
Research Article
Two Efficient Techniques to Find Approximate Overlaps
between Sequences

Maan Haj Rachid

Qatar University, P.O. Box 2713, Doha, Qatar

Correspondence should be addressed to Maan Haj Rachid; mh1108047@qu.edu.qa

Received 10 October 2016; Revised 23 December 2016; Accepted 17 January 2017; Published 15 February 2017

Academic Editor: Hesham H. Ali

Copyright © 2017 Maan Haj Rachid. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The next-generation sequencing (NGS) technology outputs a huge number of sequences (reads) that require further processing.
After applying prefiltering techniques in order to eliminate redundancy and to correct erroneous reads, an overlap-based assembler
typically finds the longest exact suffix-prefix match between each ordered pair of the input reads. However, another trend has
been evolving for the purpose of solving an approximate version of the overlap problem. The main benefit of this direction is the
ability to skip time-consuming error-detecting techniques which are applied in the prefiltering stage. In this work, we present and
compare two techniques to solve the approximate overlap problem. The first adapts a compact prefix tree to efficiently solve the
approximate all-pairs suffix-prefix problem, while the other utilizes a well-known principle, namely, the pigeonhole principle, to
identify a potential overlap match in order to ultimately solve the same problem. Our results show that our solution using the
pigeonhole principle has better space and time consumption over an FM-based solution, while our solution based on prefix tree
has the best space consumption between all three solutions. The number of mismatches (hamming distance) is used to define the
approximate matching between strings in our work.

1. Introduction

The next-generation sequencing (NGS) technology creates a
new type of challenges. The output of NGS is a huge number
of sequences (reads) which require further processing. The
generated sequences represent segments frommultiple copies
of the original genome. An overlap-based assembler, such
as SGA [1] and Readjoiner [2], finds overlaps between these
reads in order to build a string graph which will be the
input for the assembly stage.The problem of finding overlaps
between each ordered pair of reads is commonly called the
all-pairs suffix-prefix problem (APSP).

For a given group of strings 𝐺 = 𝑆1, 𝑆2, . . . , 𝑆𝑘, solving
APSP is to find the largest (longest) suffix-prefix match for
each ordered pair in𝐺. Gusfield et al. presented a solution for
APSP in an optimal time using a generalized suffix tree [3].
For a text 𝑇, a suffix tree ST is a tree in which every suffix in 𝑇
is represented by a path from the root to a leaf.The drawback
for this solution is the high consumption ofmemory since the
best implementation for suffix tree consumes 20𝑛 bytes for a
text of size 𝑛 characters [4]. Ohlebusch andGog [5] presented

a solution for APSP using an enhanced generalized suffix
array with an optimal time but with much less space than
the one utilizing a suffix tree. The algorithm was practically
improved [6].

A suffix array SA of a text 𝑇 is an array containing values
which range from 1 to 𝑛 and represent the text positions of
the lexicographically sorted suffixes of 𝑇. An LCP array is an
array storing the length of the largest common prefix between
every two consecutive lexicographically sorted suffixes in 𝑇.
An enhanced suffix array is a suffix array and an LCP array.
In both solutions (suffix tree and enhanced suffix array),
reads are first concatenated in one string 𝑆. In 𝑆, every two
consecutive reads are separated by a distinct character which
is not repeated anywhere in 𝑆; then the data structure is built
for the resulting text. The word “generalized” indicates that
the data structure is built from all reads.

Compressed data structures have also been utilized to
solve APSP. Simpson and Durbin used FM index [7] to solve
APSP. Sadakane suffix tree [8] and run-length compressed
suffix array (RLCSA) are also utilized to solve APSP ([9] and
[10], resp.). A very recent work [11] showed that a compact

Hindawi
BioMed Research International
Volume 2017, Article ID 2731385, 8 pages
https://doi.org/10.1155/2017/2731385

https://doi.org/10.1155/2017/2731385


2 BioMed Research International

prefix tree can be used to solve APSP efficiently in terms of
time and space.

One of the most important fields for applying APSP is
genome assembly. Assemblers can be classified depending on
the type of graph they are building as follows:

(i) They either build a string graph in which a node
represents a read and an edge represents an over-
lap between two reads. Such assembler is called an
overlap-based assembler. Since finding the original
genome using a string graph by finding a path that
visits every node exactly once is an NP-problem, such
assemblers use techniques to solve a reduced version
of this problem in the assembly stage [12].

