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1. Introduction
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The regulation of transcriptome expression level is a complex process involving multiple-level interactions among molecules
such as protein coding RNA (mRNA), long noncoding RNA (IncRNA), and microRNA (miRNA), which are essential for the
transcriptome stability and maintenance and regulation of body homeostasis. The availability of multilevel expression data enables a
comprehensive view of the regulatory network. In this study, we analyzed the coding and noncoding gene expression profiles of 301
patients with uterine corpus endometrial carcinoma (UCEC). A new method was proposed to construct a genome-wide integrative
network based on variance inflation factor (VIF) regression method. The cross-regulation relations of mRNA, IncRNA, and miRNA
were then selected based on clique-searching algorithm from the network, when any two molecules of the three were shown as
interacting according to the integrative network. Such relation, which we call the mRNA-IncRNA-miRNA triplet, demonstrated the
complexity in transcriptome regulation process. Finally, six UCEC-related triplets were selected in which the mRNA participates
in endometrial carcinoma pathway, such as CDHI and TP53. The multi-type RNAs are proved to be cross-regulated as to each of
the six triplets according to literature. All the triplets demonstrated the association with the initiation and progression of UCEC.
Our method provides a comprehensive strategy for the investigation of transcriptome regulation mechanism.

menopause [4]. Smoking, high blood pressure, and being
overweight also indirectly relate to uterus diseases via various

Uterine corpus endometrial carcinoma (UCEC) develops
from the cells of the inner lining of the uterus, which is one
of the most common female genital cancer threatening the
health of women all over the world [1, 2]. Only counting 2012,
approximately 320,000 women have been diagnosed and
about 76,000 people have died of UCEC, according to incom-
plete statistics [3]. Most commonly, UCEC occurs in post-
menopausal women, due to the unstable level of estrogen after

regulation mechanisms [5-7]. In addition, genetic disorders
also contribute to the development of UCEC and associate it
with other diseases such as Lynch syndrome and colon cancer
[8,9]. A potential inherited tendency shows in UCEC with an
increased risk in women with a family history of endometrial
cancer [10]. Clinical diagnosis is according to the symp-
toms such as postmenopausal vaginal bleeding, enlarged
uterus, low abdominal pain, and pelvic cramping [11-13].
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The understanding of regulatory network could help to
investigate its mechanism and benefit the diagnosis and treat-
ment of UCEC.

The multi-type-molecular regulatory network, especially
the interaction network between coding RNAs (mRNAs)
and noncoding RNAs, has gained many interests in recent
years. Previous reports have revealed that the microRNAs
(miRNAs) which are small size noncoding RNAs of about
22 nucleotides and long noncoding RNAs (IncRNAs) which
contain more than 200 nucleotides cross-regulate their
expression levels and comodulate the expression of mRNAs.
On the other hand, mRNAs also affect the expression of non-
coding RNAs in specific ways [14, 15]. For example, the long
intergenic noncoding RNA lincRNA-p21 has been reported to
be downregulated by miRNA let-7. The binding of lincRNA-
p21 to JUNB and CTNNB1 mRNAs results in the repression
of JunB and f-catenin translation [16]. Another experiment
has shown that the depletion of IncRNA highly upregulated
in liver cancer (HULC) results in significant deregulation
of several genes involved in liver cancer. This IncRNA is
upregulated by CREB mRNA which is underregulated by
miR372 [17]. Such interaction, which we call the mRNA-
IncRNA-miRNA triplet, is essential for the maintenance and
regulation of body homeostasis. The aberrance of any of its
molecules may influence the stability of multilevel expression
and affect the tumorigenesis accordingly.

Recently, the availability of large scaled multilevel expres-
sion data provides an opportunity to obtain the comprehen-
sive map of the multi-type-molecular regulatory network.
The Cancer Genome Atlas (TCGA) database [18-20], espe-
cially the TCGA long noncoding RNAs website, provides
the whole-genome profiling of 301 UCEC patients including
the expression levels of mRNA, IncRNAs, and miRNAs.
Such multidimensional resources allow us to investigate the
mRNA-IncRNA-miRNA interactions, understand the tran-
scriptional characteristic of UCEC, and dig deeper into the
essential genetic alterations, transcriptional regulations, and
posttranscriptional mechanisms throughout its initiation and
progression [19].

