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With the rapid evolution of high-throughput technologies, time series/longitudinal high-throughput experiments have become
possible and affordable. However, the development of statistical methods dealing with gene expression profiles across time points
has not kept up with the explosion of such data. The feature selection process is of critical importance for longitudinal microarray
data. In this study, we proposed aggregating a gene’s expression values across time into a single value using the sign average
method, thereby degrading a longitudinal feature selection process into a classic one. Regularized logistic regression models with
pseudogenes (i.e., the sign average of genes across time as predictors) were then optimized by either the coordinate descent
method or the threshold gradient descent regularization method. By applying the proposed methods to simulated data and a
traumatic injury dataset, we have demonstrated that the proposed methods, especially for the combination of sign average and
threshold gradient descent regularization, outperform other competitive algorithms. To conclude, the proposed methods are highly

recommended for studies with the objective of carrying out feature selection for longitudinal gene expression data.

1. Introduction

Feature selection, a mighty tool to tackle the high dimen-
sionality issue accompanying high-throughput experiments
where the number of measured features (e.g., genes or
metabolites), is much larger than that of samples and has been
employed with increasing frequency in many research areas,
including biomedical research. The ultimate goal of feature
selection is to correctly identify features associated with the
phenotypes of interest while ruling out irrelevant features as
much as possible.

Because biological systems or processes are dynamic,
it is useful for researchers to investigate gene expression
patterns across time in order to capture biologically mean-
ingful dynamic changes. With the rapid evolution of high-
throughput technology, time series/longitudinal microarray
experiments have become possible and even affordable.
However, development of specific statistical methods dealing

with expression profiles across time points has not kept
pace.

One commonly used strategy is to stratify time series
data into separate time points and then analyze these points
separately. This approach may lead to inefficiency in statistical
power by ignoring the highly correlated structure of gene
expression values across time and thus result in failure to
detect patterns of change across time [1-3].

An alternative strategy to conduct feature selection for
longitudinal gene expression data is to use statistical methods
capable of detecting different expression patterns across time
between groups. Examples include Significance Analysis of
Microarray [4], Extraction of Differential Gene Expression
(EDGE) [1, 5], Linear Models for Microarray Data (limma)
[6], and Microarray Significant profiles [7]. EDGE uses a
spline approach and is one of the first methods to specifically
address identification of differentially expressed genes across
time [8]. In contrast, the limma method has a more general
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purpose and is easily understood and implemented [7];
therefore, it has gained extreme popularity and become
the gold standard to detect differentially expressed genes
under different scenarios (e.g., two-group or multiple-group
comparison) for microarray data. Nevertheless, because the
limma method usually does not correctly account for the
order of time points or the correlation structure introduced
by multiple observations from the same subject, it tends
to be outperformed by other relevant methods. Since these
statistical strategies usually screen genes one by one according
to the magnitude of a gene’s relevance to the phenotype of
interest, they may be classified as the filter methods [9]. The
big drawback of filter methods is that many false positive
genes remain in the final model [9].

Some researchers have extended two typical longitudinal
data analysis strategies, namely, the generalized estimating
equation (GEE) method [10] and a mixed model [11], to
carry out feature selection for time series gene expression
profiles. The GEE-based screening procedure [3], penalized-
GEE (PGEE) [2], and glmmLasso [12] methods belong to this
category. Among them, the GEE-based screening procedure
fits a GEE model to each gene and then filters out the non-
significant genes. By filtering genes one by one, this procedure
is very likely to mistakenly include redundant genes highly
correlated with the true relevant genes in the final gene list.
The PGEE algorithm [2] adds the SCAD penalty term [13] to
the corresponding quasilikelihood function of a GEE model
to implement feature selection and model construction. In
contrast, the glmmLasso method [12] maximizes the corre-
sponding penalized log likelihood function of a generalized
linear mixed model using a combination of the gradient
ascent method with the Fisher scoring algorithm in order
to realize the selection of relevant genes for longitudinal
data and the estimation of their coefficients simultaneously.
Although the PGEE method and the glmmLasso method
can carry out feature selection for longitudinal expression
data and also eliminate or alleviate the inefficiency caused by
separate analysis at each time point, these methods cannot
handle extremely large numbers of genes [2, 14], which are
often encountered in longitudinal gene expression profiles.
For a selective review of methods capable of carrying out
feature selection for longitudinal omics data, see Albrecht et
al. [8].