(ii) Or they build a de Bruijn graph in which nodes are
b-1 mers of the reads and the edges correspond to
the overlaps of size b-2 between two b-1 mers, where
b is a fixed value less than the length of a read. The
assembler then finds the original genome using the de
Bruijn graph by finding a path which visits every edge
in the graph only once. However, this graphmay have
many alternative paths, and therefore it is the first step
in creating a good draft assembly [13].

A traditional overlap-based assembler would first filter
the set of reads by removing redundant reads and applying
approximate string-matching methods to detect and to cor-
rect errors in these reads. Then it would find exact overlaps
between the prefiltered reads by solvingAPSP.However, a few
researches tackled the approximate version of APSP (AAPSP)
such as the work of [14]. The advantage of this trend is
to avoid the error-correction preprocessing steps which use
time-consuming approximate string-matching techniques.
Valimaki et al. utilized a compressed data structure (FM
index) with the backward backtracking technique to solve
AAPSP. It also takes advantage of suffix filters which were
introduced by [15] and improved by [16].

2. Objectives

In this work, we present two techniques to solve AAPSP. The
first utilizes a compact prefix tree in solving AAPSP, while
our second technique takes advantage of the well-known
pigeonhole principle and the minimal length for an overlap
in order to identify potential overlap matches. We compare
our work with the work presented by [14].

We first explain our methods in Section 3. Section 4
demonstrates our experiments and discusses our results. We
draw our conclusion in Section 5.

3. Methods

3.1. Definitions

3.1.1. Compact Prefix Tree. The words “read” and “sequence”
are used interchangeably in this work. A read is a string of
characters over an alphabet Σ = {A,C,G,T}. We define a
prefix tree 𝑃 for a group of reads 𝐺 as a tree in which every
read in 𝐺 is represented by a path from the root to a leaf.

[4..5]

G G TA

TA G

A C

[1..2] [3..5] [6..6]

0 1 0

2 2 1 0

[1..6]

0 0

Figure 1:The compact prefix tree for strings 𝑆1 =AGGT, 𝑆2 =GGTC,
𝑆3 = AATG, 𝑆4 = GGTA, 𝑆5 = TTAC, and 𝑆6 = GGGC. The range
above each node represents the reads which share the prefix up to
this node. The value inside a node indicates the 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 value of
this node. For example, the range [4..5] indicates that the reads 4
and 5 share the prefix GGT. The prefix GGT can be obtained by
concatenating all the labels of the edges starting from the root and
ending with the node ([4..5]). Note that the second G in GGT is
obtained from the text since 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 = 1. The numbers inside the
ranges are the new identifiers of the strings after sorting, not the
original identifiers.

Every edge in 𝑃 is labeled with one of the four characters: A,
C, G, or T. Every node V has an interval [𝑟𝑖..𝑟𝑗] where 𝑟𝑖..𝑟𝑗
are the identification numbers of the reads which share the
same prefix up to V (assuming that the reads are sorted). Since
an edge is labeled by one character and reads in one range
[𝑟1..𝑟𝑗] may share a substring 𝑠𝑢𝑏with a length 𝑠𝑢𝑏𝑙 > 1, every
node has also a value 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 = 𝑠𝑢𝑏𝑙 − 1, which represents
the length of a common substring between all reads in the
range [𝑟𝑖..𝑟𝑗]. The benefit of this value is to avoid building
unnecessary nodes for substrings which are shared by reads
in one range. Figure 1 shows an example for a compact prefix
tree.

The compact prefix tree can be built in 𝑂(𝑛) time where
𝑛 is the total length of all reads. The space consumption for
building this tree is 𝑂(𝑘) where 𝑘 is the count of the reads.
Clearly, the presence of the input reads is required since this
data structure is not a self-index data structure.

3.2. Approximate Matching. An approximate matching be-
tween two strings can be expressed by the edit distance. The
edit distance between strings 𝑇1 and 𝑇2 is defined as the
minimum number of insertions, deletions, and replacements
of symbols to transform string 𝑇1 into 𝑇2 [17]. Hamming
distance is another way to describe an approximate match.
The hamming distance between strings 𝑇1 and 𝑇2 is the
number of mismatching symbols between strings 𝑇1 and 𝑇2.
A string 𝑇1 is considered an approximate match to 𝑇2 if the
edit distance (or the hamming distance) between the two
strings is ≤ 𝑧, where 𝑧 is the number of allowed insertions,
deletions, and replacements (or mismatches when hamming
distance is used) to transform 𝑇1 to 𝑇2.



