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Identification of differentially expressed (DE) genes with two ormore conditions is an important task for discovery of few biomarker
genes. SignificanceAnalysis ofMicroarrays (SAM) is a popular statistical approach for identification ofDE genes for both small- and
large-sample cases.However, it is sensitive to outlying gene expressions and produces lowpower in presence of outliers.Therefore, in
this paper, an attempt is made to robustify the SAM approach using theminimum 𝛽-divergence estimators instead of themaximum
likelihood estimators of the parameters.We demonstrated the performance of the proposedmethod in a comparison of some other
popular statistical methods such as ANOVA, SAM, LIMMA, KW, EBarrays, GaGa, and BRIDGE using both simulated and real
gene expression datasets. We observe that all methods show good and almost equal performance in absence of outliers for the
large-sample cases, while in the small-sample cases only three methods (SAM, LIMMA, and proposed) show almost equal and
better performance than others with two ormore conditions. However, in the presence of outliers, on an average, only the proposed
method performs better than others for both small- and large-sample cases with each condition.

1. Introduction

Microarray experiments are usually conducted with expres-
sions of huge number of genes (𝐺) and a small number
of experimental samples (𝑛). This unique data structure
has been discovered as a completely new promising area
for the researchers. At the same time, it provides a chal-
lenge to the researchers because of high dimensionality
and its complexity with small sample size. Among this
huge number of genes, discovery of few biomarker genes
those are differentially expressed (DE) between two or more
experimental conditions with multiple patterns is one of
the main objectives of this experiments. These biomarker
genes are important in the diagnosis of different types and
subtypes of diseases for patient prognosis and treatment [1–
3]. Nowadays, researchers are also interested in exploring

the gene coexpression network or interaction of DE genes
to predict the hub genes that are associated with different
types and subtypes of cancer [4]. The most commonly used
statistical tests for the discovery of DE genes between two or
more conditions are t-test or ANOVA (F-test). However, both
testing procedures sometimes produce misleading results to
discover few biomarker genes, because both of them suffer
from small-sample sizes andnormality assumptions, and they
do not share the information of all genes [5]. Therefore,
a gene-specific t-statistic or F-statistic becomes large even
for low differential expressions of genes between two or
more conditions. Thus, the false discovery rate (FDR) may
increase. Tusher et al. [6] introduced a popular statistical
technique to detect the DE genes by assimilating a set of
gene-specific t-tests. This approach is known as Significance
Analysis of Microarrays (SAM). It controls the FDR by
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sharing information of all genes. It does not suffer from the
small-sample sizes and normality assumptions. There is a
close relation between SAM and FDR-based multiple testing
correction approach of Benjamini andHochberg [7]. Because
of low expense and advancement of microarray technology,
SAM has been extensively used in gene expression data
analysis. For example, Li et al. [8] performed an integrative
data analysis to identify the breast cancer subtype-specific
biomarkers by combining copy number aberrations and
miRNA-mRNA dual expression profiling data. Tarhini et al.
[9] identified some immune-related genes that are associated
with neoadjuvant ipilimumab clinical benefit. Wu et al. [10]
detected some potential biomarkers for the diagnosis and
prediction of preeclampsia. Ren et al. [11] identified some
subtype-specific novel biomarkers using colon cancer gene
expression data. However, SAM is very sensitive to outliers. It
produces larger FDR and lower power in presence of outliers.
Therefore, in this paper, an attempt is made to robustify the
SAM [6] approach using theminimum 𝛽-divergencemethod
[12]. Then we investigate the performance of the proposed
method in a comparison of traditional SAM approach as
well as some other popular methods such as ANOVA [13,
14], LIMMA [15], Kruskal-Wallis (KW) [16], empirical Bayes
(EB) [17–19], Gama-Gama model (GaGa) [20], and Bridge
[21] using both simulated and real gene expression datasets.
The paper is organized as follows: Section 2 contains the
formulation of traditional SAM algorithm and proposed
robust SAM algorithm with detailed description. Simulation
and real microarray data analysis are carried out in Section 3.
Finally, we end up with a conclusion.

2. Methods

Let 𝑥𝑖𝑗 be the 𝑖th gene expression for the 𝑗th samples (𝑖 =1, 2, . . . , 𝐺; 𝑗 = 1, 2, . . . , 𝑛𝑘; 𝑘 = 1, 2). Also let 𝜇𝑖𝑘 denote
the mean of the 𝑖th gene for kth condition. Then we would
like to test the hypothesis H0: 𝜇𝑖1 = 𝜇𝑖2 versus H1: 𝜇𝑖1 ̸= 𝜇𝑖2
which implies that H0: 𝜇𝑖1 − 𝜇𝑖2 = 0 versus H0 is not true. A
gene is said to be equally expressed (EE) if H0 is accepted;
otherwise it is DE. If 𝜇𝑖𝑘 denotes the sample mean of 𝑖th
gene for 𝑘th condition and 𝑠2𝑖 denotes the pooled within-class
sample variance then the formula of two-sample t-test to test
the above null-hypothesis is as follows:

𝑡𝑖 = 𝑟𝑖𝑠𝑖 , (1)

where
𝑟𝑖 = 𝜇𝑖1 − 𝜇𝑖2,
𝑠𝑖 = [𝑎 {(𝑛1 − 1) �̂�2𝑖1 + (𝑛2 − 1) �̂�2𝑖2}]1/2 .

(2)

Here, 𝑎 = 1/∑𝑘(𝑛𝑘 − 1) ⋅ (∑𝑘(1/𝑛𝑘)),
𝜇𝑖𝑘 = ∑

𝑗

𝑥𝑖𝑗𝑛𝑘
�̂�2𝑖𝑘 = 1𝑛𝑘 − 1∑𝑘 ∑𝑗 (𝑥𝑖𝑗 − 𝜇𝑖𝑘)

2 .
(3)

The t-statistic given in (1) follows the t-distribution with(𝑛1 + 𝑛2 − 2) degrees of freedom. As early mentioned
this test statistic increases the FDR for small-sample cases.
To overcome this problem Tusher et al. [6] proposed a
modification of the t-statistic by adding a constant 𝑠0 to
the denominator, which is known as the test statistic of
Significance Analysis of Microarrays (SAM) algorithm. This
statistic is defined as follows:

𝑡SAM𝑖 = 𝑟𝑖𝑠𝑖 + 𝑠0 , (4)

where 𝑠0 is the percentile of the distribution of 𝑠𝑖. For 𝑘 >2 conditions, the modified t-statistic in (4) is defined in
terms of Fisher’s linear discriminant, assuming 𝑛 samples
consist of 𝑚 nonoverlapping subsets, such that the response
parameter 𝑦𝑗 ∈ {1, 2, . . . , 𝑚}, 𝐶𝑘 = {𝑗: 𝑦𝑗 = 𝑘}, and 𝑛𝑘 is the
number of expressions in 𝐶𝑘. Then the scores 𝑟𝑖 and standard
deviation 𝑠𝑖 in (4) are replaced by the following two equations,
respectively:

𝑟𝑖 = [{∑𝑗∈𝐶𝑘 𝑛𝑘∏𝑛𝑘 } 𝑚∑
𝑘=1

𝑛𝑘 (𝜇𝑖𝑘 − 𝜇𝑖)2]
1/2

𝑠𝑖 = [𝑎 {(𝑛1 − 1) �̂�2𝑖1 + (𝑛2 − 1) �̂�2𝑖2 + ⋅ ⋅ ⋅
+ (𝑛𝑘 − 1) �̂�2𝑖𝑘}]1/2 ,

(5)

where 𝜇𝑖 = ∑𝑘 𝑛𝑘𝜇𝑖𝑘/∑𝑘 𝑛𝑘. For the details about SAM
procedure visit http://statweb.stanford.edu/∼tibs/SAM/.

However, the test statistic given in (4) produces mis-
leading results in presence of outliers, since 𝜇𝑖𝑘 and �̂�2𝑖𝑘 in
(2) and (5) are sensitive to outliers. Therefore, in this paper,
an attempt is made to robustify the test statistic, 𝑡SAM𝑖 , in
(4) by minimum 𝛽-divergence method. The minimum 𝛽-
divergence estimators �̂�𝑖𝑘,𝛽 = (𝜇𝑖𝑘,𝛽, �̂�2𝑖𝑘,𝛽) of the parameters
𝜃𝑖𝑘 = (𝜇𝑖𝑘, 𝜎2𝑖𝑘) are computed iteratively as follows:

𝜇𝑖𝑘,𝑡+1 = 𝛿 ∑
𝑗∈𝐶𝑘

𝜑𝛽 (𝑥𝑖𝑗 | 𝜃𝑖𝑘,𝑡) 𝑥𝑖𝑗,
𝜎2𝑖𝑘,𝑡+1 = (𝛽 + 1) 𝛿 ∑

𝑗∈𝐶𝑘

𝜑𝛽 (𝑥𝑖𝑗 | 𝜃𝑖𝑘,𝑡) (𝑥𝑖𝑗 − 𝜇𝑖𝑘,𝑡)2 ,
(6)

where 𝛿 = 1/∑𝑗∈𝐶𝑘 𝜑𝛽(𝑥𝑖𝑗 | 𝜃𝑖𝑘,𝑡). Here
𝜑𝛽 (𝑥𝑖𝑗 | 𝜃𝑖𝑘,𝑡) = exp{− 𝛽

2𝜎2
𝑖𝑘

(𝑥𝑖𝑗 − 𝜇𝑖𝑘)2} , (7)

which is known as 𝛽-weight function. This weight func-
tion was first introduced in [12] for the robustification
of prewhitening procedure to improve the performance of
independent component analysis (ICA) algorithms for blind
source separation (BSS). It was generalized in [22] for the
robust extraction of local principal components. Then it
was used in [23] for the robustification of empirical Bayes
approach [18] to identify DE genes between two conditions.

http://statweb.stanford.edu/~tibs/SAM/
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It was also used in [24] to improve one-way ANOVA for the
robust and efficient estimation of DE genes with multiple
patterns. Note that if 𝛽 = 0, the minimum 𝛽-divergence
estimators �̂�𝑖𝑘,𝛽 = (𝜇𝑖𝑘,𝛽, �̂�2𝑖𝑘,𝛽) reduce to classical maximum
likelihood estimators (MLEs) �̂�𝑖𝑘 = (𝜇𝑖𝑘, �̂�2𝑖𝑘). Since, in
absence of outliers, the MLEs of Gaussian distribution are
consistent and asymptotically efficient [25], therefore, in this
paper, the MLEs are used in absence of outliers and in
presence of outliers, the minimum 𝛽-divergence estimators
are used for the estimation of 𝜃𝑖𝑘 in SAM approach. We can
apply our proposed SAM approach in two ways. One way
is to select the 𝛽 using the cross validation (CV) which was
discussed in detail in [12, 22]. The CV approach produces𝛽 = 0 in absence of outliers, while 𝛽 > 0 in presence
of outliers. The minimum 𝛽-divergence estimators in (6)
with 𝛽 = 0 are equivalent to MLEs in (3) as mentioned
previously. Thus the minimum 𝛽-divergence estimators with
an appropriate 𝛽 selection by CV produce both robust

and efficient estimates for the parameters. However, in our
current problem, it would be time-consuming, since CV
approach needs to be applied for each gene of the entire
genome in each condition separately to select the appropriate𝛽. To overcome this problem, in this paperwe consider outlier
detection approach based on 𝛽-weight function with a fixed𝛽 > 0. The value of 𝛽-weight function lies between 0 and 1. It
produces larger weights with the usual gene expressions and
smaller weights with the unusual/outlying gene expressions
for a wide range of 𝛽 > 0 [12, 22]. By assigning low weights to
outliers, the estimators become robust.The larger 𝛽 increases
the robustness of estimators but decreases the efficiency,
while the smaller 𝛽 increases the efficiency but decreases the
robustness. Thus the value of 𝛽 controls the balance between
the robustness and efficiency of the estimators. Therefore, in
this paper, we fix 𝛽 = 0.2 for outlier detection using 𝛽-weight
function which was also used in [24]. A value (𝑥𝑖𝑗) of gene
expression is classified as usual or unusual based on this 𝛽-
weight function as follows:

𝜑𝛽 (𝑥𝑖𝑗 | �̂�𝑖𝑘,𝛽) = {{{
≤𝜆𝑖, If 𝑗th expression for 𝑖th gene is contaminated by outlier in the 𝑘th condition

> 𝜆𝑖, otherwise,
(8)

where we fix the cutoff value 𝜆𝑖 = min(0.2, 𝜆𝑖0), since 𝛽-
weights lie between 0 and 1 and smaller weights occur with
unusual/outlying gene expressions. Here 𝜆𝑖0 is calculated by
the following equation:

𝜆𝑖0 = min (𝜑𝛽 (𝑥𝑖𝑗 | �̂�𝑖𝑘,𝛽))
+ 𝛾 [max (𝜑𝛽 (𝑥𝑖𝑗 | �̂�𝑖𝑘,𝛽)) −min (𝜑𝛽 (𝑥𝑖𝑗 | �̂�𝑖𝑘,𝛽))]

∀𝑖, 𝑗, 𝑘,
(9)

which was also used in [22]. Here, 𝛾 is a smaller quantity;
in our analysis we consider 𝛾 = 0.1. After convergence of
(6), we obtained the robust estimates �̂�𝑖𝑘,𝛽 = (𝜇𝑖𝑘,𝛽, �̂�2𝑖𝑘,𝛽)
of the parameters 𝜃𝑖𝑘 = (𝜇𝑖𝑘, 𝜎2𝑖𝑘). Then we combine the
MLEs andminimum 𝛽-divergence estimators to estimate the
parameters 𝜃𝑖𝑘 = (𝜇𝑖𝑘, 𝜎2𝑖𝑘) as follows:

�̂�
∗

𝑖𝑘 = {{{
�̂�𝑖𝑘,𝛽, If 𝑖th gene expression is contaminated by outlier in the 𝑘th condition

�̂�𝑖𝑘, otherwise.
(10)

3. Results and Discussion

To demonstrate the performance of the proposed method
in a comparison of other popular methods (ANOVA, SAM,
LIMMA, KW, EB, GAGA, and BRIDGE), we used both
simulated and real microarray gene expression datasets. We
used five R packages of other methods such as samr, limma,
EBarrays, gaga, and bridge. The performance measures AUC
and pAUC were computed for each of the methods using
ROC package. All R packages are available in the comprehen-
sive R archive network (cran) or bioconductor.

3.1. Performance Evaluation. In order to investigate the
performance of the proposed method in a comparison of

some other popular methods for binary class prediction
such as DE or EE, we use different performance mea-
sures including the receiving operating characteristic (ROC)
curve, area under the ROC curve (AUC), and partial AUC
(pAUC) derived through the confusion matrix as shown in
Table 1.

We compute different performance index based on the
confusion matrix as follows:

True positive rate (TPR) = 𝑛TP/(𝑛TP + 𝑛FN), true
negative rate (TNR) = 𝑛TN/(𝑛TN + 𝑛FP).
False positive rate (FPR) = 𝑛FP/(𝑛FP + 𝑛TN), false
negative rate (FNR) = 𝑛FN/(𝑛FN + 𝑛TP).
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Table 1

Predicted status True status
DE EE

DE True positives (TP) False positives (FP)
(type I error)

EE False negatives (FN)
(type II error) True negatives (TN)

False discovery rate (FDR) = 𝑛FP/(𝑛TP + 𝑛FP), mis-
classification error rate (MER) = (𝑛FP+𝑛FN)/(𝑛TP+𝑛TN + 𝑛FP + 𝑛FN).
Power = 1 − FNR, where 𝑛TP denotes the number of
true positives and so on.

A method is said to be good performer if it produces higher
values of TPR, TNR, AUC, pAUC, and power and smaller
values of FPR, FNR, FDR, and MER.

3.2. Data GeneratingModel. We used the following statistical
model to generate simulated data with known characteristics:

𝑥𝑖𝑗 = 𝜇𝑖𝑘 + 𝜖𝑖𝑗;
(𝑖 = 1, 2, . . . , 𝐺; 𝑗 = 1, 2, . . . , 𝑛𝑘; 𝑘 = 1, 2, . . . , 𝑚) , (11)

where 𝑥𝑖𝑗 is the 𝑖th gene expression for the jth samples, 𝜇𝑖𝑘 is
the mean of all expressions of 𝑖th gene in the 𝑘th condition,
and 𝜖𝑖𝑗 is the random error term which follows𝑁(0, 𝜎2). The
outlying datasets were generated by replacing at most 5% of
the expression values from 𝑛 = 𝑛1 + 𝑛2 + ⋅ ⋅ ⋅ + 𝑛𝑘 samples by
outliers using

𝑥∗𝑖𝑗 = 𝑧 + 2 ∗max (𝑥𝑖𝑗; 𝑖 = 1, 2, . . . , 𝐺; 𝑗
= 1, 2, . . . , 𝑛𝑘; 𝑘 = 1, 2, . . . , 𝑚) ,

(12)

where 𝑧 ∈ (5, 10) is an arbitrarily fixed value.

3.2.1. Simulation Study 1. To investigate the performance
of the proposed robust SAM in a comparison with the
traditional SAM approach, we generated a dataset using (11)
with 𝐺 = 1, 000 genes, and 𝑛 = 20 samples, 10 each
in condition 1 and condition 2. There are 100 DE genes in
this dataset (50 upregulated and 50 downregulated). Then
we employed SAM and proposed method in this dataset
to determine the DE genes. Figures 1(a) and 1(b) represent
the Q-Q plots for this dataset using SAM and proposed
method. In this figure, the number of genes above the band
in the upper right (red color) and below the band in the
bottom left (green color) indicates the number of upregulated
and downregulated DE genes, respectively. We observed that
both SAM and our proposed method identified 88 true DE
genes with Δ = 0.2 considering 12 false positives on an
average. To evaluate the performance of these two methods
in presence of outliers, we generate the outlying dataset
using (12). We consider one outlier in each of 10% genes.
Then we employed these methods in the outlying dataset to

identify the DE genes. Figures 1(c) and 1(d) show the Q-Q
plots using this outlying dataset. We can clearly see from
Figure 1(c) that there are only 19 true DE genes identified
by the SAM with Δ = 0.1 considering 42 false positives
on an average, whereas in Figure 1(d) the proposed method
identified 86 true DE genes with Δ = 0.2 considering 14 false
positives on an average. The plots of smallest 𝛽-weight for
each of 1000 genes are displayed in Figures S1(a) and S1(b)
in the supporting file (see Supplementary Material available
online at https://doi.org/10.1155/2017/5310198) in absence and
presence of outliers, respectively. Cleary we observe that,
in absence of outliers, 𝛽-weight function produces larger
weights and in presence of outliers, it produces smaller
weights (almost close to zero) for unusual/outlying gene
expressions. The outlier genes are indicated in red color (see
Figure S1(b)). So wemay conclude that our proposedmethod
performs better in both situations, in absence and presence of
outliers.

