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Measuring stride variability and dynamics in children is useful for the quantitative study of gait maturation and neuromotor
development in childhood and adolescence. In this paper, we computed the sample entropy (SampEn) and average stride interval
(ASI) parameters to quantify the stride series of 50 gender-matched children participants in three age groups. We also normalized
the SampEn and ASI values by leg length and body mass for each participant, respectively. Results show that the original and
normalized SampEn values consistently decrease over the significance level of the Mann-Whitney 𝑈 test (𝑝 < 0.01) in children
of 3–14 years old, which indicates the stride irregularity has been significantly ameliorated with the body growth. The original
and normalized ASI values are also significantly changing when comparing between any two groups of young (aged 3–5 years),
middle (aged 6–8 years), and elder (aged 10–14 years) children. Such results suggest that healthy children may better modulate
their gait cadence rhythm with the development of their musculoskeletal and neurological systems. In addition, the AdaBoost.M2
and Bagging algorithms were used to effectively distinguish the children’s gait patterns. These ensemble learning algorithms both
provided excellent gait classification results in terms of overall accuracy (≥90%), recall (≥0.8), and precision (≥0.8077).

1. Introduction

An infant commonly begins to crawl after 9 months and then
learns how to walk with voluntary postural control at about
one year after birth [1, 2]. During the physical growth in ado-
lescence, the locomotor control and postural coordination of
children become mature, in correspondence with the devel-
opment of the central nervous system and musculoskeletal
system [3]. According to Hillman et al. [4], temporal and
spatial parameters of children’s gait become relatively mature
until 4 years old.The study of Chester et al. [5] suggested that
adult-like kinetic patterns for the hip and knee are almost
achieved in children by 5 years of age, whereas the ankle joint
patterns remain premature until 9 years old. Menkveld et al.
[6] analyzed the temporal gait parameters of a few children

subjects from 7 to 16 years of age and reported that the stride
patterns aremore stable, but the gaitmodulation function still
continues to improve in adolescence.

Because human locomotion functions are regulated by
the neuromotor and muscular functions, immature neuro-
logical control or inconsistent muscle contractions would
result in erratic body movement behaviors with irregular
rhythm [7, 8].The immaturemotor control of young children
causes higher degree of variability in stride time (the duration
from initial contact of one foot to the succeeding contact of
the same foot) [4], such that the stride series would present
large fluctuations or dynamic complexity. Recent studies [9,
10] emphasized how to measure the gait unsteadiness and
subtle fluctuations in the course of motor skill development.
Hausdorff et al. [9] used the coefficient of variation parameter
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and fractal analysis tools to compute the fluctuation magni-
tude and fractal properties of stride series of young children.
Their results suggested that the stride variability significantly
decreases and also exhibits long-range fractal correlations in
adolescents [9].

Recently, signal irregularity analysis of physiological sys-
tems based on entropy and novel statistical measures has
received extensive attractions in the research community
[11, 12]. Huang et al. [13] and Wei et al. [14] measured the
sample entropy (SampEn) parameter of electroencephalo-
gram (EEG) intrinsic mode functions decomposed by the
multivariate empirical mode decomposition and applied an
artificial neural network trained by the back-propagation
algorithm to detect the particular signal patterns related to
anesthesia. Sharma et al. [15] extracted the Shannon entropy,
Renyi entropy, approximate entropy, and SampEn features
from the EEG signal components derived from the empirical
mode decomposition algorithm and then employed the least-
squares support vector machine to discriminate the focal
EEG signals. In our previous studies [16, 17], we applied the
nonparametric statistical methods to establish the probability
density models of stride series for the adolescents at different
ages.

As reported by Shumway-Cook and Woollacott [18],
stride dynamics analysis may provide important indices
related to the development of neuromuscular control in chil-
dren. Analysis of gait patterns of young children can assist
physiologists to better understand the course of gait matu-
ration. Further quantitative studies require more advanced
computational and mathematical tools to characterize the
progress of gait development. The motivation of our study
is to compute the SampEn and average stride interval (ASI)
features to quantify the changes of gait dynamics in the stride
time series of children associated with the adolescent devel-
opment. The AdaBoost.M2 and Bagging ensemble learning
algorithms were used to effectively perform the gait pattern
classifications for the children participants in different age
groups.

