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Background.DNAmethylation is essential for regulating gene expression, and the changes ofDNAmethylation status are commonly
discovered in disease. Therefore, identification of differentially methylation patterns, especially differentially methylated regions
(DMRs), in two different groups is important for understanding the mechanism of complex diseases. Few tools exist for DMR
identification through considering features of methylation data, but there is no comprehensive integration of the characteristics of
DNA methylation data in current methods. Results. Accounting for the characteristics of methylation data, such as the correlation
characteristics of neighboring CpG sites and the high heterogeneity of DNAmethylation data, we propose a data-driven approach
for DMR identification through evaluating the energy of single site using modified 1D Ising model. Applied to both simulated and
publicly available datasets, our approach is compared with other popular methods in terms of performance. Simulated results show
that ourmethod ismore sensitive than competingmethods. Applied to the real data, ourmethod can identifymore commonDMRs
than DMRcate, ProbeLasso, andWang’s methods with a high overlapping ratio. Also, the necessity of integrating the heterogeneity
and correlation characteristics in identifying DMR is shown through comparing results with only considering mean or variance
signals and without considering relationship of neighboring CpG sites, respectively. Through analyzing the number of DMRs
identified in real data located in different genomic regions, we find that about 90%DMRs are located in CGI which always regulates
the expression of genes. It may help us understand the functional effect of DNAmethylation on disease.

1. Introduction

DNA methylation is an important epigenetic modification
which plays an essential role in gene expression [1, 2] and
cancers [3–5]. Aberrant methylation status, such as hyper-
methylation in promoter, often leads to gene silencing. It is
an important mechanism of antioncogene inactivation [6].
Global hypomethylation always leads to the emergence of
cancers through affecting the stability of chromatin [7].There
are pieces of evidence showing that abnormal methylation
patterns are related to many cancers and other diseases [8–
13]. Also, some genomic regions have been found instable in
methylation, which increases methylation variability in can-
cer and then causes cancer heterogeneity [14–16]. Therefore,

identification of aberrant methylation patterns is important
to understand the pathogenesis of diseases.

With the development of high-throughput technolo-
gies, there are two main technologies to quantify genome-
wide DNAmethylation, bisulfite microarray, and sequencing
which provide great opportunities for revealing the epige-
netic mechanisms of diseases. Array technologies, Illumina
Infinium HumanMethylation 27 K and 450 K, are often used
to study complex diseases owing to their low cost and high-
resolution ratio popularly. There are two designs of data
form, 𝛽-values and M-values, used in identifying aberrant
methylated patterns. 𝛽-value measures the proportion of
methylated intensities out of total intensities, and M-value is
calculated as the log2 ratio of the intensities of methylated
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probe versus unmethylated probe. The relationship between
𝛽-value andM-value is shown as the following equation:

𝑀 = log2 ( 𝛽
1 − 𝛽) . (1)

It is shown thatM-value may have more statistically valid for
differential analysis of methylation [17].

Nowadays, various approaches have been proposed on
the basis of microarray data to extract DNAmethylation pat-
terns, including differentiallymethylated loci [18–26] and dif-
ferentially methylated region (DMR) [27–36]. Existing DMR
detecting methods always consider some data characteris-
tics to develop different assumptions. Bump hunter [27],
DMRcate [28], and ProbeLasso [29] were developed through
hypothesizing that the mean difference in methylation level
of different groups is a primary cause in DMR identification;
therefore, DMRs are identified through considering differ-
ence of mean signal between normal and cancer samples.
Considering the heterogeneity of cancer samples [37], Wang
et al. [30] developed an approach based on integrating mean
and variance signal to identify DMRs. It is noteworthy that
DMR methods integrating more information, such as mean
and variance signals, always have better performance than
those integrating less information, such as considering only
mean signal [30]. Therefore, considering that additional
characteristic, highly correlated neighboring CpG sites [38]
in methylation data are rarely integrated in existing DMR
methods; a data-driven method is developed based on inte-
grating more information of data.

Motivated by Ising model which describes matter phase
transition considering the strong interaction amongneighbor
molecular, we consider DNA methylation in genome by 1D
(one-dimension) Isingmodelwhich can integrate the effect of
neighbor sites. For each site, the status depends on its differ-
ential significance (p-value) and that of their neighbors with
correlation characteristic. Generally, if the status of the site
is significant, the more the accordance of the neighbor sites
with the site, the lower the energy. If the status of the site is
nonsignificant and those of its neighbors are significant, there
are strong correlation between the site and its neighbors; we
think that the site may also have low energy by integrating
all information. The reason is that methylation level of a site
is affected bymultiple factors expect for disease; the informa-
tion of neighbor sites can amend the bias of the site caused by
other confounders. DMRs are identified as regions with low
energy.