3.2.2. Simulation Study 2. To investigate the performance of
the proposed method in a comparison of the other seven
popular methods as early mentioned for 𝑘 = 2 conditions, we
performed 100 simulations to generate 100 datasets for both
small- (𝑛1 = 𝑛2 = 3) and large- (𝑛1 = 𝑛2 = 25) sample
cases using (11). We set the arbitrary values (𝜇𝑖1, 𝜇𝑖2) ∈ (3, 5)
and 𝜎2 = 0.3 for datasets generated from each simulation.
Each dataset for each case represented the gene expression
profiles of 𝐺 = 10, 000 genes, with 𝑛 = (𝑛1 + 𝑛2) samples.
The proportions of DE (pde) gene were set to 0.02, 0.04,
0.06, 0.08, and 0.1 for each of the 100 datasets. For these
values, the theoretical numbers of DE genes are, respectively,
200, 400, 600, 800, and 1,000. To evaluate the performance
of all the methods in presence of outliers, we generated 100
outlying datasets from each of the original datasets using (12).
We consider one or two outliers in each of 10%, 20%, and
50% genes for each datasets. We computed average values
of different performance measures such as TPR, TNR, FPR,
FNR, FDR, AUC, and power based on 200, 400, 600, 800, and
1,000 estimated DE genes by eight methods (ANOVA, SAM,
LIMMA, KW, EB, GAGA, BRIDGE, and proposed) for each
of 100 datasets. Figure 2 and Figure S2 show the ROC curve
based on 400 estimated DE genes by each of the methods, in
absence and presence of one or two outliers in each of 10%,
20%, and 50% genes for both small- and large-sample cases,
respectively.We observe that all the eightmethods performed
almost similarly in absence of outliers for both small- and
large-sample cases, except ANOVA for small-sample case
(see Figure 2(a)). But in presence of outliers, the proposed
method outperforms the other seven methods for small-
sample case (see Figures 2(b)–2(d)). In this case BRIDGE
also performs better. For large-sample case in presence of
outliers, KW, BRIDGE, and proposed method perform well
(see Figures S2(b)–S2(d)). Figure 3 represents the barplot
of power estimated by different methods associated with
varying proportions of DE gene in both absence and presence
of outliers for small-sample case. Figures 4 and 5 show the
boxplots of AUC values based on 100 simulated datasets by
each of the methods in absence and presence of outliers for
small- and large-sample cases, respectively. The panels (a),

https://doi.org/10.1155/2017/5310198


BioMed Research International 5

0.0 0.5 1.0
Expected score

−1.0 −0.5

−6

−4

−2

O
bs

er
ve

d 
sc

or
e

0

2

4

SAM

(a)

0.0 0.5 1.0 1.5
Expected score

−1.0−1.5 −0.5

−6

−4

−2

O
bs

er
ve

d 
sc

or
e

0

2

4

Proposed

(b)

0 1 2
Expected score

−2 −1

−6

−4

−2O
bs

er
ve

d 
sc

or
e

0

2

6

4

SAM

(c)

0.0 0.5 1.0
Expected score

−1.0 −0.5

−6

−4

−2

O
bs

er
ve

d 
sc

or
e

0

2

4

Proposed

(d)

Figure 1: Performance evaluation usingQ-Q plot for detection of DE genes by SAM and proposed method. (a-b) In absence of outliers. (c-d)
In presence of outliers.

(b), (c), (d), and (e) in Figures 4 and 5 show the boxplots
of AUC values using the five values for parameter pde, 0.02,
0.04, 0.06, 0.08, and 0.1, respectively, for small- and large-
sample cases. Similar results are found from these boxplots
and barplots for all pde values like ROC curve. Table 2
represents the average FDR estimated by eightmethods based
on 100 simulated datasets with pde 2%, 4%, 6%, 8%, and 10%
in absence and presence of outliers for both small- and large-
sample cases. In this table the results within the brackets (⋅),{⋅}, and [⋅] indicate estimated FDR by different methods in
presence of one or two outliers in each of 10%, 20%, and
50% genes, respectively. From this table we also draw similar
interpretations like ROC curve, boxplots, and barplots. So
we may conclude that on an average the proposed method
performed well compared to the other seven methods with𝑘 = 2 conditions both in absence and in presence of outliers.

3.2.3. Simulation Study 3. To demonstrate the performance
of the proposed method in a comparison of other popular

methods for 𝑘 > 2 conditions with multiple patterns, we
generated 100 datasets for both small- (𝑛1 = 𝑛2 = 𝑛3 =𝑛4 = 3) and large- (𝑛1 = 𝑛2 = 𝑛3 = 𝑛4 = 25) sample cases
using (11). Each dataset was generated for (𝜇𝑖1, 𝜇𝑖2, 𝜇𝑖3, 𝜇𝑖4) ∈(3, 5) and 𝜎2 = 0.1. Each dataset contains the expression
values for 𝐺 = 10, 000 genes with 𝑛 = (𝑛1 + 𝑛2 + 𝑛3 +𝑛4) samples. The proportion of DE gene was fixed at 0.02
for each of the datasets. We generated the outlying gene
expression datasets using (12) as before. We investigated the
performance of the proposed method in a comparison of
the other popular methods that are suitable for multiple-
comparison tests (ANOVA, KW, SAM, and LIMMA). We
first applied these methods to classify DE or EE genes and
estimated different performance measures such as AUC,
pAUC, MER, and FDR by these methods. Results obtained
from these methods are presented in Table 3.

From this table we observe that, for small-sample case
in absence of outliers, three methods (SAM, LIMMA, and
proposed) exhibited better performance (AUC > 80%) than
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Table 2: Performance evaluation of different methods using average values of FDR associated with varying proportions of DE gene.