2. Material and Methods

2.1. Gait Data Description. The gait data set was obtained
from a PhysioNet database provided by Hausdorff et al.
[9], for public research of gait maturation. A total of 50
healthy children (equal number of boys and girls) aged from
3 to 14 years were recruited from the local community in
Boston, MA, USA, to participate in the gait data acquisition
experiments [9]. None of these children was prematurely
born or suffering from any of musculoskeletal, neurological,
or cardiovascular disease. In order to investigate the gait
development of childrenwith aging, the children participants
were categorized into three age groups: young children of
3–5 years old (14 subjects: 6 boys and 8 girls), middle
children of 6–8 years old (21 subjects: 10 boys and 11 girls),
and elder children of 10–14 years old (15 subjects: 9 boys
and 6 girls). Statistics of body mass and leg length of the
children participants are listed in Table 1. The children’s
parents provided their informed and written consent letters
as approved by Harvard Medical School and completed the

Table 1: Statistics of body mass and leg length of the children in
the young, middle, and elder age groups, respectively. Values are
expressed as mean ± standard deviation.

Age groups Body mass (kg) Leg length (m)
Young (3–5 years old) 18.01 ± 2.98 0.55 ± 0.04
Middle (6–8 years old) 25.31 ± 4.02 0.65 ± 0.05
Elder (10–14 years old) 42.61 ± 9.21 0.79 ± 0.07

questionnaire sheets to declare the medical history of their
kids [9].

Each participant was asked to walk with his or her
comfortable pace for 8min, around a 400m running track
outdoors [9]. An investigator followed up each child during
the gait data acquisition experiments. The contact force of
the body on level ground was measured by two ultrathin
pressure-sensitive sensors, which were placed in the right
shoe of each child (one underneath the ball of the foot and
the other underneath the heel) [19].

The voltage signals of force underneath the right foot
were amplified with a portable signal acquisition board
(dimensions: 5.5 × 2 × 9 cm; weight: 100 g) worn on the ankle
cuff of each child. The signal data were sampled at 300Hz
and digitized by a built-in analog-to-digital converter with
a resolution of 12 bits per sample. The series of gait cycle
durations (the time from heel strike to heel strike of the same
foot) or stride intervals (in seconds) were estimated with the
algorithm proposed by Hausdorff et al. [19].

Because the gait speed and other phase parameters are
often altered by the accelerating or decelerating movements
when the subject starts or stops walking, it is necessary to
eliminate the start-up or ending effects of walking posture
in the gait data. In the present work, the data samples of
the stride interval series recorded in the first 60 s and the
last 5 s were removed, respectively, which was the same as
implemented in the previous related studies [9, 17].The stride
outliers whose amplitude values were larger or smaller than
three times standard deviations of the median of each stride
interval series were detected and removed by a median filter
[17, 20].

2.2. Gait Signal Dynamics Quantification

2.2.1. Sample Entropy (SampEn). SampEn has been widely
used to measure the degree of regularity in complex physi-
ological signals, by calculating the negative natural logarithm
of the estimated conditional probability of self-similarity
signal segments (epochs). A lower value of SampEn indicates
more similar epochs occurring in the time series. Consid-
ering a gait rhythm time series {𝑥(𝑙)} of length 𝐿, we may
define a template that contains a series of 𝑘 consecutive signal
elements as x𝑘

𝑚
= [𝑥(𝑚), 𝑥(𝑚 + 1), . . . , 𝑥(𝑚 + 𝑘 − 1)], where

𝑘 is commonly known as the embedding dimension. The
similar elements included in two templates are measured by
the absolute maximum difference as

𝑑 [x𝑘
𝑚
, x𝑘
𝑛
] = max
0≤𝑞≤𝑘−1

𝑥 (𝑚 + 𝑞) − 𝑥 (𝑛 + 𝑞)
 . (1)
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Let 𝐵𝑚(𝜃) denote the total number of 𝑛, 𝑛 = 1, 2, . . . , 𝐿 −