BioMed Research International 3

3.2.1. Pigeonhole Principle. The basic idea behind the pigeon-
hole principle is that if there is an approximate matching
between two strings 𝑆1, 𝑆2, then theremust be an exactmatch-
ing between themwith a smaller size.The size of the available
exact matching between the two strings is determined by the
hamming distance (or edit distance) between them. Given
that 𝑆1 differs from 𝑆2 by 𝑚 characters, if we divide 𝑆1 into
𝑚 + 1 parts, then one of these parts will exactly match a part
in 𝑆2. The principle can easily be proved by contradiction.

The crucial benefit of the pigeonhole principle is the
identification of candidates for an approximate matching
between the two strings. As a result, extremely fast exact
matching algorithms and techniques are used to find these
candidates and the time-consuming dynamic programming
technique is only used to verify if a candidate is a part of an
approximate matching between the two aligned strings.

The principle is also known as seed-and-extend. It is the
base of many genome analysis algorithms such as Basic Local
Alignment SearchTool (BLAST) andmanyworks such as [18]
utilized this concept in sequence alignment. In this work, we
employ this principle to find overlaps between reads.

3.2.2. AAPSP. It is easy to define APSP because of its exact
nature; however, defining AAPSPmay not be very clear since
the preference may differ between the length of the match
and the number of mismatches; that is, a suffix-prefix match
with a length of 20 and 7 mismatches may be better than
one with a length of 10 and 4 mismatches. Reference [19]
demonstrated different interests in approximatematching for
a bioinformatician. In this study, we adopt the following
interest. For each ordered pair of the input reads, we target
the largest suffix-prefix match with a maximum of𝑚 allowed
mismatches. Nevertheless, we show that our solution can be
easily modified to cover most other definitions.

3.3. Solving AAPSP Using a Compact Prefix Tree. Thework of
[11] describes the technique to solve APSP using a compact
prefix tree. Every suffix in every read is matched with a path
in the prefix tree (if there is one). The algorithm presented
in the work of [11] takes advantage of the minimal length for
a suffix-prefix match min by ignoring all suffixes which are
shorter than𝑚𝑖𝑛. The time consumption for solving APSP is
𝑂(𝑘ℓ2)where 𝑘 is the number of reads and ℓ is the maximum
size of a read. While 𝑘 may vary in practice from hundreds
of thousands to hundreds of millions, ℓ is usually less than a
thousand.

Our first technique employs a compact prefix tree to solve
AAPSP. When 𝑚 mismatches are allowed, every suffix 𝑆 in
every read is aligned with every path 𝑝 in the tree, where 𝑝
is a path from the root to a leaf. In the attempt to match a
suffix 𝑆 with a path 𝑝 in the tree, mismatches are counted up
to a threshold. If a threshold is reached before reaching the
end of 𝑆, then 𝑆 does not represent a match between a suffix
and a prefix. The pseudocode is shown in Algorithm 1. The
following variables are used in Algorithm 2.

(i) 𝑚𝑖𝑠𝑙𝑖𝑚𝑖𝑡 is the number of allowed mismatches.

(ii) 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ is the so-far number of mismatches.

(1) procedure 𝐴𝑙𝑙𝑃𝑎𝑖𝑟𝑠𝑆𝑢𝑓𝑓𝑖𝑥𝑃𝑟𝑒𝑓𝑖𝑥(𝐺)
(2) for every read 𝑅 in the input reads 𝐺 do
(3) for every candidate suffix 𝑆𝑢 in 𝑅 do
(4) 𝑓𝑖𝑛𝑑𝐴𝑙𝑙𝑃𝑎𝑖𝑟𝑠(𝑆𝑢, ⋅ ⋅ ⋅ )
(5) end for
(6) end for
(7) end procedure

Algorithm 1: Solving AAPSP using a prefix tree.

(iii) V is the current character in 𝑆𝑢 (current suffix).
(iv) 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐ℎ𝑎𝑟 is the current character to compare with

in the prefix tree. It can be found by calculating
the length of the path from the root to the current
node. Accordingly, the current read mentioned in the
algorithm is one of the readswhich are included in the
range of current node.

(v) 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒 is a pointer to the current node in the
prefix tree.

(vi) 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is used to check if the comparison is
done inside a node by comparing 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 with
the 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 of the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒.

(vii) 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑(𝑐) returns true if the current node
has a child with a character 𝑐, that is, there is an edge
coming from current node towards another node and
labeled by a 𝑐.

The code is simple. For every suffix 𝑆𝑢 in every read, the
𝑓𝑖𝑛𝑑𝐴𝑙𝑙𝑃𝑎𝑖𝑟𝑠 procedure is called. If the end of 𝑆𝑢 is reached,
then 𝑆𝑢 represents a suffix-prefixmatch between the read that
contains it and every read which is included in the interval of
the current node in the prefix tree (lines (3)–(6)). If this is not
the case, then we distinguish two cases:

(i) The comparison is done between a character in 𝑆𝑢
and a character indicated by the value of 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛
in the current node in the tree. It happens when the
𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 ≥ 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (lines (8)–(17)).