A gene set or pathway refers to a set of genes that are
highly likely to coregulate/coexpress to influence a biological
process (examples are gene sets defined in the Gene Ontology
project [15] or Chaussabel’s functional modules [16]). Accord-
ing to this definition, one specific gene’s expression values
collected over multiple time points may be regarded as a
gene set, rendering the scores at pathway/gene set level sound
options to summarize a gene’s expression values at different
time points into a single value. Thus, a reasonable alternative
way of dealing with time series gene expression data is to
use those pathway-level summary scores. Popular choices of
a summary score include the means [17], medians or first
principal components (PC) of time-course gene expression
values [18], or the pathway deregulation scores proposed by
Drier et al. [19]. Unfortunately, all these summary scores have
major drawbacks. For instance, when a gene exhibits opposite
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association with the phenotype of interest at different time
points, the mean average operator that does not account for
effect directions may cancel out the different time effects of
this gene [20]. In contrast, construction of pathway dereg-
ulation scores is more theoretically complicated and com-
putationally intensive, requiring involvement of an expert
statistician. For the first principal component summary; it is
well known that the direction of the largest variance of the
gene expression values is pinpointed instead of the genes that
are most related to the phenotypes of interest.

The sign average [21, 22], also known as the Direction
Aware Average [20], takes into account the directions of
association between genes and the phenotype of interest as
well as genes’ expression values and might be less subject
to overfitting since these directions are more robust than
their estimated effects [20, 21]. As opposed to the average
operator, the sign average considers not only the expression
values of a gene at each time point but also the direction
of its association with the phenotype of interest at those
time points; therefore, positive and negative associations do
not cancel each other out. The sign average is an average in
essence, however, and not as sophisticated as the pathway
deregulation scores. Given the fact that the sign average is
capable of mitigating these two drawbacks simultaneously,
it may be a more suitable choice to summarize a genes’
expression value at the gene set level or a gene’s expression
values over time.

In this study, we consider a scenario that has a long
history—traumatic injury with subsequent infection. In
ancient times, traumatic injury with subsequent infection
was a common cause of death. Even today, massive injury
remains life-threatening in many developed countries [23,
24]. In a clinical study carried out recently [25], patients
with traumatic injury were classified into those experiencing
uncomplicated recovery and those with complicated recovery
based on the duration of recovery. Specifically, uncomplicated
recovery was defined as recovery within 5 days versus
complicated recovery, which was defined as recovery after
14 days, no recovery by 28 days, or death. In subsequent
studies, Xiao et al. [25] and Zhang et al. [25, 26] questioned
whether a different expression pattern occurs across time in
the two extreme scenarios of clinical recovery. Xiao et al. [25]
used the EDGE method [1, 5] to examine the corresponding
longitudinal expression profiles. We propose a procedure
to identify discriminative genes for longitudinal data; in
other words, using the sign average method to generate a
pseudogene to represent a specific gene’s expression values
over time. A classic feature selection method can then be
applied using the pseudogenes as predictors to identify a
gene signature for segmentation of complicated recovery and
uncomplicated recovery.

2. Methods and Materials

2.1. Experimental Data. Raw data were downloaded from
the Gene Expression Omnibus database (GEO: http://
www.ncbi.nlm.nih.gov/geo/; accession number GSE36809)
and hybridized on Affymetrix HGU133 plus2 chips. The data
included 167 severe blunt trauma patients. In this study, only
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patients with uncomplicated recovery (within 5 days) and
patients with complicated recovery (recovery after 14 days, no
recovery by 28 days, or death) were considered.

We refined our inclusion criteria by limiting the uncom-
plicated group to patients who had data at 0-5 time points
and the complicated group to those who had data at more
than 5 time points. Further, because the longest follow-up is
14 days for patients without complication, we truncated the
data for patients with complication to 14 days as well. The time
points under consideration were days 1/2, 1, 4, 7, and 14. In
total, we included 97 patients: 55 experiencing uncomplicated
recovery and 42 having complicated recovery.

Next, our dataset (n=97) was divided randomly into two
subsets with a ratio of 3:2. The resulting datasets served as the
training set and the test set, respectively.

2.2. Pre-Processing Procedures. Raw data (CEL files) of the
microarray data set were downloaded from the GEO reposi-
tory. Expression values were obtained using the fRMA algo-
rithm [27] and were normalized using quantile normalization
and then log2 transformed. For multiple probe sets matched
to one specific gene, the one with the largest absolute log fold
change was retained.

2.3. Statistical Methods

2.3.1. Sign Average. To determine the directions of associ-
ation using the sign average method, we compared each
gene’s expression value at each time point for the patients
with complicated recoveries versus those with uncomplicated
recoveries. Specifically, using the uncomplicated group as
the reference, for patient i, gene k, at time point t, the
corresponding gene expression X, can be written as

Xikt = Bokt
+ Bue] (patient i in the complicated group) (1)

+ &kt

Here, ¢, is the error term with a mean of 0 and a standard
deviation of 1; I(x) is an indicator function whose value is
1 if the condition x is true and 0 otherwise. f3y, represents
the mean expression value of gene k at time point t for the
uncomplicated patients; 3, represents the mean difference
of gene k at time point t between the complicated patients
and the uncomplicated patients.