Here, a new method is built to systematically investigate
the mRNA-IncRNA-miRNA interactions in UCEC based on
the patient expression profiles downloaded from TCGA long
noncoding RNA website. An integrative network of mRNAs,
IncRNAs, and miRNAs is constructed using an accurate and
extremely efficient algorithm, the variance inflation factor
(VIF) regression method. Many mRNA-IncRNA-miRNA
triplets, which depict the cross-regulation relations among
mRNA, IncRNA, and miRNA, are detected by searching
all cliques (that is complete subgraphs with all vertices
adjacent to each other) consisting of these three elements. The
clique searching problem is a fundamental topic in computer
science, which is very important in clustering analysis based
on density and grid of data elements [21], and many solutions
have been proposed to improve the searching performance.
At last, the detected triplets are screened for their biological
functions, and three of them are determined as UCEC-related
triplets according to KEGG database and published literature.
All in all, the proposed algorithm can find out disease-
associated transcriptional RNA (miRNAs, IncRNAs, and
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TABLE 1: Number of genes in raw data and constructed network of
301 UCEC patients.

mRNA IncRNA miRNA Total
Raw data 20,462 10,419 742 31,623
Network 14,229 4,601 268 19,098
Triplet list 736 1,799 227 2,762

mRNAs) interactions and may contribute to reveal the poten-
tial posttranscriptional regulatory mechanisms of UCEC.

2. Material and Methods

2.1. Datasets. The expression data of UCEC are obtained
from TCGA long noncoding RNAs website (http://larssonlab
.org/tcga-Incrnas/datasets.php), including the profiles of
20,462 protein coding genes, 10,419 IncRNA genes, and 742
miRNAs from 301 UCEC patients, as shown in Table 1. Speci-
fically, the miRNA expression data are selected from the pro-
files of noncoding genes by their gene symbols. The expres-
sion levels are given as reads per kilobase per million (RPKM)
values. The zero values of the expression data are set as the
minimum nonzero RPKM of their corresponding sample for
the allowance of log transformation. UCEC-related pathway
information is adopted from KEGG (Kyoto Encyclopedia
of Genes and Genomes, http://wwwkegg.jp/) database
with entry ID “hsa05213”. The pathway involves 52 genes
including tumor protein coding gene TP53 and cadherin
protein coding gene CDHI.

2.2. Integrative Network Construction. The interaction net-
work is built by firstly determine the key factors (mRNA,
IncRNA, and miRNA) affecting the expression level of each
RNA molecule, respectively, and integrating them into a
complete network after that. Hence, each RNA molecule is
regarded as the dependent variable in one linear regression
model, while all others are treated as the independent
variables. In summary, 20,462 + 10,419 + 742 = 31,623 regres-
sion models are built where each one is based on 31,622
RNA expression features, and the integrative network is con-
structed after that.

Due to the large dataset in each regression model with
far more features than observations (31,622 versus 301), an
efficient regression and feature selection method, the variance
inflation factor (VIF) regression algorithm [22] is utilized to
select the optimal regulator set that is most related to each
target RNA. The algorithm is designed to find the optimal f3
that can minimize the [, penalized sum of squared errors,

. 2
arg min {lly - X8l + Ao 18I} )

where y = (y,,...,y,) are n observations and X = (x,...
XP) are p predictors, p > n |Bl, = Zle Lig 40y
Instead of searching over all 27 subsets for the best f3, this
algorithm evaluates the marginal correlations of each candi-
date predictors with the target factor using a small pre-
sampled set of data and searches the optimal subset by
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including t-statistic correction procedure when adding or
removing one variable at a time. The method has shown great
efficiency but is also accurate compared to other methods
such as LASSO and has comparable accuracy even compared
to the most accurate but slowest regression method FoBa.
The construction of the VIF regression models is based on
program from http://cran.r-project.org/web/packages/VIF/.
Next, the goodness-of-fit for linear regression models is
assessed by the adjust coefficient of determination (denoted
as adjust R?). The statistic measures how well the regression
line approximates the real data points and can compare the
regression model containing different number of regulators.
In this paper, the regression model is retained only if it
surpasses the adjust R* cutoff of 0.8. Regulation relations
between the target RNA and its regulators are obtained from
the retained regression models. These relations are further
integrated as a comprehensive map for the mRNA-IncRNA-
miRNA interaction. Note that the constructed network is
an undirected graph. The edges are constructed if the two
factors are connected by arcs of any direction. It is because
the regression model can only identify the regulators of the
target based on their gene expression associations but cannot
determine if the regulators induce the perturbation of the
target or vice versa without prior biological knowledge.

2.3. The mRNA-IncRNA-miRNA Triplet Detection. The detec-
tion of mMRNA-IncRNA-miRNA triplets from the integrative
network is a typical clique problem in computer science.
Clique problem tries to search all complete subgraphs with all
vertices connected to each other. Here, the size of subgraph is
set as three, and the vertices of each subgraph are restricted
to contain all of the three RNA types. The subgraphs,
called mRNA-IncRNA-miRNA triplets, describe the relations
of mRNA, IncRNA, and miRNA with each two of them
coregulated according to the VIF regression model. The
detection procedure is fulfilled by the “cliques” function in
R package igraph [23].