2. Material and Methods

We develop a data-driven approach to detecting DMRs (see
Figure 1) which considers the data characteristics, correlation
of neighboring CpG sites, and the high heterogeneity.

Step 1 (calculate site-level energy). Motivated by the principle
of 1D Ising model, we define the site-level energy as follows:

𝑒𝑓𝑖 = −∑
𝑗 ̸=𝑖

󵄨󵄨󵄨󵄨󵄨𝐽𝑖𝑗󵄨󵄨󵄨󵄨󵄨 ⋅ (𝑠𝑓𝑖 + 𝑠𝑓𝑗 ) ,

𝑠𝑓𝑖 =
{
{
{
−log (𝑝V𝑎𝑙𝑢𝑒𝑓𝑖 ) , 𝑝V𝑎𝑙𝑢𝑒𝑓𝑖 ≤ 0.05
0, 𝑝V𝑎𝑙𝑢𝑒𝑓𝑖 ≥ 0.05,

(2)

where 𝑒𝑓𝑖 represents the energy of site 𝑖 in feature 𝑓; 𝐽𝑖𝑗
represents the correlation of sites 𝑖 and 𝑗 in normal samples;
and 𝑠𝑓𝑖 describes the signal value of 𝑖 which represents the
difference between tumor and normal samples in feature 𝑓.
𝑝V𝑎𝑙𝑢𝑒𝑓𝑖 in function (2) is used to describe whether the site 𝑖
is significantly different between two groups under the feature
𝑓. Here, if p-value is less than 0.05, we believe that this site can
provide energy to distinguish the two types of samples under
this feature. Otherwise, no energy is provided. The smaller
the p-value is, the more the energy it provides. Therefore, we
use the negative log of𝑝V𝑎𝑙𝑢𝑒𝑓𝑖 for energywhen p-value is less
than 0.05; otherwise, zero is used.

𝑝V𝑎𝑙𝑢𝑒𝑓𝑖 is calculated using two paired t-tests and one-
sided Pitman-Morgan test to describe the mean and variance
signals, respectively, which are often used in other works [30].
Considering high heterogeneity of methylation in cancers,
we integrate the mean and variance signal to define site-
level energy by parameter 𝜆; that is, 𝑓 ∈ {𝑚𝑒𝑎𝑛, V𝑎𝑟𝑖𝑎𝑛𝑐𝑒}.
For mean and variance signals, the statuses are denoted by
𝑠𝑚𝑒𝑎𝑛𝑖 and 𝑠V𝑎𝑟𝑖 , respectively. Therefore, the site-level energy is
denoted as follows:

𝑒𝑖 = 𝜆 ⋅ 𝑒𝑚𝑒𝑎𝑛𝑖 + (1 − 𝜆) ⋅ 𝑒var𝑖 , (3)

where

𝑒𝑚𝑒𝑎𝑛𝑖 = −∑
𝑗 ̸=𝑖

󵄨󵄨󵄨󵄨󵄨𝐽𝑖𝑗󵄨󵄨󵄨󵄨󵄨 ⋅ (𝑠𝑚𝑒𝑎𝑛𝑖 + 𝑠𝑚𝑒𝑎𝑛𝑗 )

𝑒var𝑖 = −∑
𝑗 ̸=𝑖

󵄨󵄨󵄨󵄨󵄨𝐽𝑖𝑗󵄨󵄨󵄨󵄨󵄨 ⋅ (𝑠var𝑖 + 𝑠var𝑗 )

𝜆 = 𝑒𝑚𝑒𝑎𝑛𝑖
𝑒𝑚𝑒𝑎𝑛𝑖 + 𝑒var𝑖 .

(4)

𝜆 represents the weight of mean signal to total signals. For
each site, the lower the energy is, the more possible the differ-
ence site between case and control is.