At each time point for each gene a moderated t-test
was fitted to decide if the specific gene is upregulated
or downregulated for the complicated group against the
uncomplicated group according to the sign of its estimated
B Then different time points of a gene were stratified
into either upregulated group U or downregulated group D.
The upregulated group includes the time points for which
increased expression is associated with a higher probability
of experiencing complicated recovery (i.e., time points with
positive f3,, values). In contrast, the downregulated group
includes the time points for which an increment in the
gene’s expression is associated with a lower probability for

complicated recovery (i.e., the time points with negative f3;;,
values).

Denoting the number of time points as [t;| for patient
i (i=1,2,.. n), the sign average of a specific gene k over all
measured time points for patient i is defined as

Iti]

Sign Average, = Zsign ([p/’l;) X % (2)
=1 i

A subscript i is used to indicate the time points measured for
different patients and

1 ifx>0
sign(x) =40 if x=0 (3)
-1 if x<0

To put it simply, the sign average sums up a specific gene’s
expression values at all upregulated time points (i.e., Uy ) and
the expression values at all downregulated time points (i.e.,
D,), separately. Then it takes the difference between these two
summations and divides this difference by the number of time
points measured. Obviously, the sign average also takes into
account the directions of associations with the phenotype of
interest.

Using a summary value to represent one gene’s expression
values across time makes all conventional feature selection
algorithms applicable to longitudinal microarray data and
also avoids the imbalance of observations in both groups (e.g.,
patients with uncomplicated recovery have five measures at
most while patients with complicated recovery generally have
more than five measures). Traditional methods such as a t-test
are incapable of dealing with cases that have more than one
observation from a group at a specific time point.

2.3.2. Coordinate Descent (Optimizer). The coordinate de-
scent (CD) method [28] optimizes an objective function
with respect to a single feature each time, iteratively cycling
through all features until convergence. Given that CD has
a linearly increased computing burden with the number
of genes, it presents excellent power to optimize penalized
regression problems. The CD method has been widely uti-
lized in many studies [29-31]. Its key component is the
soft-threshold operator S(x, y) defined below. This operator
determines whose beta coeflicients will deviate from zero,
meaning the corresponding genes will be selected. Fried-
man et al. [28] provides a detailed description of the CD
method.

x—y if x>0and y < |x]|
S(x,y)=4x+y if x<0and y < |x]| (4)
0 if y>|x|

Figure 1(a) presents a flowchart of using CD to optimize a
penalized linear regression with the LASSO penalty [32].
In the LASSO method, for the standardization of gene
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here, S(x, y) is the soft threshold operator
defined in Eq. 4.
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Differences (using the linear regression as an example):
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Threshold Gradient Descent Regularization (TGDR)

Set all =0, k=0, A= a small value (e.g., 0.01)

N

—p  Compute the gradient vector g(k)
and the threshold vector f(k)

g(k) = (OR(B)/0py, OR(B)/0P, - - -, OR(B)/9p)

fi(k)y=I(lg;(k)|> Txmaxje(1 5. pylgr (k)])
here: OR(B)/9pB; = —% Z xi(yi = Bo - xiTﬁ)
i

N

if for gene j, fj(k)=1, then update its f5; to
Bjk +1) = B;(k)+ A x g; (k) x f;(k)
Then set k=k+1

N

Repeat until all f(k)=0 or k=K
(K is a predetermined value by CVs)

(b)

A) Penalty term: CD has a penalty term; TGDR does not, thus the corresponding objective function R () differs.
B) Tuning parameters: CD for LASSO has one: A; TGDR has two: 7 and k.
C) Strategies to update f3s: CD uses the soft-threshold operator S; TGDR updates along s whose gradient

functions are large enough with a small increment.

FIGURE 1: Comparison of methods for optimizing a penalized linear regression model. (a) Coordinate Descent. (b) Threshold Gradient

Descent Regularization.

expression values across samples to have a mean of 0 and a
standard deviation of 1, x in S(x, y) is related to gj([p’) — the
derivative/gradient of the objective function with respective
to the j™ B coefficient, and y is the tuning parameter A,
restricting the L-1 norm of these 3 coefficients to be smaller
than it is.

In this study, a regularized logistic regression model with
a LASSO penalty was used, and it was solved using the CD
method in the R glmnet package [28].

2.3.3. Threshold Gradient Descent Regularization. The thresh-
old gradient descent regularization (TGDR) method pro-
posed by Friedman and Popescu [33] was adopted by Ma et
al. [34] as an embedded feature selection algorithm that can
select relevant genes and estimate corresponding coefficients
simultaneously. For the definition of an embedded algorithm,
see the review article by Saeys et al. [9]. After a thorough
reading of the original paper and deep exploration of the
algorithm [35-37], we found that it can be used as an
optimization strategy to solve a regularized regression func-
tion.

