

Supplementary Figure 1. The schematic diagram of the development of the CD80-QPAR chemometric model.

Supplementary Figure 2: The HPLC chromatograms of RA-A (A) before and (B) after data pre-processing were illustrated for the importance of applying the data pre-processing such as background correction and peaks alignment.

a.

Supplementary Figure 3: (a) HPLC-DAD mean chromatogram (common pattern) of 72 extracts which from three batches (Red: RA-A; Black: RA-B; Green: RA-C). The table in the right top corner showed the value of the similarity indices of the three median chromatographic modes of the extracts from A, B and C with respect to their median; (b) The distribution, the mean and standard derivation of the similarity indices of each extract from three batches.

Supplementary Figure 4: The variables selected by Elastic Net (EN) PLS (lower) algorithm for models building in QPAR studies of Radix Astragali (RA).

Supplementary Table 1: A table of the result from uniform design by varying the two extraction factors (reflux time and solvent volume) for the preparation of 24 RA extracts from each batch.

Extract -	Level		
	Reflux Time	Volume of solvent used	
1	2 (2 hr)	4 (250 ml)	
2	4 (4 hr)	2 (150 ml)	
3	2 (2 hr)	4 (250 ml)	
4	4 (4 hr)	3 (200 ml)	
5	3 (3 hr)	1 (100 ml)	
6	1 (1 hr)	2 (150 ml)	
7	2 (2 hr)	3 (200 ml)	
8	2 (2 hr)	1 (100 ml)	
9	1 (1 hr)	4 (250 ml)	
10	3 (3 hr)	1 (100 ml)	
11	3 (3 hr)	2 (150 ml)	
12	2 (2 hr)	2 (150 ml)	
13	4 (4 hr)	3 (200 ml)	
14	4 (4 hr)	1 (100 ml)	
15	3 (3 hr)	4 (250 ml)	
16	3 (3 hr)	3 (200 ml)	
17	1 (1 hr)	2 (150 ml)	
18	4 (4 hr)	4 (250 ml)	
19	1 (1 hr)	3 (200 ml)	
20	1 (1 hr)	1 (100 ml)	
21	0 (0 hr)	4 (250 ml)	
22	0 (0 hr)	1 (100 ml)	
23	0 (0 hr)	3 (200 ml)	
24	0 (0 hr)	2 (150 ml)	

Uniform design based on CD_2 Discrepancy: $U_n(q^s)$; n = number of runs, s = number of factors, q = number of levels

Supplementary Table 2: Similarity indices (SI) correlation coefficient (mean \pm SD) of each extract from the three batches with respect to their batch means chemical fingerprints.

SI	Batch A	Batch B	Batch C
Avg	0.9583	0.9610	0.9576
SD	0.0297	0.0226	0.0210

		CD80	
	Batch A	Batch B	Batch C
Mean	106.23	95.83	122.75
S^2	115.47	116.17	160.37
		t-test	
Group	A and B	A and C	B and C
t	3.28	-4.77	-7.77
p value	0.002	1.9e-5	0.000

Supplementary Table 3: The t-test and ANOVA results of the difference of the immunomodulatory effect among Batch A, B and C on THP-1 cells.