𝑘 + 1 (𝑛 ̸= 𝑚), which meets the requirement 𝑑[x𝑘
𝑚
, x𝑘
𝑛
] ≤ 𝜃,

where 𝜃 denotes the tolerance threshold for accepting the
similar templates. The probability of the similar templates
within the tolerance level 𝜃 is then defined as

𝐵
𝑘

𝑚
(𝜃) =

𝐵𝑚 (𝜃)

𝐿 − 𝑘 + 1
. (2)

Then, we can compute the average number of the total similar
templates as

𝐵
𝑘
(𝜃) =

1

𝐿 − 𝑘 + 1

𝐿−𝑘+1

∑

𝑚=1

𝐵
𝑘

𝑚
(𝜃) . (3)

Similarly, by increasing the embedding dimension up to
𝑘 + 1, we may compute the corresponding probability of the
similar templates, 𝐴𝑘+1

𝑚
(𝜃), as

𝐴
𝑘+1

𝑚
(𝜃) =

𝐴𝑚 (𝜃)

𝐿 − 𝑘
, (4)

where𝐴𝑚(𝜃) satisfies 𝑑[x𝑘+1𝑚 , x𝑘+1
𝑛

] ≤ 𝜃, for 𝑛 = 1, 2, . . . , 𝐿 − 𝑘
(𝑛 ̸= 𝑚). The average of all matching similar templates with
the embedding dimension 𝑘 + 1 is computed as

𝐴
𝑘+1

(𝜃) =
1

𝐿 − 𝑘

𝐿−𝑘

∑

𝑚=1

𝐴
𝑘+1

𝑚
(𝜃) . (5)

Finally, the SampEn is defined as

SampEn (𝑘, 𝜃, 𝐿) = − ln[𝐴
𝑘+1

(𝜃)

𝐵𝑘 (𝜃)
] . (6)

In the present study, the SampEn method was used to
probe the self-similarity gait signal epochs by estimating the
similar-matching templates in stride series. The length of
stride series 𝐿 = 350 is identical for every single child. The
SampEn embedding dimension is set to be 𝑘 = 2.The optimal
tolerance parameter of the SampEn model, 𝜃 = 0.05, was
derived with the lowest 𝑝 value results of the Mann-Whitney
𝑈 test (significance level: 𝑝 < 0.01). Thus, the SampEn(2,
0.05, 350) model was selected to quantify the gait regularity
in the children’s stride series.

2.2.2. Average Stride Interval (ASI). ASI is referred to as the
mean of stride interval during a period of gait monitoring
[17]. In the present work, we computed the ASI value based
on the probability density function (PDF) of stride interval,
as a dominant gait feature to represent the average duration of
a stride for each child participant. The PDF of stride interval
provides a continuous probability distribution estimate for a
number of stride observations. For a given stride time series
{𝑥(𝑙)}, 𝑙 = 1, 2, . . . , 𝐿, the PDF of stride interval, �̂�(𝑔), can be
established by using the Parzen-window method [17, 20, 21]
as

�̂� (𝑥) =
1

𝐿

𝐿

∑

𝑙=1

𝜅 [𝑥 − 𝑥 (𝑙)] , (7)

where 𝜅(⋅) denotes a nonnegative kernel function, which
integrates to unity; that is, ∫∞

−∞
𝜅(𝑥)𝑑𝑥 = 1.

In our study, the prevailing Gaussian kernel function was
applied to estimate the PDF of stride interval; that is,

𝜅 [𝑥 − 𝑥 (𝑙)] =
1

√2𝜋𝜎
exp{− [𝑥 − 𝑥 (𝑙)]

2

2𝜎2
} , (8)

where 𝜎 denotes the spread parameter of the Gaussian func-
tion. It is worth noting that the center of the Gaussian
function is located at the amplitude of each stride observation
𝑥(𝑙), and the spread parameter 𝜎 determines the Gaussian
kernel window width [20].