(ii) A character in 𝑆𝑢 is compared with a label of an
edge. In this case, 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 exceeds the value of
𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 of the current node. In this case, we test
every child of the current node using a recursive call
unless the allowed mismatches are exhausted (lines
(18)–(23)).

Let us try tomatch suffixGGC from string 6with a path in
Figure 1 assuming that the number of allowedmismatches is 1.
The first path starts with AA, so there is nomatch.The second
path starts with AGG, so we can see that the comparison will
fail when reaching the third character since we will have 2
mismatches.The third path starts with GGGwhich is amatch
since it differs from GGC by only one character. Accordingly,
GGC is a suffix-prefix match, but it is not relevant since it
involves the same read. The fourth path is GGT which is
a match since it differs from GGC by only one character.
Accordingly, GGC represents a suffix-prefix match between



4 BioMed Research International

(1) procedure 𝑓𝑖𝑛𝑑𝐴𝑙𝑙𝑃𝑎𝑖𝑟𝑠(𝑆𝑢, V, 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐ℎ𝑎𝑟,
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒,𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ,𝑚𝑖𝑠𝑙𝑖𝑚𝑖𝑡)

(2) while true do
(3) if the end of 𝑆𝑢 is reached then
(4) Report all reads which have a prefix that matches 𝑆𝑢
(5) Return
(6) end if
(7)
(8) if 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ≤ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒.𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛 then
(9) if V ̸= 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐ℎ𝑎𝑟 then
(10) 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ ← 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ + 1
(11) end if
(12) if 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ > 𝑚𝑖𝑠𝑙𝑖𝑚𝑖𝑡 then
(13) Return
(14) end if
(15) 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ← 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 1
(16) V ← next character in 𝑆𝑢
(17) 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐ℎ𝑎𝑟 ← next character in the current read
(18) else
(19) for Every character 𝑐 in Alphabet do
(20) 𝑚𝑖𝑠𝑡𝑒𝑚𝑝 ← 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ
(21) if V ̸= 𝑐 then
(22) 𝑚𝑖𝑠𝑡𝑒𝑚𝑝 ← 𝑚𝑖𝑠𝑡𝑒𝑚𝑝 + 1
(23) end if
(24) if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑(𝑐) and

𝑚𝑖𝑠𝑡𝑒𝑚𝑝 ≤ 𝑚𝑖𝑠𝑙𝑖𝑚𝑖𝑡 then
(25) V1 ← the character next to V in 𝑆𝑢
(26) V2 ← the character next to current char in the

current read
(27) 𝑓𝑖𝑛𝑑𝐴𝑙𝑙𝑃𝑎𝑖𝑟𝑠(𝑆𝑢, V1, 1, V2, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑(𝑐),

𝑚𝑖𝑠𝑡𝑒𝑚𝑝,𝑚𝑖𝑠𝑙𝑖𝑚𝑖𝑡)
(28) end if
(29) end for
(30) Return
(31) end if
(32) end while
(33) end procedure

Algorithm 2: Solving AAPSP using a prefix tree.

string 6 and each of string 2 and string 4 (which are identified
as 4 and 5 after sorting). Finally, the last path does not present
any match.

The difference between the two usages of compact prefix
tree in solvingAPSP andAAPSP is clear. In APSP, every suffix
is matched with a path in the tree, while in AAPSP, every
suffix is tested against every path in the tree.

Given that there are ℓ suffixes in a read, all suffixes of a
read can be processed using a compact prefix tree in 𝑂(ℓ2𝑘)
where 𝑘 is the number of reads. The time complexity for the
solution is 𝑂(𝑛2) in the worst case where 𝑛 is the total size of
all reads. However, in practice, the solution runs much faster
than the worst case. The space complexity is bounded by the
size of the text which is 𝑂(𝑛 logΣ), since the construction of
the prefix tree requires only 𝑂(𝑘) space [11].