Next, the UCEC-related triplets are further screened out if
its mRNA participates in the hsa05213 pathway (endometrial
cancer, Homo sapiens) according to KEGG database. These
triplets are further analyzed for their interactions and biolog-
ical functions as to UCEC according to literature.

3. Results and Discussion

3.1 Structure of the Integrative Network. The whole-genome
integrative network of mRNA, IncRNA, and miRNA is
constructed based on their cross-regulation relations using
VIF regression. Totally, 19,098 factors are included in the
integrative network, composed of 14229 coding mRNAs,
4,601 IncRNA, and 268 miRNA. On the network, each RNA
is regulated by an average of 30 factors. The protein coding
gene-gene interactions dominate the integrative network,
as the expression levels of most coding genes are largely
affected by only the coding mRNAs. Noncoding RNAs tend
to have more interactions with noncoding RNAs instead
of coding RNAs, which implies the extensive cross-talk of
noncoding RNAs in their regulation of transcriptome and

posttranscriptome. The details of the integrative network can
be referred in Supplementary Material S1 available online at
https://doi.org/10.1155/2017/3859582.

3.2. Candidate mRNA-IncRNA-miRNA Triplets of UCEC. By
restricting the vertices types of clique problem to have all
three RNA types, 14,416 mRNA-IncRNA-miRNA triplets
are detected from the integrative network. These triplets
involve 736 coding mRNAs, 1,799 IncRNAs, and 227 miRNAs,
and provide a comprehensive map for the mRNA-IncRNA-
miRNA interaction. The relatively small number of coding
mRNAs compared to the noncoding RNAs indicates that
many coding genes are coregulated by multiple IncRNAs and
miRNAs. Extensive cross-talks exist in the regulatory process
of noncoding RNAs, which also explain the complexity of
transcriptome regulation process. The list of the detected
triplets can be found in Supplementary Material S2.

Next, the triplet is considered as UCEC-related if its
mRNA participates in hsa05213 endometrial cancer pathway.
Note that the mRNA-IncRNA-miRNA cross-interaction is a
very special interaction case that the genes in the selected
triplet have little chance to be enriched in the pathway.
However, studies have shown that the mutations in a pathway
are mutual exclusive, and only one functional gene mutation
is enough to perturb the pathway [24-26]. Hence, any triplet
having overlapped genes with the pathway may contribute
to the progression of cancer. Here, six triplets related to
hsa05213 are detected and are retained for further analysis,
as shown in Figure 1. The mRNA, IncRNA, and miRNA are
labeled as red, green, and yellow, and the cross-regulation
relations are shown as an undirected 3-vertex graph. Four
of the six triplets, as shown in the first graph in Figure 1,
involve the same mRNA and miRNA, but different IncRNAs,
that is, nRNA CDHI-IncRNA (RP4-591L5.1, CTA.929C8.5.1,
U47924.271, and AP006285.7.1)-miRNA miR128-1. The other
two triplets are mRNA CDHI1-IncRNA AP006285.7.1-miRNA
miR126 and mRNA TP53-IncRNA CTD-2008N3.1.1-miRNA
miR203, respectively.

3.3. Interaction and Biological Function of UCEC-Related
Genes and Triplets. First, we focus on the mRNA-miRNA
interaction and biological functions of the first set of triplets
in Figure 1, which involves CDHI and miR128-1, as mentioned
above. CDHI encodes a classical cadherin from cadherin
superfamily, which is a calcium-dependent cell adhesion reg-
ulatory protein [27, 28]. CDHI contributes the cell adhesion,
mobility, and proliferation in specific microenvironment,
especially in tumor [29]. As for UCEC, CDHI contributes
the initiation and invasion of endometrial cancer through
its specific role in epithelial-mesenchymal transition (EMT)
[30-32]. Additionally, miR128-1 has been proved to interact
with the expression product of CDHI1 cadherin and par-
ticipate in the regulation of EMT in prostate cancer stem
during the tumorigenesis [33, 34]. Apart from that, miR128-
1 also participates in the regulation of progression and EMT
in glioblastoma [35]. In fact, miR128-1 interacts with CDHI
coding protein cadherin via a specific upstream protein Bmil
which is the direct target of miR128-1 [34, 35].
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FIGURE 1: UCEC-related triples screened out from the integrative
network. The mRNA, IncRNA, and miRNA are labeled as red,
green, and yellow. The cross-regulation relations are described as
an undirected 3-vertex graph. The four triplets including the same
mRNA and miRNA but different IncRNAs are presented in the top
figure. The other two triplets are presented in the following.