In contrast to the CD method, the selection of genes in the
TGDR method is realized by a comparison between a gene’s

gradient with the largest absolute gradient using a threshold
function fj(ﬁ),

£ (B)=1(|g; (B)| = 7 x max; |, (B)]) ()

Here, I(x) is an indicator with a value of 1 if the condition
x inside the parentheses holds and 0 otherwise. Figure 1(b)
presents a flowchart of using TGDR to optimize a linear
regression model. Ma et al. [34] presents a detailed descrip-
tion of the TDGR method. Friedman [33] and Ma et al.
[34] pointed out that when the gradient threshold 7 in
TGDR is fixed at 1, the TGDR algorithm provides a penalty
approximately comparable to the LASSO term and a value of
0 corresponds to the ridge penalty. Major differences between
the CD and the TGDR methods are presented in Figure 1.

In the current study, we fixed the tuning parameter 7 at
1, which approximately corresponds to the LASSO model,
and then we applied the TGDR method to the training set
to obtain discriminative signatures. Two sets of signatures
were compared to evaluate the pros and cons of the CD
method versus the TGDR method. The R codes adapted from
the programming of the meta-TGDR algorithm [38], which
is an extension of the TGDR method to identify consistent
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relevant genes across multiple microarray studies, were used
to implement the TGDR method.

2.3.4. Performance Statistics. To evaluate the predictive per-
formance of a classifier we used three metrics: Belief Confu-
sion Metric (BCM), Area under the Precision-Recall Curve
(AUPR), and misclassified error rate. OQur two previous
studies [39, 40] and the references therein describe these
metrics in detail. Briefly, error rate = (false positives + false
negatives)/(sample size) and captures the ability of correctly
classifying the samples into their appropriate class. BCM
captures the average confidence that a sample belongs in class
k when it indeed belongs in that class. AUPR is computed as
the average of the AUPR, for each class and it captures the
ability of correctly ranking the samples known to belong in
a given class. The three metrics each range from 0 to 1. For
BCM and AUPR, the closer to 1, the better a classifier is. The
opposite is true for misclassified error rate.

Besides the discriminative/predictive performance, sta-
bility/reproducibility is of crucial importance for a gene
signature as well [41]. Good stability does not guarantee a
good predictive performance and true biomarker selection.
On the other hand, if gene lists obtained from different
training sets for the same disease share limited or no overlap
at all, the utilization of such a gene signature in practice is
impossible. To evaluate the reproducibility of the resulting
gene lists, the Rand index is calculated. With k applications of
a method (e.g., the k runs in a k-fold cross-validation), there
are k gene lists (i.e., gs;, g5, - -» g5¢). Upon these gene lists, a
Rand index is defined as

#k—l k M
k(k - 1) i=1 j=i+l |U (gsi’gsj)'

where N represents the intersection between two gene lists,
U represents the union between the gene sets gs; and gs,
and | | represents the size of the gene set. As mentioned in
our previous study [39], the optimal absolute values of these
performance metrics vary from application to application.
Therefore, the relative increase of those metrics obtained by
an algorithm compared to another algorithm should be the
focus.

Rand = (6)

2.4. Statistical Language and Packages. Statistical analysis was
conducted in R, language version 3.3 (Www.r-project.org).
The R codes for the TGDR method and the sign average
method are provided in the Supplementary File 1.

3. Results and Discussion

3.1. Real Data

3.11 Validation. After randomly dividing our data into two
sets (one serving as the training set and the other as the test
set), the sign averages for genes under consideration in the
training set were calculated. A 5-fold cross validation was
used to decide the optimal value for the tuning parameter
in the coordinate descent method or the threshold gradient
descent regularization method.

3.1.2. Selecting Relevant Genes. Briefly, the training set was
divided into 5 roughly equal-sized subsets in which the
ratio of complicated recovery to uncomplicated recovery was
approximately the same as that of the whole training set. For 4
of the subsets, the LASSO/CD method (LASSO is the penalty
function considered and CD is the optimization method) and
the TGDR method were applied to select relevant genes and
estimate their corresponding coeflicients. The misclassified
cases were counted by validating the resulting classifier to
the remaining subset. This process was repeated 5 times with
the five respective subsets serving as the test set only once.
The misclassified errors were then aggregated for the whole
training set. The optimal cutoff of the tuning parameter was
the one having the smallest misclassified error. Using the
optimal value of the tuning parameter, a final model was
obtained using the training set and then was validated on
the test set. The study schema is given in Figure 2, and the
proposed methods are abbreviated as the sign average and
LASSO/CD method and the sign average and TGDR method,
respectively.

To evaluate the proposed method more comprehen-
sively, we applied several relevant methods, i.e., EDGE [5],
limma [6], glmmLASSO [12], LASSO [32], and TGDR [33]
separately for each time point. For the last two methods,
a subject’s membership was determined using the average
posterior probabilities, i.e., the means of calculated posterior
probabilities at individual time points. For the limma and
EDGE methods, an additional linear support vector machine
model was fitted to calculate the posterior probabilities given
that these three methods are only able to identify potentially
relevant genes. Table 1 provides an overview of the methods
considered in this study.