3.3.1. Solving AAPSP Using Pigeonhole Principle. Our second
technique takes advantage of the pigeonhole principle and
the minimal length for an overlap in order to identify the

candidate suffixes which can be approximate suffix-prefix
matches between pairs of reads. Let𝑚𝑖𝑛 be a minimal length
for an overlap (i.e., a suffix-prefixmatchwith a length𝑚𝑖𝑛will
not be considered). If a suffix 𝑆 is an approximate suffix-prefix
match with a threshold𝑚, then its prefix of length𝑚𝑖𝑛 has to
have a hamming distance≤ 𝑚when alignedwith a prefixwith
the same length of some read 𝑟. Accordingly, if 𝑆 is divided
into 𝑚 + 1 parts, then one of these parts exactly matches a
corresponding part of a prefix 𝑝 of a read 𝑟. We then compare
all remaining parts of 𝑆 with their corresponding parts in 𝑝.

Accordingly, the technique can be summarized as follows:

(i) Divide the prefix of lengthmin for each read into𝑚+1
parts.

(ii) Add each part 𝑝 from the prefix of read 𝑟 to an index
which has entries of type ⟨𝑘𝑒𝑦, 𝐿⟩ where 𝐿 is a list of
reads. Accordingly, if 𝑝 is already in the index, 𝑟 will
be added to an existed entry (in its 𝐿 list); otherwise,
a new entry ⟨𝑝, {𝑟}⟩ will be added to the index.



BioMed Research International 5

(1) 𝑝𝑖𝑒𝑐𝑒𝑠𝑖𝑧𝑒 ← 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ/(𝑚 + 1)
(2) for Every read 𝑟 in input reads do
(3) for Every candidate suffix 𝑆 in 𝑟 do
(4) for Every part 𝑝 of length 𝑝𝑖𝑒𝑐𝑒𝑠𝑖𝑧𝑒 in 𝑆’s prefix do
(5) if p is found in position 𝑖 in the index then
(6) for Every read 𝑟1 found in 𝐿 𝑖 do
(7) compare all characters before 𝑝 with

their corresponding characters in 𝑟1
(8) if threshold is not reached then
(9) compare all characters after 𝑝 with

their corresponding characters in 𝑟1
until the end of 𝑆 is reached

(10) end if
(11) if threshold is not reached then
(12) report 𝑆 as a suffix prefix match between 𝑟 and 𝑟1
(13) end if
(14) end for
(15) end if
(16) end for
(17) end for
(18) end for

Algorithm 3: Solving AAPSP using pigeonhole principle.

(iii) Every suffix 𝑆 that can be an acceptable overlapmatch
will be tested. 𝑆 is divided into 𝑚 + 1 parts and every
part is searched for in the index. If a part 𝑝 is found at
position 𝑖 in the index, we investigate every read 𝑟1 in
𝐿 𝑖. We compare all characters that precede 𝑝 in 𝑆with
their corresponding characters in 𝑟1. If the threshold
is not reached, we compare all characters after 𝑝 in
𝑆 with their corresponding characters in 𝑟1 until the
threshold of mismatches is reached. If the end of 𝑆 is
reached without exceeding the limit of mismatches,
then 𝑆 is reported as an approximate overlap between
𝑟 (the read which contains 𝑆) and 𝑟1.

Figure 2 demonstrates the basic concept.The pseudocode
is shown in Algorithm 3. The worst case time complexity is
𝑂(𝑘ℓ2), but, in practice, the solution runs much faster. The
index can have (𝑚 + 1)𝑘 entries. All entries may have up to
(𝑚+1)𝑘 values (in all 𝐿 lists).Therefore, the space complexity
is bounded by the size of the text which is𝑂(𝑛 logΣ) where 𝑛
is the total length of all reads and Σ is the size of the alphabet.

One drawback for this algorithm is the repetition in
reporting the overlaps. The same overlap may be reported
more than once since each matching part may end up
reporting an overlap. We used a hash table to keep track for
the overlaps which are reported. The hash table is cleared for
every candidate suffix 𝑆.

3.3.2. Implementation Notes. We used an unordered map
⟨𝑘𝑒𝑦, 𝐿⟩ to build our index, where 𝑘𝑒𝑦 is a part of a prefix
of size min in a read and 𝐿 is a list of reads. To make
the implementation simple, we used an index for each part.
Accordingly, if 𝑚 = 3, we use 4 indices and each part 𝑝
in every prefix of size min in every read is inserted into its
appropriate index (i.e., part 1 into index 1).Theprefix of length

𝑚𝑖𝑛 in each suffix 𝑆 is divided into𝑚+1 parts and each part 𝑝
is searched for in its appropriate index. If amatch is found, the
list of reads which is associated with the key (𝑝) is retrieved
and we start comparing whatever before and after part 𝑝 in 𝑆.