Step 2 (identify candidate DMRs). To identify candidate
DMRs, we define the total energy 𝐸 of region 𝑅𝑘 as follows:

𝐸𝑅𝑘 = ∑
𝑖∈𝑅𝑘

𝑒𝑖. (5)

We use a greedy algorithm with the following steps to
identify candidate DMRs. Considering the question of what
conditions of a site are required to add candidate regions,
we use a permuted method. First, we permute the sample
labels 𝑛 times and calculate the permuted energy of each site
using (3). Second, permuted energy of all sites is sequenced
in ascending order and the value at 5% is selected as the
threshold 𝜏. Therefore, the greedy algorithm is executed in
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Figure 1: Flowchart of the proposed approach. Step 1, single site-level energy is calculated based onmodified 1D Ising model. Step 2, candidate
DMRs are identified using a greedy algorithm. Step 3, for each candidate DMR, the significance is assessed through permuting the sample
labels.

the following steps: (1) Select the CpG site with the lowest
energy as a seed site if its energy is smaller than 𝜏, which is
considered as the starting regions 𝑅𝑘. (2) Select the neighbor
site of the current region with the lowest energy and add the
site to 𝑅𝑘 if energy of the site is smaller than 𝜏. (3) Continue
with the neighbors of 𝑅𝑘 and keep adding the site to 𝑅𝑘 until
energy of the neighbor sites of 𝑅𝑘 is greater than or equal to
𝜏. (4) Choose another site with a seed one in the remaining
sites except for𝑅𝑘 and repeat the above stepswhich can obtain
another candidate region until the energy of any site of the
rest is greater than 𝜏.
Step 3 (assess significance of candidate DMRs). To assess
significance of candidate DMRs, we need to calculate p-value
for each candidate region. We make the null hypothesis that
a candidate region is not a DMR. If p-value is less than a
significance level, the null hypothesis is rejected.The identifi-
cation of DMR is equivalent to determining whether a candi-
date region is associated with the sample label. Therefore, p-
value of a candidate region is calculated through permuting
sample label. We complete the process of Step 2 for each
permutation. For the 𝑡-th permutation, we can obtain 𝑛𝑡
permuted DMRs. The energy of permuted DMR 𝑅𝑝𝑒𝑟𝑚𝑖 is
denoted by 𝐸𝑝𝑒𝑟𝑚𝑡,𝑖, 𝑖 = 1, . . . , 𝑛𝑡. For each candidate DMR
𝑅𝑘, the significance is measured by the p-value which is
calculated as

𝑝

= ∑1000𝑡=1 ∑𝑛𝑡𝑖=1 𝐼 (𝐸𝑝𝑒𝑟𝑚𝑡,𝑖/𝑠𝑖𝑧𝑒 (𝑅𝑝𝑒𝑟𝑚𝑖) < 𝐸𝑅𝑘/𝑠𝑖𝑧𝑒 (𝑅𝑘))
∑1000𝑡=1 𝑛𝑡

, (6)

where 𝐼(𝑥) is an indicator function and 𝑠𝑖𝑧𝑒(𝑅) represents
the numbers of CpG sites in region 𝑅. To consider the
multiple testing, we use a function p.adjust in R and compare
the results of different parameters; the results obtained with
Bonferroni were the most conservative. Therefore, the p-
values are multiplied by the number of comparisons using
Bonferroni correction. The candidate DMR is considered

significant if the p-value corrected by Bonferroni is smaller
than 0.05.

3. Results and Discussion

In calculating the energy of each site, we hypothesized that a
locuswas associated with only two sites adjacent to its left and
right for simplifying the correlation characteristic. To show
the performance of the proposed method, we compare the
method with bump hunting [27], DMRcate [28], ProbeLasso
[29], and Wang’s method [30] in simulation data. Applying
to the real data, we compare the DMRs identified by our
method and Wang’s method [30] based on 𝛽-value and M-
value, respectively. Also, based onM-value, we compare our
method with DMRcate [28] and ProbeLasso [29]. Finally, the
necessity of integrating characteristics of methylation data is
analyzed.

3.1. Simulation Study. We generate simulation data referenc-
ing Wang’s method [30] which consider the real characteris-
tics of methylation data based on M-value. For case-control
design, like Wang’s method, we consider methylation mea-
sure𝑋 following a conditional scaled normal distribution:

𝑋 | 𝑌 = 1,
𝑍 = 𝑧 ∼ √𝑧 ⋅ 𝑁 (𝜇, Δ𝑇ΣΔ) ,

𝑋 | 𝑌 = 0,
𝑍 = 𝑧 ∼ √𝑧 ⋅ 𝑁 (0, Σ) ,

(7)

where 𝑧 ∼ 𝐵𝑒𝑡𝑎(1, 1), 𝑌 = 1 and 𝑌 = 0 represent tumor
and matched-control samples, respectively; the vector 𝜇 =
(𝜇1, 𝜇2, . . . , 𝜇ℎ)𝑇 andΔ = (V1, V2, . . . , Vℎ)𝑇 represent mean and
variance signals, respectively; an element Σ𝑖𝑗 in matrix Σℎ×ℎ
is 𝜎 × 𝜌|𝑖−𝑗| which describes the correlation characteristic of
neighboring sites 𝑖 and 𝑗; and ℎ is the number of consecutive
sites in a defined cluster. In each simulation, we generate 100
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Table 1: Confusion matrix.