3.1.3. Predictive Capacity. The results are presented in Table 2.
Based on the performance statistics under consideration
(i.e., BCM, AUPR, misclassified error rate, and the Rand
Index), these methods were divided into roughly three
categories with decreasing performance. The two proposed
methods belong to the first stratum; limma, EDGE, and
simple SAMGSR belong to the second stratum; and the
separate LASSO/TGDR method as well as the gImmLASSO
method belongs to the last stratum. Specifically, regarding
the predictive capacity, both proposed methods are ranked
as the first two methods, with the sign average and TGDR
method having an error rate of 35.1%, a BCM of 0.59, and
an AUPR of 0.662 and the sign average and LASSO/CD
method having an error rate of 37.8%, a BCM of 0.605,
and an AUPR of 0.626, respectively. On the other hand,
the limma method has very good stability but its predictive
performance is slightly inferior to the two proposed methods.
Although the glmmLASSO method outperforms the sign
average and TGDR method in having the best model stability,
its predictive performance on the test set is only better than
that of the separate LASSO method, which drags its overall
performance down. Additionally, when the tuning parameter
A is set as a value smaller than 15, the glmmLASSO algorithm
crashes. This makes us suspect that similar to the PGEE
method [2], the glmmLASSO algorithm also encounters
difficulty in tackling extremely high dimensionality issues.
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fRMA algorithm to preprocess
log2 tranform
/ Randomized \
’ Training Set ‘ ’ Test Set ‘
Obtain sign for genes ‘q Apply the resulting signs
at each time point
Use sign average to summarize each Use sign average to summarizg each
gene’s expression level over time gene’s expression level over time
LASSO/CD  TGDR
’ Gene List A ‘ ’ Gene List B ‘ Validate the two lists on the test set,
) Compare the lists from LASSO/CD
Venn diagram method and TGDR
Compare with the lists from other
rl ‘ relevant methods
FIGURE 2: Study schema of the injury data application.
TABLE 1: Overview of methods under consideration.
Method GX . Pseudoz- If using pseudo-genes, which summary score is used
Values Genes
Sign Avg & LASSO/CD v Sign average of a gene’s expression over time.
Sign Avg &TGDR v Sign average of a gene’s expression over time.
Mean & LASSO/CD v Mean of a gene’s expression value over time.
Mean & TGDR v Mean of a gene’s expression value over time.
Median & LASSO/CD +/ Median of a gene’s expression value over time.
Median & TGDR v/ Median of a gene’s expression value over time.
PC1 & LASSO/CD +/ First principal component of a gene’s expression value over time
PCl1 & TGDR v First principal component of a gene’s expression over time.
EDGE v
limma v
LASSO/CD separately </
TGDR separately v/
glmmLASSO v

1 .
GX values represent actual expression values.

2 . . .
Pseudogenes are generated to summarize expression values across time.

Further investigation is warranted. To conclude, the sign
average and TGDR method has the best overall performance
versus other competitive methods.

To explore whether the sign average method provides
a good summary of expression values across time points,

we also considered other scores (means, medians, and first
principal components) for individual gene expression values
and combined those scores with the LASSO/CD or TGDR
method to train the final models. The results are provided in
Table 2. As expected, the sign average has the lowest error
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TABLE 2: Performance of the proposed method on the traumatic injury application and comparison with other methods.

Method Size Rand Index Test Set
Error rate BCM! AUPR?
Proposed methods Sign Avg, & LASSO4/CD3 32 19.58% 0.351 0.605 0.626
Sign Avg. & TGDR 30 25.21% 0.378 0.590 0.662
limma 47 21.40% 0.432 0.542 0.628
EDGE 453 13.67% 0.432 0.543 0.622
Fxisting methods glmmLASSO 8 34.99% 0.432 0.519 0.532
LASSO/CD separately’ 28 13.59% 0.486 0.498 0.508
TGDR separately® 133 22.58% 0.378 0.520 0.579
Mean & LASSO/CD’ 29 17.95% 0.405 0.536 0.560
Mean & TGDR® 36 2737% 0.405 0.562 0.617
Median & LASSO/CD’ 22 7.76% 0.351 0.543 0.617
Using other summary scores Median & TGDR'" 43 18.58% 0.405 0.578 0.626
PC1 & LASSO/CD"! 3 13.59% 0.405 0.504 0.541
PC1 & TGDR" 29 32.68% 0.432 0.539 0.548

'BCM captures the average confidence that a sample belongs to class i when it indeed belongs to that class;

ZAUPR is the average of AUPR, for each class and it captures the ability of correctly ranking the samples known to belong in a given class;

3Sign Avg. & LASSO/CD: pseudo genes were obtained by calculating the sign average of a gene’s expression values across time, and the feature selection method
is LASSO in which the optimization method used is coordinate descent;

*Sign Avg. & TGDR: pseudo genes were obtained by calculating the sign average of a gene’s expression values across time, and the feature selection/optimization
method is threshold gradient descent regularization;

