Supplementary Material

Table S1. Statistical parameters derived from the linear fitting of the graphs reported in Figure 2 by considering β -sheet and α -helix structures separately. For parameters with R<0.70 the p-value has been calculated and reported in bracket.

Parameter	β-	sheet	α-helix			
	Correlation	Regression line	Correlation	Regression line		
	coefficient R		coefficient R			
NC ^α C	0.88	y=0.81x+21.1	0.89	y=0.49x+57.7		
NC ^α C ^β	0.76	y=0.78x+24.7	0.25 (0.0055)	y=0.25x+83.2		
$C^{\beta}C^{\alpha}C$	0.93	y=0.84x+17.8	0.80	y=0.59x+44.7		
C ^α CO	0.87	y=0.80x+24.3	0.89	y=0.66x+41.0		
$C^{\alpha}CN^{+1}$	0.84	y=0.69x+36.2	0.82	y=0.82x+21.1		
OCN ⁺¹	0.72	y=0.63x+45.9	0.10 (0.25)	y=0.076x+113.5		
$C^{-1}NC^{\alpha}$	0.78	y=0.71x+35.5	0.76	y=0.75x+30.9		
Δω	0.92	y=0.87x+0.92	0.71	y=0.41x+1.2		
$\theta_{\rm C}$	0.94	y=0.85x-0.15	0.77	y=0.62x+0.68		

Table S2. Engh and Huber parameters for different backbone dihedral angles. The number reported in the second raw is the standard deviation.

Angle	NC ^α C	C ^α CO	$C^{\alpha}CN^{+1}$	OCN ⁺¹	$C^{-1}NC^{\alpha}$	$NC^{\alpha}C^{\beta}$	$C^{\beta}C^{\alpha}C$
Residue							
Pro	111.8	-	116.9	122.0	122.6	103.0	-
	2.5		1.5	1.4	5.0	1.1	
Non-Pro	-	-	-	123.0	-	-	-
				1.6			
Gly	112.5	120.8	116.4	-	120.6	-	-
	2.9	2.1	2.1		1.7		
Non-Gly	-	120.8	-	-	-	-	-
		1.7					
Ala	-	-	-	-	-	110.4	110.5
						1.5	1.5
Ile, Thr, Val	-	-	-	-	-	111.5	109.1
						1.7	2.2
Non-Gly/non-	111.2	-	116.2	-	121.7	-	-
Pro	2.8		2.0		1.8		
The rest	-	-	-		-	110.5	110.1
						1.7	1.9

Figure S1. Ramachandran plots highlighting the experimental dependence of the bond angles $NC^{\alpha}C$ (A), $NC^{\alpha}C^{\beta}$ (B), $C^{\beta}C^{\alpha}C$ (C), $C^{\alpha}CO$ (D), $C^{\alpha}CN^{+1}$ (E), $OCN^{+1}(F)$, $C^{-1}NC^{\alpha}$ (G) and dihedral angles $\Delta\omega$ (H), θ_{C} (I) on backbone conformation (φ, ψ) for the eighteen non-Gly/non-Pro residues. The mean values are calculated in 5°x5° and 10°x10° (φ, ψ)-boxes for bond and dihedral angles, respectively. Only boxes containing at least 50 residues were considered.

Figure S2. Distributions of bond angles values of non-Gly/non-Pro residues in α -helix (blue) or coil (grey) in the 3°x3°-box centered at (ϕ,ψ)=(-63°,-43°): NC^{α}C (A), NC^{α}C^{β} (B), C^{β}C^{α}C (C), C^{α}CO (D), C^{α}CN⁺¹ (E), OCN⁺¹(F), C⁻¹NC^{α} (G).

Figure S3. Distributions of bond angles values of non-Gly/non-Pro residues in β -sheet (red) or coil (grey) in the 15°x15°-box centered at (ϕ,ψ)=(-120°,130°): NC^{α}C (A), NC^{α}C^{β}(B), C^{β}C^{α}C (C), C^{α}CO (D), C^{α}CN⁺¹(E), OCN⁺¹(F), C⁻¹NC^{α}(G).