Identified results of a method

Number of differential
methylated sites within

DMRs

Number of
non-differential

methylated sites without
in DMRs

Real DMRs

Number of differential methylated
sites within DMRs

𝑑 𝑐
True positive False negative

Number of non-differential
methylated sites without in DMRs

𝑏 𝑎
False positive True negative

Table 2: Different parameter settings.

Parameters 𝜇1 𝜇2 V 𝜎 𝜌
1 -2 2 1.5 0.3 0.7
2 -2 2 2.5 0.3 0.7
3 -3 3 1.5 0.3 0.7
4 -3 3 2.5 0.3 0.7
5 -2 2 1.5 0.3 0.4

tumor and control samples with 10000methylation sites. The
genomic positions of the 10000 sites are simulated by that of
the first 10000 chromosome 1 on 450k array [30].The clusters
are obtained based on the genomic position of sites using R
package “bump hunter”.

To show the performance of different methods, we select
ten clusters randomly and set them as real DMRs as follows:
for tumor samples, the first three are simulated mean signal
only through setting 𝜇𝑖 in vector 𝜇 which follows the uni-
form distribution 𝑢𝑛𝑖𝑓(𝜇𝑎, 𝜇𝑏); the next three are simulated
variance signal only through setting V𝑖 = 𝛼 + 𝜀 for tumor
samples, where 𝛼 is a basic value and 𝜀 is a random value
following 𝑢𝑛𝑖𝑓(0, 0.5); the last four are both simulated mean
and variance signals through adding mean and variance
signal in tumor samples by 𝜇𝑖 and V𝑖. The sensitivity (SE) and
specificity (SP) are defined according to the confusion matrix
shown in Table 1:

SE = 𝑑
𝑐 + 𝑑 ,

SP = 𝑎
𝑎 + 𝑏 .

(8)

We compare the performance of our method with bump
hunting [27] andWang’s method [30] in simulated data based
on different values of different parameters (see Table 2). To
improve the significance, we implement 10 times for each set
of parameters and calculate the mean values of specificity and
sensitivity. It is shown that our method has higher sensitivity
than other methods (see Table 3).

Furthermore, to avoid the deviation of the numbers of
identified DMRs, the numbers of true positive (TP) and false
positive (FP) DMRs are compared through calculating the
overlap between identified DMRs and embedded true DMRs
(see Table 3).

In this study, an identified DMR is known as a true
positive one if the intersection of the DMR and some true

DMR contains more than 𝐿 CpG sites. 𝐿 is defined by multi-
plying the length of the true DMR by 𝜃. The greater the 𝜃
is, the higher the degree of overlap between the true positive
DMRand the real area is. It is also shown that ourmethod has
higher matching degree with true DMRs when either 𝜃 = 0.2
or 𝜃 = 0.5. More simulations studies, changing simulation
parameters, are described in supplementary material (see
Tables S1-S3 for comprehensive analysis). It is shown that our
method had better performance than other methods in iden-
tifying DMRs when there are high heterogeneity and correla-
tion characteristics of methylation data.

3.2. Real Data Application. The real data we used is breast
cancer (BRCA) which is available at TCGA. Preprocessing
of DNA methylation data is implemented with reference to
[35]. We permute sample labels 500 times and calculate the
permuted energy for each site for each time. The value in
descending order of 5% is obtained for each time and 𝜏 is
obtained averaging these 500 values.

To compare the performance of our method, we apply
the method and Wang’s method to DNA methylation based
on 𝛽-value andM-value, respectively, in our experiment. The
thresholds 𝜏 are set as -2 and -5 for 𝛽-value andM-value data,
respectively. The results show that our method can identify
more DMRs based on either 𝛽-value or M-value data with a
high overlapping ratio (see Table 4), especially that based on
M-values. Therefore, we implement the next analysis based
on the results ofM-values data.

Based on M-value, we also compare our method with
DMRcate [28] and ProbeLasso [29] and calculate the overlap
of different methods (see Table 5). It is shown that our meth-
od has more common DMRs than any of the other methods.

Through analyzing the location in genome of these
DMRs, we find that about 90% DMRs (7081 in 7871) are
located in CGI which are CpG enrichment regions. This is
consistent with the fact that aberrant methylation in CGI
always influences the expression of genes. To understand the
possible functions of DMRs, we evaluate the enrichment of
these DMRs according to the location relative to genes (see
Figure 2; numbers 1 to 6 represent different regions TSS1500,
TSS200, 5’UTR, 1stExon, gene body, and 3’UTR, respec-
tively). It is shown that most DMRs are enriched in gene
body which is consistent with the recent studies reporting
that aberrant methylation in gene body has essential role in
cancer occurrence and development [39]. One example
which is identified based on M-value but not for 𝛽-value is
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Table 4: Comparison results of our method with Wang’s method based on 𝛽-value and M-value.