SLASSO/CD separately: separate LASSO models were trained at individual time points; the optimization method is CD;

®TGDR separately: separate TGDR models were trained at individual time points; the optimization method is TGDR;

"Mean & LASSO/CD: pseudo genes were obtained by calculating the average of a gene’s expression values across time, and the optimization method is CD;
8Mean & TGDR: pseudo genes were obtained by calculating the average of a gene’s expression values across time, and the optimization method is TGDR;
"Median & LASSO/CD: pseudo genes were obtained by calculating the median of a gené’s expression values across time, and the optimization method is CD;
'"Median & TGDR: pseudo genes were obtained by calculating the median of a gene’s expression values across time, and the optimization method is TGDR;
"PC1 & LASSO/CD: pseudo genes obtained by calculating the first principal component of a gene’s expression values across time, and the optimization method
is CD;

12PC1 & TGDR: pseudo genes were obtained by calculating the first principal component of a gene’s expression values across time, and the optimization method
is TGDR.

rate, the highest BCM, and AUCR and thus is superior to  genes are indicated by the Genecards database to be directly
other summary scores regarding these performance statistics. ~ related to traumatic injury, DPYD, NFE2L2, TLR5, and TLR8
This is because the sign average considers both the expression ~ of the TGDR unique genes are indirectly related to traumatic
value and the directions of association with the phenotype of  injury, whereas 5 of the CD unique genes (PPP2CB, TNFSF10,
interest at individual time points. In contrast, the medianmay ~ LGALS2, IGSF6, and PUS3) are indirectly related. Among the
only consider a gene’s expression value at a specific time point 4 unique TGDR genes indirectly related to traumatic injury,
(the specific time point may vary for different samples, where  the Genecards database [42] summarizes that both TLR5 and
the direction of association may also differ). The mean score ~ TLR8 encode members of the toll-like receptor (TLR) family,
only considers expression values, leading to some degree of =~ which plays a fundamental role in pathogen recognition
cancellation between a positive association and a negative and activation of innate immune responses. These receptors
association. The first PC score only considers the factor/PC  recognize distinct pathogen-associated molecular patterns
that explains the most variance among expression values over ~ that are expressed on infectious agents. NFE2L2 (Nuclear
time, thus taking into account the least useful information for ~ Factor, Erythroid 2 Like 2) encodes a transcription factor that
the classification problems. regulates genes that contain antioxidant response elements

(ARE) in their promoters; many of these genes encode
3.1.4. Relevance of Genes Identified by TGDR or LASSO/CD.  proteins involved in response to injury and inflammation. In
Next, we focused on the unique genes identified by either =~ contrast, among the 5 unique CD genes indirectly related to
the sign average and LASSO/CD method or the sign aver-  traumatic injury, PPP2CB (Protein Phosphatase 2 Catalytic
age and TGDR method and explored the biological rele-  Subunit Beta) encodes the phosphatase 2A catalytic subunit.
vance of these genes. According to the Genecards database =~ Protein phosphatase 2A is one of the four major Ser/Thr
(www.genecards.org), out of the five unique genes identified ~ phosphatases, and it is implicated in the negative control
by TGDR, only DPYD, NFE2L2, and TLR5 are directly related ~ of cell growth and division. The Genecards database [42]
to injury, whereas only TNFSF10 presents such a direct rela-  gives the remaining genes very low confidence scores on their
tion among the 7 unique CD genes. Although none of these12  relevance.
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TABLE 3: Performance of the proposed methods and other relevant methods on Simulation I.
Method Size Rand FI3A1 GSTM1 Error rate' BCM? AUPR®
(%) (%) (%) (%)
Sign Avg. & LASSO/CD* 5.52 13.78 70 10 22.97 0.582 0.873
Sign Avg. & TGDR® 16.76 8.12 88 100 6.77 0.724 0.987
EDGE=* 20 3.85 16 0 10.80 0.719 0.936
limma 6.04 11.72 8 100 16.17 0.707 0.908
LASSO/CD separately6 4.65 29.17 36 40 30.00 0.527 0.924
TGDR Separately7 32.26 5.30 100 100 19.27 0.611 0.991
glmmLASSO 114.06 3.05 0 0 36.40 0.519 0.571

#Using q-value as the cutoff, EDGE selects all 1,000 genes as significant. We used the 20 most significant genes instead. 'Error rate = (false positives + false

negatives)/(sample size).

2BCM captures the average confidence that a sample belongs to class i when it indeed belongs to that class.
® AUPR is computed as the average of the AUPR,, for each class and captures the ability of correctly ranking the samples known to belong in a given class.
*Sign Avg. & LASSO/CD: Pseudogenes were obtained by calculating the sign average of a gené’s expression values across time; the optimization method is

coordinated descent.

*Sign Avg. & TGDR: Pseudogenes were obtained by calculating the sign average of a gene’s expression values across time; the optimization method is threshold

§radient descent regularization.