Percentage of DE gene ANOVA KW SAM LIMMA EB GAGA BRIDGE Proposed
Average FDR for small-sample case (𝑛1 = 𝑛2 = 3)

2%

0.355 0.205 0.215 0.210 0.260 0.405 0.380 0.215
(0.755) (0.710) (0.735) (0.740) (0.785) (0.780) (0.485) (0.210)
{0.760} {0.715} {0.730} {0.740} {0.845} {0.780} {0.475} {0.225}
[0.650] [0.600] [0.630] [0.620] [0.820] [0.680] [0.625] [0.235]

4%

0.280 0.152 0.165 0.168 0.222 0.347 0.322 0.165
(0.748) (0.720) (0.720) (0.720) (0.785) (0.775) (0.390) (0.168)
{0.735} {0.710} {0.715} {0.715} {0.840} {0.780} {0.385} {0.172}
[0.595] [0.575] [0.572] [0.572] [0.792] [0.632] [0.398] [0.200]

6%

0.287 0.197 0.205 0.198 0.252 0.367 0.342 0.200
(0.738) (0.725) (0.725) (0.728) (0.798) (0.782) (0.372) (0.207)
{0.723} {0.717} {0.713} {0.718} {0.817} {0.765} {0.365} {0.208}
[0.578] [0.575] [0.575] [0.573] [0.787] [0.653] [0.390] [0.227]

8%

0.266 0.181 0.196 0.191 0.231 0.318 0.296 0.196
(0.728) (0.720) (0.710) (0.719) (0.669) (0.761) (0.329) (0.195)
{0.728} {0.722} {0.716} {0.720} {0.821} {0.759} {0.332} {0.192}
[0.578] [0.570] [0.570] [0.570] [0.774] [0.640] [0.346] [0.210]

10%

0.239 0.152 0.165 0.156 0.190 0.303 0.285 0.165
(0.585) (0.574) (0.563) (0.571) (0.569) (0.639) (0.305) (0.163)
{0.715} {0.712} {0.710} {0.711} {0.822} {0.766} {0.317} {0.161}
[0.564] [0.553] [0.563] [0.563] [0.773] [0.646] [0.310] [0.178]

Average FDR for large-sample case (𝑛1 = 𝑛2 = 25)

2%

0.075 0.080 0.060 0.060 0.110 0.115 0.110 0.060
(0.500) (0.105) (0.470) (0.495) (0.570) (0.580) (0.145) (0.065)
{0.540} {0.105} {0.525} {0.520} {0.580} {0.590} {0.130} {0.060}
[0.405] [0.095] [0.410] [0.400] [0.485] [0.480] [0.125] [0.070]

4%

0.082 0.087 0.085 0.085 0.115 0.117 0.115 0.085
(0.510) (0.115) (0.458) (0.500) (0.540) (0.560) (0.148) (0.082)
{0.515} {0.102} {0.525} {0.515} {0.568} {0.582} {0.125} {0.088}
[0.408] [0.102] [0.420] [0.410] [0.480] [0.498] [0.125] [0.088]

6%

0.090 0.092 0.088 0.086 0.101 0.111 0.11 0.088
(0.515) (0.118) (0.453) (0.510) (0.530) (0.533) (0.145) (0.088)
{0.487} {0.113} {0.480} {0.490} {0.533} {0.552} {0.127} {0.093}
[0.400] [0.113] [0.403] [0.398] [0.460] [0.467] [0.125] [0.087]

8%

0.070 0.070 0.06 0.072 0.096 0.115 0.109 0.069
(0.460) (0.104) (0.384) (0.450) (0.459) (0.459) (0.134) (0.069)
{0.493} {0.101} {0.471} {0.486} {0.522} {0.544} {0.122} {0.075}
[0.398] [0.081] [0.416] [0.398] [0.465] [0.471] [0.120] [0.075]

10%

0.062 0.063 0.057 0.057 0.075 0.091 0.087 0.059
(0.361) (0.079) (0.299) (0.347) (0.355) (0.363) (0.104) (0.060)
{0.477} {0.089} {0.437} {0.468} {0.494} {0.521} {0.103} {0.061}
[0.395] [0.080] [0.409] [0.396] [0.443] [0.458] [0.098] [0.063]

In this table the values within the brackets (⋅), {⋅}, and [⋅] represent the average values of FDR estimated by different methods (ANOVA, KW, SAM, LIMMA,
EB, GAGA, BRIDGE, and proposed) in presence of one or two outliers in each of 10%, 20%, and 50% genes, respectively.
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Figure 2: Performance evaluation using ROC curve produced by different methods for small-sample case (𝑛1 = 𝑛2 = 3). (a) In absence of
outliers. (b) One outlier with each of 10% genes. (c) One outlier with each of 20% genes. (d) One outlier with each of 50% genes.

ANOVA and KW. KW performs worse in this case. But in
presence of outliers, the proposedmethod outperforms other
methods, producingmore stable and consistent results (lower
FDR and higher AUC, pAUC values). On the other hand,
for large-sample case KW and proposed method performed
well compared to the other methods (ANOVA, SAM, and
LIMMA), in presence of outliers. Our proposed method
exhibited slightly better performance than KW in this case,
whereas in absence of outliers, they performed similarly. For
both cases the Benjamini-Hochberg (BH) method was used
to adjust the 𝑝 values for each of the methods. Figure S3

represents the boxplots ofMER values estimated by these five
methods based on 200 DE genes in absence and presence
of outliers for small-sample case. This figure also supports
the results of Table 3. To demonstrate the pattern-detection
performance of these methods, we again generated 100
datasets using (11).This time we consider the gene expression
profiles for 𝐺 = 1, 000 genes with 300 DE genes for sample
size of 3 in each condition. These 300 DE genes consist of
four different patterns.These patterns are shown in Figure S4.
Table 4 represents the performance of different methods for
detection of up- and downregulated genes in ( 42 ) = 6 pairs
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Figure 3: Performance evaluation using barplot of power estimated by different methods associated with varying proportions of DE gene.
(a) In absence of outliers. (b) One outlier with each of 10% genes. (c) One outlier with each of 20% genes. (d) One outlier with each of 50%
genes. Powers were estimated by eight methods (ANOVA, KW, SAM, LIMMA, EB, GAGA, BRIDGE, and proposed) based on top 200, 400,
600,800, and 1000 genes for small-sample case (𝑛1 = 𝑛2 = 3).