The effectiveness of nonparametric PDF estimate by
means of the Parzen-windowmethod depends on the optimal
choice of the spread parameter [22]. In order to select the best
spread parameter, the estimated PDF was compared with the
histogram of stride interval with the same resolution; that is,
the discrete scale of the stride PDF is equal to the number
of histogram bins. In the searching range of [0.001, 0.1], with
an increment step of 0.001, the spread parameter of 0.01 that
matched the minimization criterion of the mean-squared
error between the Parzen-window PDF and the histogram of
stride interval was chosen as the optimal value [22]. Then,
the ASI value can be calculated as the mean of stride interval
based on the estimated Parzen-window PDF [17] as

ASI = ∫
∞

−∞

𝑥�̂� (𝑥) 𝑑𝑥. (9)

We computed the ASI values for all 50 children participants
and also applied the Mann-Whitney 𝑈 test (implemented
with IBM SPSS Statistics, Version 20) to study the statistical
differences of ASI among three different age groups (signifi-
cance level: 𝑝 < 0.01).

2.3. Ensemble Learning Algorithms. With the SampEn and
ASI features obtained, we may perform effective gait pattern
classifications for further analysis. For two decades, multi-
ple learner systems trained by advanced ensemble learning
algorithms have received extensive attentions in the machine
learning community [23–26]. Ensemble learning is also
referred to as committee machine learning, which follows a
so-called “divide-and-conquer” strategy [27]. An ensemble
paradigm commonly divides a complex classification or
regression problem into a few simple taskswith lower compu-
tational expense and then combines a group of trained com-
ponent learners to provide a comprehensive solution [28]. In
the present work, we used the Boosting and Bagging algo-
rithms, two most popular ensemble learning paradigms, to
distinguish the gait patterns of the children participants into
three age groups.

2.3.1. AdaBoost Algorithm. Boosting algorithms work by
sequentially generating a number of weak learners to solve a
classification or regression problem together [29]. In a typical
boosting procedure, the training data for each weak learner
are regenerated in order to correct the mistakes made by the
previous learner. The AdaBoost algorithm is a representative
boosting method that intends to accomplish the training of
weak learners by reweighting or resampling the data samples
[30]. Researchers have developed the family of AdaBoost
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algorithms with plenty of extension versions, such as Ada-
Boost.R [30], AdaBoost.M1 [31], and AdaBoost.M2 [32], to
solve different types of regression or classification problems.
In the present work, we implemented the AdaBoost.M2
ensemble method that involved a total of 50 decision trees as
the base learners to implement the gait pattern classifications.
The computation process of the AdaBoost.M2 algorithm for
the classification of children’s gait patterns is summarized as
follows.

Computation Process of the AdaBoost.M2 Algorithm

Input:

Gait data set: {f𝑛, 𝑡𝑛}
𝑁

𝑛=1
, 𝑁 = 50 is the number

of children, 𝑡𝑛 ∈ {1, 2, 3} is the class label;
Weak learner model (decision tree): ℎ(f𝑛);
Number of ensemble learning iteration: 𝐼.

Initialization:

Initialize the gait data distribution ℓ1(f𝑛) = 1/𝑁.

Computation Procedure:

(1) for 𝑖 = 1, 2, . . . , 𝐼:
(1) Train a weak learner ℎ𝑖(f𝑛).
(3) Calculate the error of the 𝑖th classifier: 𝑒𝑖 =

∑
𝑛:ℎ𝑖(f𝑛) ̸=𝑡𝑛 ℓ𝑖(f𝑛).

(4) Set 𝛼𝑖 = (1/2) ln((1 − 𝑒𝑖)/𝑒𝑖).
(5) Update the distribution:

ℓ𝑖+1 (f𝑛) =
ℓ𝑖 (f𝑛)
𝑍𝑖

{

{

{

exp (−𝛼𝑖) , if ℎ𝑖 (f𝑛) = 𝑡𝑖,

exp (𝛼𝑖) , if ℎ𝑖 (f𝑛) ̸= 𝑡𝑖,

(10)

where𝑍𝑖 is a normalization constant that makes
ℓ𝑖+1(f𝑛) be a probability distribution.