Next, we consider the four IncRNAs in the triplets. The
first IncRNA RP4-59115.1 is a crucial IncRNA which binds
a specific miRNA miR218. MiR218 contributes the cellular
chemosensitivity, migration, and invasion, which may further
influence the cadherin regulation and associate with the func-
tion of miR128-1 [36, 37]. Another IncRNA, CTA.929C8.5.1,
also called Inc-CRYBA4-7:1, has been predicted to be inter-
acted with miR4268. MiR4268 is a rare miRNA with a
special 3D structure. It has been proved to participate in
the maintenance of stemness and may activate the initiation
process of tumor in specific environment [38]. Additionally,
as the stemness of cancer cells is associated with tumor
migration and has specific relationship with the process
of EMT [39, 40], the interaction of CTA.929C8.5.1 with
miR4268 may affect the stemness of tumor cells and further
have a specific influence on EMT, which explains its potential
relationship with miR218 and gene CDHI in the triplet.
The third IncRNA U47924.271, also named Inc-PTPN6-1:1,
is a unique IncRNA that is the target of several functional
miRNAs, such as miR139, and may participate in the initiation
of several tumors especially in hematopoietic malignancy
[41]. Therefore, it is reasonable that, in UCEC, such IncRNA
may play a similar way to interact with the miRNA and
IncRNAs mentioned above and contribute to the tumor
initiation and progression. Apart from that, U47924.271 is
associated with PTEN, while CDHI coding protein cadherin
is also associated with PTEN cascades. Hence, this IncRNA
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may also have interaction with CDHI [42]. The last IncRNA
AP006285.7.1, also annotated as Inc-KRTAP5-4-1:1, has been
proved to be associated with miR513a through sequence
analysis. MiR513a may play its specific role in various cancer
types and mainly regulate the proliferation of cells and
contributes to the modeling of inflammation environment
[43, 44]. Such regulatory functions may participate in EMT
process and further promote the migration of tumor cells,
which further explains the interaction of AP006285.7.1 with
other factors in the triplet. In summary, all elements in the
triplet contribute cohesively to the initiation and progression
of UCEC and may exert influence on EMT process.

As to the triplet CDHI-IncRNA AP006285.7.1-miRNA
miR126, we only investigate the functions of miR126 since
the other two have been mentioned above. MiR126 has been
proved as a predictive and diagnosis marker of esophageal
cancer [45]. Itis also associated with cell adhesion and migra-
tion and may contribute to the cadherin regulation in a simi-
lar way with other miRNAs (miR99a, miR200, etc.) [46, 47].
Therefore, miR126, IncRNA AP006285.7.1, and CDHI can be
clustered together because of their specific function and con-
tribution to UCEC. This triplet focuses more on the cell adhe-
sion instead of EMT progression and concentrates on the
progression and migration process of the tumorigenesis of
UCEC.

The next triplet is mRNA TP53-IncRNA CTD-
2008N3.1.I-miRNA miR203. TP53 is the most famous
tumor suppressor gene which generally contributes to
every common type of tumor including endometrial cancer
[48, 49]. As a multifunctional gene, TP53 also interacts with
several crucial miRNAs (miR181, miR34a, miR520g, etc.)
especially in various tumor tissues [50-53]. Consistent with
our screen triplet, the interaction of TP53 and miR203 has
been proved by several publications [54, 55]. Such interaction
is quite crucial for certain kind of tumor especially for colon
cancer [55]. As to IncRNA CTD-2008N3.1.1, which is also
called Inc-CTD-2012 M11.2.1-1:1, it has been reported to asso-
ciate with several miRNAs using computational prediction,
which may have its specific way to interact with TP53 and
miR203 in UCEC [56-58]. Additionally, CTD-2008N3.1.1
interacts with miR331 which participates in the tumorigenesis
of various tumor types [56, 59-61]. Furthermore, CTD-
2008N3.11 is a specific IncRNA originating from CTD
sequence [62]. Since TP53 has been reported to be associated
with several CTD structures in different tumor types, such
screened IncRNA may also interact with TP53 and have
its specific function in the process of UCEC initiation and
progression [63, 64].

4. Conclusion

In summary, all of the selected triplets have been partially
or fully confirmed to be associated with tumorigenesis
especially in UCEC. Moreover, some of our preliminarily
screened genes which are not included in these six triplets
are also proved to be UCEC-associated and may have
their specific function in the process of tumorigenesis. For
example, miR204 is a specific miRNA in non-small cell lung
cancer, which can specifically regulate the metastasis of tumor
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cells [65]. Such miRNA may have similar function in UCEC.
Another miRNA, miR320, has been reported as a functional
regulatory miRNA in stage I endometrioid endometrial
carcinoma [66]. All in all, based on the expression profile of
UCEC, our proposed method can cluster miRNAs, IncRNAs,
and coding genes into functional interacted groups. Such
an algorithm can also be applied to other cancer types
and benefit the deeper understanding of the transcriptome
regulatory mechanisms, and the cross-talk of multilevel
RNAs such as miRNAs and IncRNAs. Additionally, the
transcriptional level regulation network prediction helps to
reveal the posttranscriptional regulation in tumors and other
severe diseases.
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