3.3.3. Supporting Other Flavors of Approximate Matching. In
this study, we use the hamming distance concept to define an
approximate overlap match. However, our solutions support
other matching types such as spaced seeds, subset seeds,
and edit distance [19]. Spaced seeds can be described as a
mask M which is represented by a string over the alphabet
{0, 1} where 0 indicates an allowed mismatch position. For
example, string ACGCTATTG with a mask 011 accepts GTG,
CTG, and GTACTG as suffix matches (we apply the mask
cyclically in GTACTG twice since GTACTG is longer than
the mask).

A slight modification in Algorithm 1 is sufficient to fulfill
the spaced seed type. A variable to track the current element
of the mask would be needed.The condition in lines (9)–(11)
can be easily extended in order to validate the comparison
and a return statement should be executed if a mismatching
occurs and the current element of the mask is 1. A similar
modification should be done to the condition in line (24); no
recursive call is executed if the current element of the mask
is 1. In Algorithm 3, similar modifications are required for
comparisons in lines (7) and (9).

With subset seeds, we specify the types ofmismatches that
are allowed at each position. For instance, {{𝑎, 𝑡}, {𝑐, 𝑔}} allows
a,t mismatches and 𝑐, 𝑔 mismatches only. This form is also
easy to incorporate in our solutions by addingmore checking
before considering the case as a mismatch. If the case is not
included in the group of allowed mismatches, we ignore the
candidate suffix and move on to the next one.

The edit distance is not supported in our solution.



6 BioMed Research International

Look for each part in its corresponding index

Index 4Index 3Index 2Index 1
AAC 1, 4
GGT 3, 5
TTC 2
TTG 6

CTG 1
CTT 4
GAA 6
GGC 2
TAA 3
TCC 5

AAA 5
ACC 3
CCT 6
CTT 2
GTC 1
GTG 4

CAC 5
CGG 3
CTC 4
CTG 1
TCC 2
TTC 6

Minimal length = 12

Mismatches = 3

Matched with S3Matched with S4

TGG AAC GTG CGG

S1 = AACCTGGTCCTGGAACGTGCGG

S2 = TTCGGCCTTTCCAAAGTCAACC

S3 = GGTTAAACCCGGTAACCGTCAT

S4 = AACCTTGTGCTCCCAACGTAAA

S5 = GGTTCCAAACACTTGGTCAATC

S6 = TTGGAACCTTTCACGGTCACCC

For every suffix S in every string
Divide S into (3 + 1) parts

If part x is found in index x

Compare S with the matched string
Example: suffix TGGAACGTGCGG

Figure 2: A demonstration for the pigeonhole principle. Every
prefix of size 𝑚𝑖𝑛 from every read is divided into 4 parts. Each
part is inserted in its appropriate index. Then, each candidate suffix
𝑆 is divided into 4 parts and each part is searched for in the
corresponding index. If there is a match, then we compare 𝑆 with
the prefix of the matching string.

4. Experimental Evaluation

4.1. Experimental Setup. We implemented two C++ solutions
to solve AAPSP using our two techniques. They use openMP
to support multithreading. The used parallelizing technique
is based on dividing reads equally between threads. We used
/usr/bin/time tomeasure the time and space.The source code
for our solutions can be downloaded from: https://github
.com/maanrachid/Codes/blob/master/AAPSP.tar.

The implementation is tested on two types of machines:

(i) A modest 2-core virtual machine with 1 GB RAM
and less than 10GB hard disk running on 2.00GHZ
CPU: we ran randomly generated data sets on the
machine.The random data is generated by a program
which creates 𝑘 reads with a total of length 𝑛. 𝑛 and 𝑘
are inputs from the user. Testing on such machine is
to demonstrate our solutions’ ability to find overlaps
evenwith limited resources.Theminimal length of an
approximate overlap in our experiments is 30.

(ii) An 8-core AWS node for testing large real samples:
testing our solutions on this node evaluates their

Table 1: Data sets used in experiments.

Data Set Size # of strings
Random data 1MB–5MB 5000–50000
Homo sapiens exome (SRR500004) 1.1 GB 15M
E. coli (SRR2244250) 302MB 502,172
C. elegans 167MB 334,465
Citrus clementina 104MB 118,365
Citrus sinensis 154MB 208,909
Citrus trifoliata 46MB 62,344

ability to handle large data set. Eight threads are used
in all experiments. The minimal length of an approx-
imate overlap in our experiments is 30.

Table 1 describes data sets used by the experiments.
We obtained our real data from PubMed (http://www.ncbi
.nlm.nih.gov/pubmed) and Citrus Genome databases (http://
www.citrusgenomedb.org).

