUSG00000037982, ENSMUSG00000028475,
ENSMUSG00000085998, ENSMUSG00000072761
10 1 ENSMUSG00000089652
11 1 ENSMUSG00000044471

TABLE 2: Results of Gene Ontology functional and pathways enrichment analyses for genes positively regulated by differentially time-series

expressed IncRNAs.
Category Term Adjust p value Gene count Genes
Vasculature development 3 Adamtsl, Cdh5, Ctsh, Cxcr3, Dhcr7, Ednl, Efnal, Efnb2,
GO-BP [GO:0001944] 1.33E - 08 65 Notch3, Pdgfrb, and so on
Blood vessel development Adamitsl, Cdh5, Ctsh, Cxcr3, Dhcr7, Ednl, Efnal, Efnb2,
GO-BP [GO:0001568] 1.34E =07 60 Notch3, Pdgfrb, and so on
Regulation of locomotion B Dab2, Ifitm3, 1116, 1133, Irs2, Megf8, Myolf, Pdgfrb,
GO-BP [GO:0040012] 245E - 05 ol Pecaml, Pknl, and so on
Blood vessel
GO-BP morphogenesis 2.55E - 05 49 Adamtsl, Aqpl, C3, gf}rj;l} E‘:ﬁi{ i}:fgg, Efnb2, Egfl7, Elk3,
[GO:0048514] phos,
Regulation of cellular
GO-BP component movement 3.92E - 05 50 Cel2la, Dab2, DnggfrDbp glc’ag?ai;ﬁzg 1(151) Pdedd, Pdgfra,
[GO:0051270] ’ ’
GO-CC Cell surface [GO:0009986] 2 46F — 05 53 Ackr3, Alcam, Cd200r1, Cd3e, Dpp4, Enppl, Flt3l, Hegl,
Ifitm3, I12rb, and so on
Plasma membrane _ Anol, Antxrl, Aqpl, Capn3, Ccr2, Itga5, Itm2c, Kcnabl,
GO-CC [GO:0005886] 9-39E - 05 158 Kcnn3, Kent2, and so on
Cell periphery Antxrl, Aqpl, Bcas3, Capn3, Epsi5ll, Ezr, Krtl9, Limel,
GO-CC [GO:0071944] 2.59E - 04 163 Ntn4, P2rx4, and so on
Side of membrane Alcam, Anol, Cd74, Ikbkb, I12rb, Itga5, Kdr, Ly6a, Ly6cl,
GO-CC [GO:0098552] 0.015056 33 Pkp4, and so on
Plasma membrane part Klril, Limel, Ly6a, Npcl, P2rx4, Sema6a, Sept2, Tspanl5,
GO-CC [GO:0044459] 0.021127 101 Upklb, Zdhhc2, and so on
REACT_208531  Cholesterol biosynthesis 4.00E - 03 9 Cyp51, Dher7, Fdps, Hsd17b7, Idil, Lss, Mvk, Sc5d, Sqle
REACT_198996  Elastic fibre formation 5.10E - 03 11 Efempl, Efemp2, Fblnl, Fbin2, Fblns, Furin, ltga5, Loxll,

Ltbpl, Mfap3, and so on

The GO-BP terms in the table are the top 5 ones with a higher adjusted p value. DE-IncRNA, differentially time-series expressed long noncoding RNA gene;
GO, Gene Ontology; BP, biological process; CC, cellular component. “REACT” terms are the pathway terms.

functions of DE-IncRNAs, the DEGs regulated by DE-
IncRNAs were analyzed by the PCC algorithm. Based on
the cut-off criteria, 2313 regulatory relationships between
DE-IncRNAs and DEGs were obtained (see Supplementary
Material available online at http://dx.doi.org/10.1155/2016/

9181702). The constructed regulatory network consisted of
41 DE-IncRNAs and 1880 DEGs. The DE-IncRNAs ENS-
MUSG00000066057, ENSMUSG00000086859, and ENS-
MUSG00000061510 modulated more DEGs than others.
ENSMUSG00000086859 targeted genes like Efnal, Fbinl,



BioMed Research International

FIGURE 2: The regulatory network of 41 differentially expressed IncRNA genes and their target mRNA genes. The diamonds represent IncRNA
gene IDs, and rectangles represent mRNA genes. The purple nodes represent the target genes of ENSMUSG00000066057; the blue nodes
represent the target genes of ENSMUSGO00000061510; the green nodes represent the target genes of ENSMUSG00000086859. LncRNA, long

noncoding RNA.

and Fbln2. ENSMUSG00000066057 regulated the DEGs,
such as CYP5I, FDPS, and Eif2sl (Figure 2). The expression
changes over time of ENSMUSG00000086859 and ENS-
MUSGO00000066057, as well as some targets of them, were
shown in Figure 3.