with 𝑘 = 4 conditions for small-sample case. In this table
the values within the bracket (𝑥, 𝑥) represents the number of
true up- and downregulated (UR, DR) DE genes in 6 pairs
of conditions and the values within the brackets {𝑥, 𝑥} and[𝑥, 𝑥] represent the number of predicted (UR, DR) genes by
five methods (ANOVA, KW, SAM, LIMMA, and proposed)
and correctly detected number of (UR,DR)DEgenes by these
methods in absence and presence of one outlier in each of 10%

genes.Weobserved that, in absence of outliers, threemethods
(SAM, LIMMA, and proposed) perform well for detecting of
number of (UP, DR) genes in different pairs. KW performed
badly in this case compared to ANOVA, whereas, in presence
of outliers, the proposedmethod performed better than other
methods (ANOVA, KW, SAM, and LIMMA). So, from this
simulated study, we may conclude that the proposed method
outperforms other methods in presence of outliers and in
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Figure 4: Continued.
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Figure 4: Performance evaluation using boxplot of AUC values estimated by different methods associated with varying proportions of DE
gene.The panels (a), (b), (c), (d), and (e) represent the boxplot of AUC values estimated by eight methods (ANOVA, KW, SAM, LIMMA, EB,
GAGA, BRIDGE, and proposed) for small-sample case (𝑛1 = 𝑛2 = 3) at proportions of DE gene 0.02, 0.04, 0.06, 0.08, and 0.1, respectively, in
absence and presence of one outlier in each of 10%, 20%, and 50% genes. 100 simulations were performed to obtain these results.

Table 3: Performance evaluation of different methods using AUC, pAUC, and FDR values for both small- and large-sample cases.

Performance measures ANOVA KW SAM LIMMA Proposed
For small-sample case (𝑛1 = 𝑛2 = 𝑛3 = 𝑛4 = 3)

AUC

0.764 0.196 0.832 0.834 0.832
(0.279) (0.102) (0.192) (0.279) (0.839)
{0.287} {0.099} {0.194} {0.289} (0.819)
[0.084] [0.009] [0.177] [0.097] [0.839]

pAUC

0.152 0.038 0.166 0.166 0.166
(0.055) (0.019) (0.038) (0.055) (0.167)
{0.057} {0.019} {0.038} {0.057} {0.163}
[0.016] [0.019] [0.035] [0.019] [0.167]

FDR

0.235 0.802 0.167 0.165 0.167
(0.720) (0.897) (0.807) (0.720) (0.160)
{0.712} {0.900} {0.805} {0.710} {0.180}
[0.915] [0.900] [0.822] [0.902] [0.160]

For large-sample case (𝑛1 = 𝑛2 = 𝑛3 = 𝑛4 = 25)

AUC

0.957 0.957 0.957 0.957 0.957
(0.446) (0.864) (0.594) (0.446) (0.937)
{0.432} {0.874} {0.614} {0.432} {0.947}
[0.227] [0.857] [0.487] [0.227] [0.947]

pAUC

0.191 0.191 0.191 0.191 0.191
(0.088) (0.172) (0.118) (0.088) (0.187)
{0.086} {0.174} {0.122} {0.086} {0.189}
[0.045] [0.171] [0.097] [0.045] [0.188]

FDR

0.042 0.042 0.045 0.042 0.042
(0.552) (0.135) (0.405) (0.552) (0.062)
{0.567} {0.125} {0.385} {0.567} {0.052}
[0.772] [0.145] [0.512] [0.772] [0.057]

In this table the values within the brackets (⋅), {⋅}, and [⋅] represent the summary statistics estimated by different methods (ANOVA, KW, SAM, LIMMA, and
proposed) in presence of one or two outliers in each of 10%, 20%, and 50% genes, respectively.
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Figure 5: Continued.
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Figure 5: Performance evaluation using boxplot of AUC values estimated by different methods associated with varying proportions of DE
gene.The panels (a), (b), (c), (d), and (e) represent the boxplot of AUC values estimated by eight methods (ANOVA, KW, SAM, LIMMA, EB,
GAGA, BRIDGE, and proposed) for large-sample case (𝑛1 = 𝑛2 = 25) at proportions of DE gene 0.02, 0.04, 0.06, 0.08, and 0.1, respectively,
in absence and presence of one outlier in each of 10%, 20%, and 50% genes. 100 simulations were performed to obtain these results.

Table 4: Performance evaluation of different methods for detection of up- and downregulated genes in 6 pairs with 𝑘 = 4 conditions for
small-sample case (𝑛1 = 𝑛2 = 𝑛3 = 𝑛4 = 3).
Methods Pairwise comparison

1vs2 1vs3 1vs4 2vs3 2vs4 3vs4
In absence of outliers

True (UR, DR) (100, 30) (100, 120) (100, 50) (30, 120) (30, 50) (120, 50)

ANOVA {75, 20} {72, 85} {75, 45} {24, 83} {26, 43} {89, 40}
[72, 18] [69, 79] [71, 40] [22, 82] [22, 40] [82, 39]

SAM {110, 35} {105, 123} {106, 55} {35, 125} {38, 59} {127, 55}
[95, 30] [93, 111] [93, 49] [29, 114] [30, 49] [114, 48]

LIMMA {86, 28} {98, 112} {90, 48} {28, 113} {30, 47} {114, 49}
[85, 27] [92, 107] [87, 47] [26, 108] [27, 45] [108, 45]

KW {25, 12} {23, 33} {30, 25} {12, 35} {12, 17} {36, 19}
[18, 6] [19, 28] [22, 16] [5, 29] [5, 15] [32, 13]

Proposed {106, 34} {104, 125} {105, 56} {36, 127} {37, 56} {128, 56}
[93, 29] [93, 116] [100, 49] [30, 116] [30, 49] [117, 50]

In presence of one outlier with each of 10% genes
True (UR, DR) (100, 30) (100, 120) (100, 50) (30, 120) (30, 50) (120, 50)

ANOVA {28, 10} {28, 40} {27, 11} {12, 37} {11, 18} {37, 14}
[27, 8] [25, 38] [25, 11] [9, 36] [9, 17] [34, 12]

SAM {75, 35} {78, 90} {74, 50} {28, 82} {31, 40} {84, 38}
[62, 19] [65, 75] [59, 31] [17, 72] [17, 26] [74, 29]

LIMMA {43, 23} {42, 62} {44, 26} {20, 56} {20, 26} {61, 30}
[37, 13] [32, 52] [35, 19] [12, 50] [13, 20] [49, 19]

KW {23, 9} {13, 19} {22, 10} {6, 21} {6, 13} {22, 13}
[21, 4] [10, 17] [16, 5] [4, 18] [3, 9] [17, 9]

Proposed {109, 33} {111, 119} {104, 56} {35, 116} {41, 59} {122, 61}
[86, 27] [87, 113] [83, 47] [23, 105] [26, 45] [113, 49]

In this table the values within the bracket (𝑥, 𝑥) represent the number of true up- and downregulated (UR, DR) DE genes in 6 pairs and the values within
the brackets {𝑥, 𝑥} and [𝑥, 𝑥] represent the number of predicted (UR, DR) genes by five methods (ANOVA, KW, SAM, LIMMA, and proposed) and correctly
detected number of (UR, DR) DE genes by these methods in both absence and presence of one outlier with each of 10% genes.