4.2. Experiments Results. We compare the time and space
consumption for prefix tree (PT), pigeonhole (PH), and
FM [14] solutions when used to solve AAPSP on a modest
machine with randomly generated data. Tables 2 and 3 show
the result of our testing. The number of threads which are
used in our experiments is 2, theminimal length of an overlap
is 30, and the output option is set on (produce output).

It is very clear that PH has the best results in terms of
time. PT has better results than FM in the first two data sets
and worse performance with the last one. This is due to the
fact that the read in the last data set has a length of 500
(while the length of a read in the first two data sets is 100).
PT favors short reads since the minimal length of an overlap
can be utilized better (more comparisons can be skipped
when the reads are short). In terms of space, PT has the best
consumption with a clear advantage for PH over FM.

We test our solutions with real and large data sets on an
AWS node with high capabilities (8 cores, 60GB RAM, and
200GB hard disk).The required time and space are shown in
Tables 4 and 5. The minimal length for an overlap is 30, the
number of threads is 8, and the output option is set on.

Clearly, pigeonhole solution demonstrates superior
results in terms of time; however, prefix tree consumes less
space in all data sets. Despite its low-space requirement, the
brute force nature of the prefix tree solution causes a high
time consumption.

We should mention that FM performs some additional
tasks such as handling the N character or finding the overlaps
for the reverse complement. That may affect the time and
space consumption. However, it will not doubt the advantage
of PH over FM in terms of time and space and the advantage
of PT over FM in terms of space since the differences are too
big to be interpreted by such factors.

5. Conclusion

Both our solutions can be used efficiently to solve AAPSP
with a relatively small number of mismatches. It has been

https://github.com/maanrachid/Codes/blob/master/AAPSP.tar
https://github.com/maanrachid/Codes/blob/master/AAPSP.tar
http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/pubmed
http://www.citrusgenomedb.org
http://www.citrusgenomedb.org


BioMed Research International 7

Table 2: Time consumptions for prefix tree (PT), pigeonhole (PH), and FM solutions to find approximate overlaps using different values for
allowed mismatches (𝑚). Time is shown in seconds.

Data set 𝑚 = 1 𝑚 = 2 𝑚 = 3 𝑚 = 1 𝑚 = 2 𝑚 = 3 𝑚 = 1 𝑚 = 2 𝑚 = 3

PT PT PT PH PH PH FM FM FM
1MB 1.8 10.6 45 0.5 0.5 1.2 3 17 120
5MB 15 126.3 672 2.4 3.3 14 17 127 960
2.5MB 4 27 109 1.34 2 3 4 13 82

Table 3: Time consumptions for prefix tree (PT), pigeonhole (PH), and FM solutions to find approximate overlaps using different values for
allowed mismatches (m). Time is shown in seconds.

PT PH FM
1MB 2.3 4 9
5MB 6.5 14.5 40
2.5MB 2.5 4 21

Table 4: Time consumptions for prefix tree (PT), pigeonhole (PH) and FM solutions to find approximate overlaps when real data is used on
a capable AWS node. Time is shown in seconds.

Data Set 𝑚 = 1 𝑚 = 2 𝑚 = 3 𝑚 = 1 𝑚 = 2 𝑚 = 3 𝑚 = 1 𝑚 = 2 𝑚 = 3

PT PT PT PH PH PH FM FM FM
Citrus clementina 122 1094 5749 16 42 392 54 200 1377
Citrus sinensis 233 2229 12053 49 361 1352 100 442 3501
Citrus trifoliata 30 223 1069 10.5 45 158 24 92 660
C. elegans 381 3681 21390 104 241 1682 186 792 4806
SRR2244250 757 8111 30234 49 151 6023 357 2340 16161
SRR500004 3502 20342 90321 252 1414 8752 1787 6813 44907

Table 5: Space consumptions for prefix tree (PT), pigeonhole (PH),
and FM solutions to find approximate overlaps when real data is
used on a capable AWS node. Space is shown in MB.

PT PH FM
Citrus clementina 65 66 807
Citrus sinensis 86 110 803
Citrus trifoliata 34 37 371
C. elegans 110 138 783
SRR2244250 230 298 2416
SRR500004 727 818 1013

shown that the pigeonhole solution is superior in terms of
time and has better space consumption than FM, while the
prefix tree achieves the best space consumption between all
three solutions. Both our solutions can efficiently contain
other flavors of approximate matching with the exception of
edit distance (deletion and insertion).

It would be great if these tools can be extended to find
overlaps using the edit distance. It may also be interesting to
find out how efficient our tools arewhen integratedwith other
components in an overlap assembler.

Competing Interests

The author declares that he has no competing interests.