Based on the AGEMAP database, a total of 51 DE-
IncRNA target genes had been discovered to be correlated
with aging in mice. There were 16 DE-IncRNAs that reg-
ulated these genes, and 61 regulatory relationships were
included in the network. Both ENSMUSG00000086859 and
ENSMUSG00000061510 targeted Slcl6a2 and Ifitm3; ENS-
MUSG00000066057 regulated aging-related DEGs like Wdrl
(Figure 4(a)).

3.4. Enrichment Analysis of DE-IncRNA Targets. To further
reveal the potential functions mediated by DE-IncRNAs, the
GO and pathway enrichment analyses of DE-IncRNA targets
were performed, respectively. The DEGs positively regulated
by DE-IncRNAs (e.g., Efnal and Efnb2) were mainly enriched
in a set of biology processes about the development of blood

vessel, such as vasculature development and blood vessel
morphogenesis (Table 2). A series of positively regulated
target genes were significantly enriched in the pathways of
cholesterol biosynthesis (e.g., Cyp51 and Fdps) and elastic
fibre formation (e.g., Fbinl, Fbln2, and Fbin5) (Table 2).

Furthermore, the negatively regulated target genes of DE-
IncRNAs were mainly enriched in a set of biology processes,
such as metabolic process (e.g., Abi3 and Acaca) and mito-
chondrion organization (e.g., Acaa2 and Bnip3), as well as
pathways like metabolism of proteins (e.g., Eif2s1, Eif2s3x, and
Eif3b) (Table 3).

Additionally, the pathway of metabolism of proteins was
predicted to interact with five other pathways, such as post-
translational protein modification and asparagine N-linked
glycosylation (Figure 4(b)).

4. Discussion

The increased occurrence of age-related diseases, such as can-
cers, chronic inflammatory, and neurodegenerative diseases,
becomes a burden on health care provision in the developed
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FIGURE 3: Heat map showing the expression changes over time of ENSMUSG00000086859 and ENSMUSGO00000066057, as well as some
targets of them. Each row represents a single gene or IncRNA; each column represents a sample. The gradual color change from red to green
represents the changing process of expression level from upregulation to downregulation. LncRNA, long noncoding RNA.

and developing countries [35]. In this study, gene expression
profile GSE25905 was downloaded and analyzed using bi-
oinformatics methods to explore the potential mechanisms
of aging. A total of 8301 time series DEGs and 43 time
series DE-IncRNAs were identified in peripheral white
adipocyte samples. In the DE-IncRNAs/DEGs regulatory
network, the DE-IncRNAs ENSMUSG00000066057, ENS-
MUSG00000086859, and ENSMUSG00000061510 regulated
multiple DEGs. The DEGs positively regulated by DE-
IncRNAs were mainly enriched in the functions about the
development of blood vessel (e.g., Efnal and Efnb2), as well
as the pathways of cholesterol biosynthesis (e.g., Cyp51 and
Fdps) and elastic fibre formation (e.g., Fblnl, Fbin2, and
Fbin5).

The function of blood vessel development was signif-
icantly enriched by a set of DE-IncRNA genes, such as
Efnal and Efnb2. During aging, angiogenesis is delayed,
and capillary density as well as newly deposited collagen is
decreased [36]. Cardiovascular structure and function are
altered during aging, with elongated and stiffer aorta, as
well as changed arterial baroreflex [37]. Both Efnal and
Efnb2 encode members of the ephrin family, which mediates
developmental events [38]. It has been confirmed that the

balance of alternatively expressed isoforms in Efnal is dis-
rupted in peripheral blood leukocytes of human population
with advancing age [39]. Furthermore, the expression of
Efnb2 is significantly decreased during the aging of the rat
retina [40]. In this study, Efnal was predicted to be regulated
by the DE-IncRNA ENSMUSG00000086859 (gene name:
2810008D09Rik). There is no study that reports the role
of ENSMUSG00000086859 in aging so far. Collectively, we
speculate that ENSMUSG00000086859 may play key roles in
aging through genes related to blood vessel development (e.g.,
Efnal).