Our method Wang’s method Overlapping ratio
𝛽-value 2127 1618 78.9% (1276/1618)
M-value 7871 3070 93.0% (2856/3070)
Overlapping ratio 88.3% (1879/2127) 98.6% (1595/1618) - - -

Table 5: Overlap results of different methods in identifying DMRs.

ProbeLasso 6720 1566 2932 9077
DMRcate 6097 2579 7577 2932
Wang’s 2856 3070 2579 1566
Our 7871 2856 6097 6720

Our Wang’s DMRcate ProbeLasso
∗Italic numbers indicate the numbers of DMRs identified by different methods. Black ones are overlap numbers of two methods.

Distribution of DMRs relative to genes
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Figure 2: Distribution of DMRs relative to genes.

shown in Figure 3. It has obvious significant difference in
variance signal but not in mean signal.

3.3. Validation of Identified DMRs. To illuminate the neces-
sity of integrating the characteristics of DNA methylation
data, we compare the results when only considering one sig-
nal (mean or variance) and without considering relationship
of neighboring sites, respectively. Firstly, we calculate the
energy of each site in (3) when 𝜆 = 1 (only mean signal) and
when 𝜆 = 0 (only variance signal), respectively, and identify
DMRs. Secondly, we do not consider the correlation of neigh-
boring sites; the energy of each site is calculated when 𝑒𝑚𝑒𝑎𝑛𝑖 =
𝑠𝑚𝑒𝑎𝑛𝑖 and 𝑒V𝑎𝑟𝑖 = 𝑠V𝑎𝑟𝑖 in (3).

Take chromosome 1 as an example, the identified DMRs
are shown in Table 6. It is shown that there is prominence
in identifying DMRs when integrating mean, variance, and
correlation characteristics more than when only considering
variance signal (𝜆=0) and not considering correlation charac-
teristic. Although there are more DMRswhen 𝜆=1 than those
of integrated method, most of these DMRs contain fewer

number of sites.Therefore, we think that the mean signal may
be more effective in identifying differentially methylated loci
than DMRs.

4. Conclusions

In this paper, we proposed a data-driven method to identify
DMRs through integrating the characteristics of methylation
data. Simulation study has shown that our method is more
sensitive than the two alternative methods. Through applica-
tion to real data, we compared the results of DMRs identified
based on 𝛽-value andM-value, respectively, and our method
showed further better performance than Wang’s method.
Based on M-value data, the necessity of integrating all char-
acteristics of data is shown through comparing the DMRs
identified by different measures. It is also shown that the
integration of multiple information is effective in identifying
DMR.

Currently, the available DMR identification methods are
insufficient in integrating data characteristics. Most methods
only consider mean signal, and high heterogeneity of methy-
lation data is not considered. The recent work by Wang et al.
is developed through accounting for high heterogeneity, and
they obtained some meaningful results. Therefore, integrat-
ing more information to identify DMR is required.

Although our method integrates the characteristics of
high heterogeneity and correlation of neighbor sites of
methylation data, we only consider the correlation of the two
neighbors of the site limited by the Ising model. Therefore,
first, we hope to integrate more comprehensive information
based on biological a priori knowledge to build an appropri-
ate model in the further work; second, in view of the strong
relationships of CpG sites, we hope to identify DNAmethyla-
tion patterns based on building methylation network which
has beenwidely used in identification of disease-related genes
[40–43].

Data Availability

The real data we used is breast cancer (BRCA) which is avail-
able at TCGA (https://cancergenome.nih.gov/).

https://cancergenome.nih.gov/
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Figure 3: An example of DMRs identified based on M-value but not for 𝛽-value. The difference of these two DMRs in mean signal (a) and
variance signal (b) between normal and tumor samples.

Table 6: A Comparison of the results to show the necessity of integrating data characteristics.

Integrated method 𝜆 = 1 𝜆 = 0 Without considering correlation
Numbers of DMRs 883 2374 370 34
Overlapping (a/b)∗ 100% (883/883) 64.5% (1532/2374) 100% (370/370) 94.1% (32/34)
∗a is the numbers of overlapping DMRs compared with integrated method (1532>883 means that more DMRs coincide with one DMR identified by integrated
method.); b is the numbers of DMRs identified by the corresponding method.
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