References

[1] J. T. Simpson andR.Durbin, “Efficient de novo assembly of large
genomes using compressed data structures,” Genome Research,
vol. 22, no. 3, pp. 549–556, 2012.

[2] G. Gonnella and S. Kurtz, “Readjoiner: a fast and memory
efficient string graph-based sequence assembler,” BMC Bioin-
formatics, vol. 13, no. 1, article 82, 2012.

[3] D. Gusfield, G. M. Landau, and B. Schieber, “An efficient
algorithm for the all pairs suffix-prefix problem,” in Sequences
II, pp. 218–224, Springer, 1993.

[4] S. Kurtz, “Reducing the space requirement of suffix trees,”
Software - Practice and Experience, vol. 29, no. 13, pp. 1149–1171,
1999.

[5] E. Ohlebusch and S. Gog, “Efficient algorithms for the all-
pairs suffix-prefix problem and the all-pairs substring-prefix
problem,” Information Processing Letters, vol. 110, no. 3, pp. 123–
128, 2010.

[6] W. H. A. Tustumi, S. Gog, G. P. Telles, and F. A. Louza, “An
improved algorithm for the all-pairs suffix-prefix problem,”
Journal of Discrete Algorithms, vol. 37, pp. 34–43, 2016.

[7] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro, “An
alphabet-friendly FM-index,” LectureNotes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 3246, pp. 150–160, 2004.

[8] K. Sadakane, “Compressed suffix trees with full functionality,”
Theory of Computing Systems, vol. 41, no. 4, pp. 589–607, 2007.



8 BioMed Research International

[9] M. Haj Rachid, Q. Malluhi, and M. Abouelhoda, “Using the
sadakane compressed suffix tree to solve the all-pairs suffix-
prefix problem,” BioMed Research International, vol. 2014, Arti-
cle ID 745298, 11 pages, 2014.

[10] M. H. Rachid, Q. Malluhi, and M. Abouelhoda, “A space-
efficient solution to find the maximum overlap using a com-
pressed suffix array,” in Proceedings of the 2014 2nd Middle East
Conference on Biomedical Engineering (MECBME ’14), pp. 329–
333, IEEE, Doha, Qatar, February 2014.

[11] M. Haj Rachid and Q. Malluhi, “A practical and scalable
tool to find overlaps between sequences,” BioMed Research
International, vol. 2015, Article ID 905261, 12 pages, 2015.

[12] A. V. Zimin, G.Marçais, D. Puiu,M. Roberts, S. L. Salzberg, and
J. A. Yorke, “TheMaSuRCA genome assembler,” Bioinformatics,
vol. 29, no. 21, pp. 2669–2677, 2013.

[13] S. El-Metwally, T. Hamza, M. Zakaria, and M. Helmy, “Next-
generation sequence assembly: four stages of data processing
and computational challenges,” PLOS Computational Biology,
vol. 9, no. 12, Article ID e1003345, 2013.

[14] N. Välimäki, S. Ladra, and V. Mäkinen, “Approximate all-pairs
suffix/prefix overlaps,” Information and Computation, vol. 213,
pp. 49–58, 2012.

[15] J. Kärkkäinen and J. Chae Na, “Faster filters for approximate
string matching,” In ALENEX. SIAM, 2007.

[16] G. Kucherov and D. Tsur, “Improved filters for the approx-
imate suffix-prefix overlap problem,” in Proceedings of the
International Symposium on String Processing and Information
Retrieval, pp. 139–148, Springer, Ouro Preto, Brazil, May 2014.

[17] V. I. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” Soviet Physics—Doklady, vol. 10, no.
8, pp. 707–710, 1965.

[18] T. D. Wu and S. Nacu, “Fast and SNP-tolerant detection of
complex variants and splicing in short reads,” Bioinformatics,
vol. 26, no. 7, pp. 873–881, 2010.

[19] A. M. S. Shrestha, M. C. Frith, and P. Horton, “A bioinfor-
matician’s guide to the forefront of suffix array construction
algorithms,” Briefings in Bioinformatics, vol. 15, no. 2, pp. 138–
154, 2014.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Anatomy 
Research International

Peptides
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 International Journal of

Volume 2014

Zoology

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Molecular Biology 
International 

Genomics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Bioinformatics
Advances in

Marine Biology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Signal Transduction
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Evolutionary Biology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Biochemistry 
Research International

Archaea
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Genetics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Virolog y

Hindawi Publishing Corporation
http://www.hindawi.com

Nucleic Acids
Journal of

Volume 2014

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Enzyme 
Research

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Microbiology