In this study, several other DEGs positively regulated by
DE-IncRNAs (e.g., Fblnl, Fbln2, and Fbln5) were significantly
enriched in the pathway of elastic fibre formation. During
cutaneous aging, elastic fibres exhibited disintegration and
appeared to be loose [41]. All of Fblnl, Fbin2, and Fbln5
encode a secreted glycoprotein that is incorporated into a
fibrillar extracellular matrix [42]. During aging, the balance
between proteases and their inhibitors involved in extra-
cellular matrix formation is destroyed [43]. In this study,
FblnI and Fbln2 were discovered to be an age-regulated gene
and regulated by the DE-IncRNA ENSMUSG00000086859
(gene name: 2810008DO09Rik). The association of Fbln2
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TABLE 3: Results of Gene Ontology functional and pathways enrichment analyses for genes negatively regulated by differentially time-series

expressed IncRNAs.
Category Term Adjust p value Gene count Genes
Metabolic process Abi3, Acaca, Acadvl, Brd2, Capnl5, Cxcl9, D2hgdh, Dagla,
GO-BP [GO:0008152] 8.05E-10 380 Gemin5, Gfml, and so on
Organic substance
GO-BP metabolic process 5.74E - 09 360 Acoxl, Acsrrlg_r?;lf ag;?bi?gj;fiﬁ&fg;ﬂ’ Dennds,
[GO:0071704] T ’
Primary metabolic process 3 Acadvl, Acot7, Babaml, Bachl, Eif3c, Ell, Gbp2, Gclm
GO-BP [GO:0044238] 3.62E - 08 343 Mtdh, Nabpl, and so on
Cellular metabolic process Acadvl, Acot7, Babaml, Bachl, Eif3c, Ell, Gbp2, Gclm
GO-BP [GO:0044237] 503E - 08 a4 Mtdh, Nabpl, and so on
Mitochondrion _ Acaa2, Bnip3, CIn8, Dap3, March5, Mrpl44, Mtch2,
GO-BP organization [GO:0007005] 2.30E - 04 32 Mtfr2, Ptcd2, Slc22a5, and so on
GO-CC Intracellular [GO:0005622]  2.01E — 16 478 Abi3, Acaa2, Acyp2, Adap2, Capni5, Gget, Ggh, Iighlbpl,
Jak2, Katnal, and so on
Intracellular part _ Abi3, Acaa2, Acyp2, Adap2, Capnl5, Ggct, Ggh, Itgblbpl,
GO-CC [GO:0044424] 3.17E - 16 475 Jak2, Katnal, and so on
GO-CC Cell [GO:0005623] 405E — 15 526 Atp5l, B4galtl, Dusp8, Dynll2, Exoc4, Fafl, Hint2, Hmoxl,
Rtn2, S100all, and so on
) B Atp5l, B4galtl, Dusp8, Dynll2, Exoc4, Fafl, Hint2, HmoxlI,
GO-CC Cell part [GO:0044464] 4,05E - 15 526 Rtn2, S100all, and so on
Mitochondrion Atp5l, Besll, Hspdl, Iars2, Ptrf, Rablla, Sugct, Tango2,
GO-CcC [GO:0005739] 742E - 12 134 Trmt2b, Ugcc2, and so on
Catalytic activity Abhd6, Acaca, Dusp8, Ebp, Htral, Huwel, Itpke, Lyplal,
GO-MF [GO:0003824] 1.50E - 03 180 Man2al, Nek6, and so on
REACT.188937 Metabolism 2 32F — 04 125 Agpat4, Akricl3, Cth, D2hgdh, Gstm7, Helz2, Ogn, Pank2,
Psmal, Suclg2, and so on
REACT 247926  Metabolism of proteins 0.004417 58 Eif2sl, Eif2s3x, Eif3b, Hspdl, Igfl, Man2al, Nfyc, Pamle,
Rftl, Slc30a6, and so on
REACT 237472 Asparagine N.—hnked 0.004713 19 Algll, Gfpt2, Gnpnatl, Lmanl, Mgat2, Rftl, Slc35al,
glycosylation St3gall, St6galnac5, Uapl, and so on
REACT 236283 Posttransla'uona'l protein 0.010703 27 Algll, Eif5a, Galnt2, Gfptl, Gfpt2, Man2al, Senp5, Slc35al,
modification St3gall, Stégalnac5, and so on
Autodegradation of Cdhl Cdcl6, Cdc23, Cdc27, Psmal, Psma2, Psma4, Psmb4,
REACT.225686 by Cdhl:APC/C 0.012911 13 Psmb8, Psmb9, Psmc6, and so on
REACT 219897 APC/C:Cdc20 mediated 0.027596 53 Cdcl6, Cdc23, Cdc27, Psmal, Psma2, Psma4, Psmb4,

degradation of Securin

Psmb8, Psmb9, Psmc6, and so on

The GO-BP and GO-CC terms in the table are the top 5 ones with a higher adjusted p value. DE-IncRNA, differentially time-series expressed long noncoding
RNA gene; GO, Gene Ontology; BP, biological process; CC, cellular component. “REACT” terms are the pathway terms.

with human aging has also been discovered by previ-
ous studies [44, 45]. Moreover, Fbin5 was predicted to
be targeted by ENSMUSG00000061510. Therefore, ENS-
MUSG00000086859 may also exert functions in aging via
regulating the genes involved in elastic fibre formation (e.g.,
Fblnl and Fbln2). ENSMUSG00000061510 may function in
aging via regulating the expression of genes like Fbin5.