(6) end

Output:

𝐻AdaBoost (f𝑛) = sign(
𝐼

∑

𝑖=1

𝛼𝑖ℎ𝑖 (f𝑛)) . (11)

2.3.2. Bagging Algorithm. Bagging stands for “bootstrap
aggregating” [33], which contains the procedures of bootstrap
sampling of training data, and aggregation of base learners by
voting for classification problem or averaging for regression
problem. The Bagging algorithm is able to greatly improve
the generalization capability by combining weak learners
(e.g., decision trees), rather than stable learners (such as 𝑘-
nearest neighbor classifiers, radial basis function networks,
and support vector machines), which are insensitive to the
adjustment of training data with a bootstrap distribution [33].

Given a data set containing 𝑁 scatter points (gait pat-
terns), the bootstrap sampling approach generates a new
training data set of the same size, fbd

𝑛
, for eachweak learner by

random (the Monte Carlo method) sampling from the origi-
nal data set f𝑛 [26]. In the bootstrap sampling process, a data
point (or gait pattern) is picked with the uniform probability,
1/𝑁, irrespective of whether being selected before or not.
Such a bootstrap sampling mechanism may result in several
data points appearing more than once, whereas some other
points are replaced with these repetitions in the new training
data set. When predicting a testing gait pattern, the Bagging
algorithm aggregates the outputs of the weak learners by
voting the class labels and then makes the most voted label
as the ensemble decision [34]. Breiman [33] demonstrated
that the generalization error of the Bagging ensemble would
be greatly reduced in comparison with the prediction error
of a single base learner. In the present study, we used the
Bagging algorithm that combined 50 weak learners in the
form of decision trees (the same number of learners as that
of the AdaBoost.M2 algorithm for comparison purpose), to
accomplish the children’s gait pattern classification tasks.The
detailed computation process of the Bagging algorithm is
provided as follows.

Computation Process of the Bagging Algorithm

Input:

Gait data set: {f𝑛, 𝑡𝑛}
𝑁

𝑛=1
, 𝑁 = 50 is the number

of children, 𝑡𝑛 ∈ {1, 2, 3} is the class label;
Weak learner model (decision tree): ℎ(f𝑛);
Number of weak learners: 𝐼.

Computation Procedure:

(1) for 𝑖 = 1, 2, . . . , 𝐼:
(2) Train a weak learner ℎ𝑖(fbd𝑛 ) with a data set of

bootstrap distribution fbd
𝑛
.

(3) Predict the class labels of the input patterns with
the trained learners ℎ𝑖(f𝑛; fbd𝑛 ).

(4) end

Output:

𝐻Bagging (f𝑛) = argmax
𝑡∈{1,2,3}

𝐼

∑

𝑖=1

[ℎ𝑖 (f𝑛; f
bd
𝑛
) = 𝑡] . (12)

2.4. Classification Performance Evaluation. With the pur-
pose of categorizing children’s gait patterns into multiple
classes (three age groups), we considered the one-versus-rest
strategy, which makes the classifiers train and test with the
patterns of a specified class as positive cases and all other cases
as negative ones. Such a classification process was alternately
implemented for each class. The classification results of the
AdaBoost.M2 and Bagging algorithms were then evaluated
with the recall, precision, and accuracy metrics. Let TP𝑡, FP𝑡,
and 𝑁𝑡 denote the number of true positive (correct classi-
fication) cases, the number of predicted positive cases, and
the total number of cases for a specified class (𝑡 ∈ {1, 2, 3}),



BioMed Research International 5

50 100 150 200 250 300 3500
Stride number

0.6
0.8

1
1.2
1.4

St
rid

e i
nt

er
va

l (
s)

(a)

0.6
0.8

1
1.2
1.4

St
rid

e i
nt

er
va

l (
s)

50 100 150 200 250 300 3500
Stride number
(b)

50 100 150 200 250 300 3500
Stride number

0.6
0.8

1
1.2
1.4

St
rid

e i
nt

er
va

l (
s)

(c)

Figure 1: Series of stride interval of the children (a) aged 47 months, (b) aged 88 months, and (c) aged 148 months, respectively. The first
strides come after the start-up walking for 60 s, and the strides during the last 5 s walking are excluded in the stride series.

