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Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and is associated with a high mortality rate and
poor treatment efficacy. In an attempt to investigate the mechanisms involved in the pathogenesis of HCC, bioinformatic analysis
and validation by qRT-PCR were performed. 3ree circRNA GEO datasets and one miRNA GEO dataset were selected for this
purpose. Upon combined biological prediction, a total of 11 differentially expressed circRNAs, 15 differentially expressed
miRNAs, and 560 target genes were screened to construct a circRNA-related ceRNA network. GO analysis and KEGG pathway
analysis were performed for the 560 target genes. To further screen key genes, a protein-protein interaction network of the target
genes was constructed using STRING, and the genes and modules with higher degree were identified byMCODE and CytoHubba
plugins of Cytoscape. Subsequently, a module was screened out and subjected to GO enrichment analysis and KEGG pathway
analysis. 3is module included eight genes, which were further screened using TCGA. Finally, UBE2L3 was selected as a key gene
and the hsa_circ_0009910–miR-1261–UBE2L3 regulatory axis was established. 3e relative expression of the regulatory axis
members was confirmed by qRT-PCR in 30 pairs of samples, including HCC tissues and adjacent nontumor tissues. 3e results
suggested that hsa_circ_0009910, which was upregulated in HCC tissues, participates in the pathogenesis of HCC by acting as a
sponge of miR-1261 to regulate the expression of UBE2L3. Overall, this study provides support for the possible mechanisms of
progression in HCC.

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most com-
mon malignancies of the digestive system, with a high
mortality rate making it the sixth leading cause of cancer-
related mortality worldwide [1, 2]. More than 466,100 new
cases of HCC and 426,100 deaths occurred in China each
year due to HCC [3]. A research focus has been placed on
how to improve the prognosis of HCC patients. In recent
years, the role of noncoding RNA in the development and
progression of tumors has gradually been recognized by
researchers in line with the deepening of research on the
molecular mechanisms associated with tumors. 3e main
categories of noncoding RNA are microRNA (miRNA), long
noncoding RNA (lncRNA), and circular RNA (circRNA).
CircRNA is a special kind of endogenous noncoding RNA

that is widely present in all organs and tissues; it was first
identified in viruses in 1970 [4–7]. More than a million
different circRNAs have since been identified in human
tissue by high-throughput sequencing [8]. Some studies have
also confirmed that circRNAs could potentially serve as
molecular markers or therapeutic targets for certain diseases,
particularly in cancer growth, metastasis, and therapy re-
sistance [9–12]. Although a comprehensive understanding
of the functions of circRNAs has not been obtained, recent
studies have shown that they function as microRNA sponges
via competitive binding to the microRNA response element
(MRE) to regulate the expression of target genes of
microRNAs [5, 13]. Many studies have also shown that
circRNAs play important roles in the development of HCC.
For example, a study by Han et al. found that circMTO1
could suppress HCC progression by acting as a sponge of
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oncogenic miR-9 to promote p21 expression. Another study
by Yu et al. found that Cirs-7 competitively bound to miR-7
to derepress the expression of CCNE1 and PIK3CD genes to
promote the proliferation and invasiveness of liver cancer
cells [14, 15]. Nonetheless, more research is still needed to
explore the roles of circRNAs in the pathogenesis of HCC.