BioMed Research International 13

absence of outliers it keeps equal performance with other
methods.

3.3. Real Microarray Data. To evaluate the performance of
the proposed method in a comparison of the other seven
methods as mentioned earlier, we used four microarray
datasets. The first dataset is the Colon Cancer dataset [26]
which consists of 22 control and 40 colon cancer samples.
The second dataset is the Leukemia dataset [27]. The third
dataset is the Platinum Spike dataset [28], which consists of
18 spike-in samples (9 controls versus 9 tests).The last dataset
is the Breast Cancer dataset [29], which included 3226 genes
measured on 22 breast cancer samples (7 sporadic, 7 BRCA-1,
and 8 BRCA-2).

3.3.1. Colon Cancer Microarray Dataset. We used the colon
cancer gene expression dataset. The dataset was downloaded
from http://microarray.princeton.edu/oncology and was also
used in the study [26]. The number of genes in this dataset
is 2000. Figure 6(a) represents the Venn diagram of top 100
genes estimated by ANOVA, SAM, LIMMA, and proposed
method. From this Venn diagram, we clearly observe that
our proposedmethod sharesmore genes with othermethods.
We further compared the performance of proposed method
with two robust methods (KW and BRIDGE) and SAM (see
Figure 6(b)). This comparison also revealed that proposed
method shares more genes with SAM than KW or BRIDGE
methods. There were 57 genes detected as common by these
four methods. The proposed method also shared 18 genes
with the SAM and KWmethods, which were not detected by
the BRIDGE method.

3.3.2. Leukemia Microarray Dataset. This dataset was used
in the study [27] and contains 7129 gene expressions for
72 leukemia samples in which 47 samples are acute lym-
phoblastic leukemia and 25 samples are acute myeloblastic
leukemia.The results obtained fromANOVA, SAM, LIMMA,
and proposed method based on top 100 estimated DE genes
are presented in a Venn diagram in Figure 6(c). This figure
shows that larger number of genes (86) is detected by these
4 methods. SAM and proposed method shared more genes
(7) in this case. When comparing the proposed method with
other robust methods (KW and BRIDGE) and SAM (see
Figure 6(d)), we observed that 45 genes are common with
thesemethods.The proposedmethod sharesmore genes with
SAM than KW or BRIDGE methods. The proposed method
also shared 20 genes with the SAM and KWmethods, which
were not detected by the BRIDGE method.

3.3.3. Platinum Spike Microarray Dataset. We downloaded
Affymetrix CEL format files from the GEO website with
accession number GSE21344 and we applied robust mul-
tiarray average (RMA) to obtain signals for probes. The
designated FC associated with these probes is downloaded
fromhttp://www.biomedcentral.com/content/supplementary/
1471-2105-11-285-s5.txt. After RMA preprocessing, normal-
ization, and dropout of the MC and MF values, we obtained
18707 probes. In this dataset the valid 1944 DE genes

are known with different FC values. Then we applied the
eight methods (ANOVA, KW, SAM, LIMMA, EB, GAGA,
BRIDGE, and proposed) in this dataset to estimate different
performance measures TPR, TNR, FPR, FNR, FDR, and
AUC. We also investigate performance of all the methods
in presence of outliers. We consider one outlier with 20%
of valid DE genes using (12). The results are summarized in
Table A1 in supporting file. From this table, we observed that
all the eight methods perform almost similar, in absence of
outliers, whereas in presence of outliers, BRIDGE and pro-
posed method performed better than the other six methods
(ANOVA, KW, SAM, LIMMA, EB, and GAGA). To evaluate
the performance of these methods in the small number
of samples, we selected the small subsets of samples from
control and test group of patients. To select the subsamples
we repeatedly took sample size 3 from 9 control and 9 test
group patients and calculated the 𝑝 value for each gene by
these eight methods. This was repeated 100 times and the
average of 𝑝 values was recorded.The results are summarized
in Table 5. We clearly observed that, in absence of outliers,
three methods (SAM, LIMMA, and proposed) perform well
compared to the other five methods (ANOVA, KW, EB,
GAGA, and BRIDGE). But in presence of outliers, the pro-
posed method outperformed other methods. Figures S5(a)
and S5(b) shows Venn diagram of top 1944 genes detected by
SAM, LIMMA, and proposedmethod and ANOVA, KW, and
proposed method, respectively, with 1944 known valid DE
genes’ set, in absence of outliers.TheVenn diagram in Figures
S5(c) and S5(d) represents the top 1944 genes detected by the
samemethods, in presence of outliers. It is revealed from this
Venn diagram that the proposed method performs better in
both situations by sharing more genes with the valid 1944 DE
genes. Figure 6(e) shows theM-A plot for this dataset.The red
asterisk, blue triangle, and black circle are used for 312, 9, and
40 genes detected by proposed method, LIMMA, and SAM,
respectively, that are common with valid 1944 DE genes’ set
(see Figure S5(c)).

3.3.4. BRCA Microarray Dataset. This data comes from the
breast cancer cDNAmicroarray experiment [29].This dataset
consists of 3226 genes from 22 breast cancer samples, which
are also divided into three classes (7 sporadic, 7 BRCA-1, and
8 BRCA-2) according to their mutational status. Figure 7(a)
represents the Venn diagram of top 100 genes identified
by ANOVA, KW, SAM, LIMMA, and proposed method.
From this Venn diagram we clearly observe that proposed
method identified three genes that were not detected by the
other methods (ANOVA, KW, SAM, and LIMMA). Then
we explored the biological functions of these three genes
(CTNNA1, NFKB1, and TM4SF1) using [30]. From this
website we obtained GO (Gene Ontology), KEGG pathway,
and disease association results. Using the GO database, we
found that these genes are involved in biological processes
and different molecular functions like negative regulation of
programmed cell death, positive regulation of signal trans-
duction, negative regulation of cell death, protein binding,
protein complex, and molecular function (see S1 File (xls)).
Figure S6 shows the Gene Ontology (GO) categories of