respectively. Recall is defined as the true positive rate or
sensitivity; that is,

Recall𝑡 =
TP𝑡
𝑁𝑡

. (13)

Precision represents the positive predictive value, which is
expressed as

Precision𝑡 =
TP𝑡

TP𝑡 + FP𝑡
. (14)

Accuracy is the percentage ratio of all correct classified cases
over the total number of cases:

Accuracy =
∑
3

𝑡=1
TP𝑡

∑
3

𝑡=1
𝑁𝑡

× 100%. (15)

3. Results and Discussions

Figure 1 plots the series of stride interval of three children
in the corresponding age groups, respectively. The beginning
strides in the first 60 s and the ending strides in the final
5 s during the gait monitoring period have been excluded
in the gait series records. The outliers were also removed in
the stride series by the median filter developed by Wu and
Krishnan [20].

Figure 2 shows different SampEn and ASI values in bar
graphics for the children participants in three age groups. It
can be observed that the SampEn values consistently decrease
from 0.408 bits (young age group) to 0.194 bits (middle age
group), until 0.1 bits (elder age group). However, the ASI
values slightly raise from 0.904 s (young children) to 0.961 s
(middle children), until 1.059 s (elder children). Reduction
of the SampEn results indicates that the irregularity in the
series of stride interval has been ameliorated with the body
maturation in children. Increase of the ASI values suggests
that the children participants are able to coordinate larger
strides when they grow up.

In the present study, we also normalized the SampEn
and ASI parameters by the leg length and body mass for
each participant, respectively. Statistical results of the original
and normalized SampEn values, along with the original and
normalized ASI values, for the children in the young, middle,
and elder age groups are provided in Table 2.

It is clear that the changes of the original SampEn
and ASI parameters between any two age groups are over
the statistical significance level of the Mann-Whitney 𝑈

test (𝑝 < 0.01). The SampEn normalized by leg length
significantly reduces more than a half, from 0.755 bits/m
to 0.304 bits/m, when the children grow up until 8 years
old. For the children aged 10–14 years, the SampEn value
normalized by leg length becomes 0.129 bits/m on average,
with a decrement of 0.626 bits/m versus that of the young
children aged 3–5 years. The SampEn normalized by body
mass also decreases from 0.023 to 0.003 bits/kg for the
children aged 10–14 years. Such results indicate that the
gait irregularity, parameterized with the normalized SampEn
by leg length and body mass, has been greatly improved
in a close relationship with the maturation of motor con-
trol and musculoskeletal development in adolescence. The
gait irregularity is reduced rapidly when the children become
8 years old, and the stride variability continues to decrease in
children until the age of 14 years. The ASI values normalized
by leg length and body mass are consistently becoming
smaller in children with aging over the significance level (𝑝 <
0.01). However, the original ASI value is with an increas-
ing trend, which is different from the normalized values.
Such results indicate that the musculoskeletal development
and gain in weight are more remarkable than the increase
of stride interval in children. Both of the SampEn and
ASI results suggest that the growth of musculoskeletal and
neurological systems enable the children to better modulate
the gait cadence rhythm, which confirms the observations
in previous related studies of Hausdorff et al. [9] and Xiang
et al. [17].
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Table 2: Statistics of the original and normalized SampEn(2, 0.05, 350) and the original and normalized ASI values for the children in the
young, middle, and elder age groups. Statistical differences between pairs of age groups are evaluated by theMann-Whitney𝑈 hypothesis test
(significance level 𝑝 < 0.01). SampEn: sample entropy. ASI: average stride interval. ∗: 𝑈 test between the young and middle age groups; ∗∗:
𝑈 test between the middle and elder age groups; ∗ ∗ ∗: 𝑈 test between the young and elder age groups.