A previous study has demonstrated that aging is associ-
ated with altered cholesterol metabolism in T cells, causing
increased cholesterol levels in lipid rafts [46]. Furthermore,
cholesterol transport and lipid catabolism have been iden-
tified to be upregulated in normally aging rats [47, 48]. In
the present study, CYP5I and FDPS, the positively regulated
target genes of the DE-IncRNA ENSMUSG00000066057
(gene name: Gm1976), were significantly enriched in choles-
terol biosynthesis. CYP51, the most evolutionarily conserved

member of cytochrome P450 gene superfamily, participates
in the late portion of cholesterol biosynthesis [49]. In aging
peripheral nervous system and liver, CYP5I is also detected
to be involved in the deregulation of cholesterol biosynthesis
[50, 51]. FDPS encodes farnesyl diphosphate synthase, which
is a key intermediate in cholesterol and sterol biosynthesis
[52]. Previous studies have reported that FDPS is associated
with bone mineral density of aging bone [53, 54]. During
aging, cholesterol synthesis is reduced in human hippocam-
pus [55]. For example, the concentration of three cholesterol
precursors (lathosterol, lanosterol, and desmosterol) is signif-
icantly decreased in the hippocampus [56]. Currently, there
is no experimental evidence that ENSMUSG00000066057 is
involved in aging. Therefore, this DE-IncRNA may play a role
in aging via the genes related to cholesterol synthesis (e.g.,
Cyp5I and Fdps).
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Furthermore, the DEGs that were negatively regulated by
ENSMUSG00000066057 (e.g., Eif2sI) were mainly enriched
in the pathways about protein metabolism along with Eif2s3x
and Eif3b, and several pathways about protein metabolism
interacted with each other. In aging humans, the balance
between muscle protein synthesis and degradation is dis-
rupted, which leads to the loss of skeletal muscle mass [57].
All of Eif2s1, Eif2s3x, and Eif3b encode subunits of eukaryotic
translation initiation factors (EIFs), which regulate protein
synthesis [58]. Decreased elF2a phosphorylation has been
detected in aged tissues and it is responsible for a higher
level of protein phosphatase 1 and other proapoptotic proteins
[59, 60]. There is no evidence to prove the roles of Eif2sI,
Eif2s3x, and Eif3b in aging so far. We speculate that the
ENSMUSG00000066057 may also play critical roles in aging
via regulating protein metabolism through Eif2sI. The DEGs
Eif2s1, Eif2s3x, and Eif3b may also be involved in aging via
protein metabolism.

Despite the aforementioned results, there were several
limitations in this study. The predicted results should be
confirmed by laboratory data. Furthermore, the included
samples for analysis should be more. In our further studies,
more samples of aging will be included to validate the
expression levels and functions of the potential key IncRNAs
and genes.

In conclusion, based on the gene expression data of pe-
ripheral white adipocytes taken from mice at different ages, a
total of 8301 time series DEGs and 43 time series DE-IncRNAs
were identified. Among them, 41 DE-IncRNAs targeted 1880
DEGs. The DE-IncRNAs ENSMUSG00000066057, ENS-
MUSG00000086859, and ENSMUSG00000061510 regulated
multiple DEGs. Furthermore, the DEGs positively regulated
by DE-IncRNAs (e.g., ENSMUSG00000066057 and ENS-
MUSG00000086859) were mainly related to the functions
about the development of blood vessel (e.g., Efnal and Efnb2),
as well as the pathways of cholesterol biosynthesis (e.g., Cyp51
and Fdps) and elastic fibre formation (e.g., Fblnl, Fbin2,
and Fbln5). Additionally, the DEGs (e.g., Eif2sl, Eif2s3x,
and Eif3b) that were negatively regulated by DE-IncRNAs
were correlated with the pathways about protein metabolism.
These DE-IncRNAs and DEGs may be involved in aging,
which provides novel information for the study of aging.
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