LASSO/CD separately: separate LASSO models were trained at individual time points; the optimization method is CD.
"TGDR separately: separate TGDR models were trained at individual time points; the optimization method is TGDR.

3.15. Relevance of Genes Identified by Both TGDR and
LASSO/CD. Finally, we explored the biological meaning of
genes identified by both methods in the Genecards database.
We found that 11 of these overlapped genes are directly related
to injury while the rest of them are indirectly related to
injury. Additionally, all of those genes are indirectly related
to traumatic injury. Specifically, the protein encoded by
A2M (Alpha-2-Macroglobulin) is a protease inhibitor and
cytokine transporter. A2M uses a bait-and-trap mechanism
to inhibit a broad spectrum of proteases including trypsin,
thrombin and collagenase. It can also inhibit inflammatory
cytokines, and therefore disrupt inflammatory cascades. SPP1
(Secreted Phosphoprotein 1) encodes a protein that binds
tightly to hydroxyapatite and acts as a cytokine involved in
enhancing production of interferon-gamma and interleukin-
12 and reducing production of interleukin-10 and is essential
in the pathway that leads to type I immunity. CR1 (Com-
plement C3b/C4b Receptor 1) encodes a monomeric single-
pass type I membrane glycoprotein found on erythrocytes,
leukocytes, glomerular podocytes, and splenic follicular
dendritic cells. This protein mediates cellular binding of
particles and immune complexes that have activated com-
plements. CD274 (CD274 Molecule; also commonly referred
to as PDLI1) encodes an immune inhibitory receptor ligand
that is expressed by hematopoietic and nonhematopoietic
cells such as T cells, B cells, and various types of tumor
cells. The encoded protein is a type I transmembrane pro-
tein that has immunoglobulin V-like and C-like domains.
Interaction of this ligand with its receptor inhibits T-cell
activation and cytokine production. During infection or
inflammation of normal tissue this interaction is important
for preventing autoimmunity by maintaining homeostasis
of the immune response. AIM2 (Absent in Melanoma 2) is
involved in innate immune response by recognizing cytoso-
lic double-stranded DNA and inducing caspase-1l-activating

inflammasome formation in macrophages; diseases associ-
ated with AIM2 include skin conditions and melanoma.

3.2. Synthesized Data. To investigate whether the sign aver-
age method provides a valuable summary on one gene’s
expression value across time (and therefore is helpful for
feature selection of longitudinal gene expression data), we
used observed gene expression values of the injury gene
expression dataset to design two sets of simulations. Here,
the expression values of each gene were further stan-
dardized to have a mean of 0 and a standard deviation
of 1.

Simulation I. In Simulation I, we chose two genes (F13Al and
GSTM]) as relevant genes and then randomly included 998
other genes as noise. Denoting the expression value of gene
k at the t™ time point as its symbol with a subscript of t, the
probability of an injury with complication was calculated on
the basis of the following logit function:

logitc/u =0.57 x F13A1; - 0.73 x GSTM1, + 0.38

7)
x GSTM1,

In this logit function, it is observed that the probability
of having a complicated injury is only associated with the
expression values of F13Al at the third time point and those of
GSTMl at points 2 and 4. Furthermore, the directions of those
associations are opposite. The scenario is referred to as the
alternating effect case. Under this scenario, we simulated 50
datasets/replicates and used the proposed method and other
relevant methods to analyze these 50 simulated datasets.
Based on the calculated performance statistics given in
Table 3, a comparison among the proposed methods and
other relevant methods was made.
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TABLE 4: Performance of the proposed methods and other relevant methods on Simulation IL
Method Size Rand F13A1 GSTM1 Error rate' BCM? AUPR®
(%) (%) (%) (%)
Sign Avg. & LASSO/CD* 13.82 10.03 100 96 1.27 0.854 0.994
Sign Avg. & TGDR® 9.92 14.78 100 96 3.33 0.841 0.993
EDGE* 20 2.72 0 0 7.37 0.755 0.973
limma 8.9 9.75 0 100 5.23 0.809 0.981
LASSO/CD Separately6 15.88 8.81 98 100 6.60 0.668 0.982
TGDR separately7 75.48 3.38 100 100 4.47 0.714 0.991
glmmLASSO 63.52 1.63 4 8 46.77 0.510 0.551

#Using g-value as the cutoff, EDGE selects all 1,000 genes as significant. We used the 20 most significant genes instead. 'Error rate = (false positives + false

negatives)/(sample size).

2BCM captures the average confidence that a sample belongs to class i when it indeed belongs to that class.
® AUPR is computed as the average of the AUPR,, for each class and captures the ability of correctly ranking the samples known to belong in a given class.
*Sign Avg. & LASSO/CD: Pseudogenes were obtained by calculating the sign average of a gené’s expression values across time; the optimization method is

coordinated descent.

*Sign Avg. & TGDR: Pseudogenes were obtained by calculating the sign average of a gene’s expression values across time; the optimization method is threshold

gradient descent regularization.