Entropy parameters
Statistics (mean ± standard deviation)

𝑝 valueYoung group Middle group Elder group
(aged 3–5 years) (aged 6–8 years old) (aged 10–14 years)

SampEn (bit) 0.408 ± 0.109 0.194 ± 0.088 0.1 ± 0.058
0.001∗

0.001∗∗

0.001∗∗∗

Normalized SampEn by leg length (bit/m) 0.755 ± 0.229 0.304 ± 0.139 0.129 ± 0.084
0.001∗

0.001∗∗

0.001∗∗∗

Normalized SampEn by body mass (bit/kg) 0.023 ± 0.008 0.008 ± 0.003 0.003 ± 0.002
0.001∗

0.001∗∗

0.001∗∗∗

ASI (s) 0.904 ± 0.041 0.961 ± 0.041 1.059 ± 0.063
0.004∗

0.001∗∗

0.001∗∗∗

Normalized ASI by leg length (s/m) 1.661 ± 0.132 1.495 ± 0.122 1.35 ± 0.106
0.001∗

0.002∗∗

0.001∗∗∗

Normalized ASI by body mass (s/kg) 0.051 ± 0.008 0.039 ± 0.005 0.026 ± 0.004
0.001∗

0.001∗∗

0.001∗∗∗
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Figure 2: Statistics of (a) sample entropy (SampEn) and (b) average stride interval (ASI) of the children in the young (3–5 years old), middle
(6–8 years old), and elder (10–14 years old) age groups, respectively.

The gait pattern classification results are tabulated in
Table 3. Both of the AdaBoost.M2 and Bagging algorithms
provided excellent overall accurate rates (AdaBoost.M2: 90%,
Bagging: 92%). The Bagging algorithm correctly categorized
all 14 gait patterns in the young children group, whereas

the AdaBoost.M2 algorithm misclassified a child of 45
months after birth into the middle age group. Thus, the Bag-
ging algorithm outperformed the AdaBoost.M2 algorithm
with better results in terms of recall (Bagging: 0.9286 versus
AdaBoost.M2: 0.8571) and precision (Bagging: 0.84 versus
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Table 3: Gait pattern classification results obtained by the Ada-
Boost.M2 and Bagging ensemble methods.

Classification evaluation metrics Ensemble methods
AdaBoost.M2 Bagging

Accuracy (%) 90% 92%
Recall

Young (3–5 years old) 0.8571 0.9286
Middle (6–8 years old) 1 1
Elder (10–14 years old) 0.8 0.8

Precision
Young (3–5 years old) 1 1
Middle (6–8 years old) 0.8077 0.84
Elder (10–14 years old) 1 1
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Figure 3: Resubstitution errors of the ensembles in relation to
the increasing number of decision trees that are involved in the
AdaBoost.M2 and Bagging algorithms, respectively.

AdaBoost.M2: 0.8077). Figure 3 displays the resubstitution
errors produced by theAdaBoost.M2 andBagging algorithms
when generating new decision tree learners. It is worth
noting that both ensemble methods can greatly reduce the
output errors. The error curve of the Bagging algorithm is
consistently below that of the AdaBoost.M2 algorithm, which
confirms the effectiveness and superiority of the Bagging
algorithm for solving the children’s gait pattern classification
problem.

4. Conclusion

Computer-aided quantification of stride dynamics and anal-
ysis of gait patterns may provide useful information on
the neuromotor development in adolescence. In the present
work, the SampEn and ASI parameters were computed to
investigate the degree of gait regularity and the average gait
cadence duration in children. The SampEn parameter can

adapt to a small length of gait signal, such that it is not nec-
essary to require the children participants to walk for a long-
term gait monitoring. It is therefore very suited for the gait
maturation assessment in adolescents, especially for young
children who may have muscular fatigue in long-distance
walking.Our results show that the SampEn andASI values are
significantly changing in adolescents aged from 3 to 14 years.
The classification results demonstrated the effectiveness of
the AdaBoost.M2 and Bagging ensemble algorithms in the
identification of gait patterns for the children in different age
groups. In the future study, we plan to recruit more gender-
matched children participants in the three age groups for
more accurate and unbiased statistical analysis of gait pat-
terns during short-term and long-term walking monitoring.
More temporal and computational tools [28] would be
considered to analyze other stride phases, such as stance
interval, swing interval, and double support time.
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