http://microarray.princeton.edu/oncology
http://www.biomedcentral.com/content/supplementary/1471-2105-11-285-s5.txt
http://www.biomedcentral.com/content/supplementary/1471-2105-11-285-s5.txt
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Figure 6: Comparison of the top selected genes by different methods for the Colon, Leukemia, and Platinum Spike datasets. Colon dataset,
Venn diagram of top 100 genes estimated by (a) the ANOVA, SAM, LIMMA, and proposed method or by (b) the KW, SAM, BRIDGE, and
proposed method. Leukemia dataset, Venn diagram of top 100 genes estimated by (c) the ANOVA, SAM, LIMMA, and proposed method
or by (d) the KW, SAM, BRIDGE, and proposed method. Platinum Spike dataset, (e) M-A plot for randomly selected small-sample size(𝑛1 = 𝑛2 = 3) from 9 controls and 9 tests samples in presence of one outlier in 20% of 1944 valid DE genes.The red asterisk, blue triangle, and
black circle are used for 312, 9, and 40 genes detected by proposed method, LIMMA, and SAM that are common with valid set (see Figure
S5(c)).
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Table 5: Performance evaluation of different methods based on Spike gene expression dataset for randomly chosen subsamples of size 3 from
each condition.

Methods TPR TNR FPR FNR FDR AUC
In absence of outliers

ANOVA 0.787 0.975 0.024 0.213 0.213 0.784
KW 0.788 0.975 0.024 0.211 0.219 0.781
SAM 0.821 0.979 0.020 0.178 0.175 0.820
LIMMA 0.816 0.978 0.021 0.183 0.186 0.814
EB 0.644 0.958 0.041 0.356 0.356 0.642
GAGA 0.598 0.953 0.046 0.401 0.407 0.595
BRIDGE 0.644 0.958 0.041 0.355 0.355 0.642
Proposed 0.821 0.978 0.021 0.185 0.175 0.820

In presence of one outlier in 20% of 1944 DE genes
ANOVA 0.630 0.957 0.043 0.370 0.370 0.622
KW 0.620 0.955 0.044 0.380 0.380 0.611
SAM 0.730 0.968 0.031 0.270 0.270 0.726
LIMMA 0.720 0.967 0.032 0.284 0.284 0.712
EB 0.114 0.897 0.102 0.885 0.885 0.111
GAGA 0.608 0.954 0.045 0.392 0.392 0.605
BRIDGE 0.668 0.961 0.038 0.331 0.331 0.665
Proposed 0.806 0.977 0.022 0.193 0.193 0.805
In this table the summary statistics (TPR, TNR, FPR, FNR, FDR, and AUC) were estimated by different methods (ANOVA, KW, SAM, LIMMA, EB, GAGA,
BRIDGE, and proposed) based on valid 1944 DE genes in both absence and presence of one outlier in 20% of valid 1944 DE genes.

Table 6: KEGG pathways for the three (3) DE genes identified by the proposed method only.

KEGG ID KEGG pathway description Number of genes 𝑝 value Adjusted 𝑝 value
hsa05200 Pathways in cancer 2 0.0002 0.0002
The hypergeometric test is used to calculate the 𝑝 values and adjusted by Benjamini-Hochberg method for multiple testing corrections.

Table 7: Disease association results of three (3) genes identified by proposed method only.

Disease Name of genes Raw 𝑝 values Adj. 𝑝 values
Neoplasm invasiveness CTNNA1, NFKB1, TM4SF1 3.04𝑒 − 07 9.81𝑒 − 07
Neoplastic processes CTNNA1, NFKB1 0.0003 0.0005
Adhesion CTNNA1, NFKB1 0.0007 0.0007
The hypergeometric test is used to calculate the p values and adjusted by Benjamini-Hochberg method for multiple testing corrections.

these three (3) genes using directed acyclic graph (DAG).
Using the KEGG database, we found that these genes are
involved in cancer pathways with adjusted 𝑝 value = 0.0002
(see Table 6 and S2 File (.xls)). Table 7 represents the
disease association results of these genes. In both tables
the hypergeometric test is used to calculate the 𝑝 values
and adjusted by Benjamini-Hochberg method for multiple
testing corrections. Figure 7(b) represents the functional
interactions (gene network) of these 3 genes were analyzed
by GeneMANIA web server [31].

4. Conclusion

Differentially expressed (DE) genes identification to dis-
cover the disease biomarkers is one of the important
tasks in microarray data analysis. Significance Analysis of

Microarrays (SAM) is a popular statistical approach for
identification of DE genes for both small- and large-sample
cases. However, it is sensitive to outlying gene expressions
and produces low power in presence of outliers. Therefore,
in this paper, an attempt is made to robustify the SAM
approach using the minimum 𝛽-divergence method. We
used MLEs, in absence of outliers with 𝛽 = 0 and in
presence of outliers, the minimum 𝛽-divergence estimators
are used to calculate the SAM statistic. We revealed from the
simulated and real gene expression data analysis with 𝑘 = 2
conditions that all the eight methods behave almost similar
in absence of outliers, for both small- and large-sample cases.
For large-sample case, in presence of outliers, three methods
(KW, BRIDGE, and proposed) performed well compared to
the other five methods (ANOVA, SAM, LIMMA, EB, and
GAGA). However, the proposed method outperforms other
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Figure 7: Comparison of the top 100 selected genes by five methods for the Breast Cancer dataset with three (𝑘 = 3) conditions. (a) Venn
diagram of top 100 genes detected by ANOVA, KW, SAM, LIMMA, and proposed method. (b) Functional interactions of the three (3) genes
detected by the proposed method were analyzed by GeneMANIA.
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seven methods for small-sample case, in presence of outliers.
From the simulated dataset with 𝑘 = 4 conditions with
multiple patterns, we observed that five methods (ANOVA,
KW, SAM, LIMMA, and proposed) perform well in absence
of outliers, both small- and large-sample cases, except KW
for small-sample case, whereas in presence of outliers for
large-sample case two methods (KW and proposed) perform
well. However, the proposed method outperforms the other
four methods (ANOVA, KW, SAM, and LIMMA) for small-
sample case, in presence of outliers. Similar results were
found from real gene expression data analysis. Therefore,
we may conclude that, on an average, the proposed method
performs better than the other methods.
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