LASSO/CD separately: separate LASSO models were trained at individual time points; the optimization method is CD.
"TGDR separately: separate TGDR models were trained at individual time points; the optimization method is TGDR.

Simulation II. In Simulation II, we explored a scenario where
the association presents a monotonically changed pattern;
namely, the coefficients change decreasingly or increasingly
over time. Again, we used F13A1 and GSTMI as the relevant
genes and randomly chose 998 of the remaining genes as
noise. Denoting the expression value of gene k at the t™ time
point as its symbol with a subscript of t, the corresponding
logit function can be written as

logit,,, = 0.57 x F13A1, +0.67 x F13Al,

+0.77 x F13A1, + 0.87 x F13Al,

+0.97 X F13Al5 — 1.02 X GSTM1, - 0.92 (8)
x GSTM1, - 0.82 X GSTM1, — 0.72

X GSTM1, - 0.62 x GSTM1,

This simulation setting is referred to as the monotonic
effect scenario. Performance statistics were calculated and
averaged for 50 replicates. The results of Simulation II are
presented in Table 4.

Consistent with the results of the injury application, the
methods under consideration may be roughly classified into
three categories on the basis of the calculated performance
statistics in Tables 3 and 4. Among them, the proposed sign
average and TGDR method has the best overall performance.
Since the true causal genes are known in these simula-
tions, the ability of identifying these true relevant genes
becomes another crucial index of how a feature selection
algorithm performs. Although the proposed methods cannot
distinguish important time points from insignificant ones or
discriminate different changing patterns such as a constant
or an alternating change, both methods—especially the sign
average and TGDR method—identify the true causal genes
with the highest frequencies and control the final model’s size

to a reasonable scale. Another finding is that the magnitude
of an association might play a very important role in these
two scenarios. Specifically, a gene with a large coeflicient is
more likely to be correctly identified than a gene with a small
coefficient on the basis of the frequencies of these two genes
being selected in the three simulations.

4. Conclusions

In this study, two optimization methods to solve a regularized
regression model (the CD method and the TGDR method)
were compared to investigate whether their results are com-
parable. A Venn diagram (Figure 3) shows the resulting gene
signatures identified by the sign average and LASSO/CD
method (here, the penalty function considered is LASSO) and
the sign average and TGDR method. By carrying out Fisher’s
exact test, the corresponding p-value <2.2 x 107*¢ indicates
that these two gene lists overlap substantially (67.6%).

In terms of computing time, the TGDR method is less
efficient than the CD method. The CD method took 0.205
seconds for a single run while the TGDR took 7.948 seconds
for a single run on a Mac Pro laptop equipped with a 2.2 GHz
dual-core processor and 16 GB RAM. The inferiority of the
TGDR method regarding computing time may be due to two
reasons. First, the R-codes we adapted from the meta-TGDR
programming [38] do not implement any fast updating
strategy. Second, the updating speed of the CD method is
carried out with a call on the Fortran programming language.
But implementation of the TGDR method is conducted
completely in the R environment, leaving the TGDR method
lagging behind the CD method. Further study on ways to
update the coefficients fast and efficiently in the TGDR
method is warranted.

One major contribution of this study is the proposal
of using the sign average operator to integrate a gene’s
expression profiles across time for a specific patient into a
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FIGURE 3: Venn diagram illustrates the overlap of genes selected by the sign average and TGDR method and the sign average and CD method for
the injury application. Genes directly related to injury according to the Genecards database are underlined.

single value. With a summary value for each gene, longi-
tudinal data are transferred into cross-sectional data, which
makes the typical feature selection algorithms plausible for
longitudinal gene expression data. One criticism is that this
simplification makes the crucial time points and the change
pattern of expression values across time for a specific gene
nonidentifiable. Nevertheless, Simulation I shows that failure
to identify significant time points for individual genes does
not affect the superiority of the proposed methods over other
relevant algorithms.

In conclusion, summarizing genes expression values
across time using the sign average method degrades the fea-
ture selection process for longitudinal data to a conventional
cross-sectional feature selection process and thus successfully
conquers the longitudinal feature selection problem.

In this study, data from a microarray experiment were
used to illustrate the proposed methods. However, the meth-
ods are not specific to microarray data; they can be used
to analyze RNA-seq data as well. The essential steps of the
proposed methods are to get a summary score for each gene
(over its expression values across different time points) and
then to carry out feature selection using these summary
scores as predictors instead. The steps are very flexible and
can be adapted to other types of gene expression data as
long as the data are appropriately normalized. Specifically, for
RNA-seq data, some normalized measures (e.g., transcripts
per kilobase million on the log scale) would be used to
quantify gene expression values.

Applying the proposed methods to one real-world dataset
and two simulations, the proposed methods, especially for
the sign average and TGDR method, present superiority over
other relevant algorithms. Therefore, the proposed methods
are highly recommended.
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