Considering that the circRNAs and microRNAs differ-
entially expressed between hepatocellular carcinoma tissues
and adjacent noncarcinoma tissue may play important roles
in HCC development and progression, three circRNA ex-
pression profiles (GSE78520, GSE97332, and GSE94508)
and one miRNA expression profile (GSE64632) were
downloaded from the Gene Expression Omnibus (GEO)
database of the National Center of Biotechnology In-
formation to obtain differentially expressed circRNAs
(DECs) and differentially expressed miRNAs (DEMs) using
R software. 3e interactions of circRNA and miRNA, and
miRNA and mRNA were predicted using online databases,
and 560 target genes were obtained. Subsequently, Gene
Ontology (GO), Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment, and protein-protein in-
teraction (PPI) network analyses were performed to reveal
the interactive relationships among the target genes to ex-
plore the underlying molecular mechanisms involved in the
carcinogenesis and progression of HCC [16, 17]. A gene
module was screened from the PPI network and further
validated for the expression levels of the genes and clinical
relevance using 3e Cancer Genome Atlas (TCGA). Finally,
UBE2L3 was screened out and its ceRNA regulatory network
was constructed; the expression levels of molecules in this
regulatory network were also confirmed by qPCR in tumor
tissues and adjacent nontumor tissues. 3e purpose of this
study was to provide valuable insights for biomarker dis-
covery and the development of a novel treatment strategy for
HCC (Figure 1).

2. Materials and Methods

2.1. Microarray Data. Microarray datasets providing
circRNA and miRNA expression profiles of HCC were
downloaded from the Gene Expression Omnibus (GEO)
database [18]. 3e three circRNA expression profiles
(GSE78520, GSE97332 [19], and GSE94508 [20]) were from
the platform of GLP19978. A total of 15 pairs of samples of
HCC tissues and adjacent nontumor tissues were included in
the circRNA microarray dataset. 3e miRNA expression
profile of GSE64632 [21] was from the platform of
GPL18116, which contained three pairs of samples of HCC
tissues and adjacent nontumor tissues (Table 1).

2.2. Differential Expression Analysis. 3e “limma” package
(3.38.3) in R (5.3.2) was applied to screen differentially
expressed circRNAs (DECs) and differentially expressed
miRNAs (DEMs) between HCC samples and adjacent
nontumor samples. 3e significantly DECs (P< 0.01 and
FC> 2) of each of the three circRNA expression profiles were
identified. 3e overlapping upregulated and downregulated
DECs were analyzed using FunRich software (available

online: http://www.funrich.org/). 3e thresholds of P< 0.05
and FC> 2 were set to screen the significantly DEMs from
the miRNA expression profile.

2.3. ceRNA Analysis of circRNA-Related Genes. 3e Circular
RNA Interactome (https://circinteractome.nia.nih.gov/) was
used to predict miRNA binding sites (MREs), excluding
context score percentile lower than 75, which were con-
sidered as potential target miRNAs of the DECs.3ese target
miRNAs of DECs were further screened by overlapping with
the DEMs identified previously. 3e interactions of miRNAs
and mRNAs were established using TargetScan (http://www.
targetscan.org) and miRDB (http://www.mirdb.org). We
identified mRNAs overlapping between the two algorithms
as potential target genes of the miRNAs. 3e interactive
networks of DEGs, DEMs, and target genes were thus
established and visualized using Cytoscape 3.6.1.

2.4. Functional Enrichment Analysis of Target Genes.
Gene Ontology (GO) annotation and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis of the target
genes were carried out using Omicsbean online database
(http://www.omicsbean.cn/). P< 0.05 was considered sta-
tistically significant.

2.5. PPI of Target Genes and Identification of Key Module.
A protein-protein interaction (PPI) network of the target
genes was established using STRING (v10.5) [22]; the
minimum required interaction score was set to 0.4 and the
network was visualized with Cytoscape 3.6.1. CytoHubba, a
plugin in Cytoscape, was used to identify hub genes of the
PPI network. “Molecular Complex Detection” (MCODE),
another plugin of Cytoscape, was used to analyze modules of
the PPI network, with the degree cut-off set to 5. 3e key
module was identified and combined hub genes and
modules GO analysis and KEGG pathway analysis were also
performed on this key module.

2.6. Further Screening of Module Genes by TCGA.
Screening of the module genes in TCGA dataset was per-
formed by GETIA (http://gepia.cancer-pku.cn/) [23]. Ex-
pression analysis for different sample types (HCC and
normal liver tissues), association analysis of gene expression
level and LIHC patients’ tumor stages, and analyses of
overall survival and disease-free survival were also
performed.

2.7. Quantitative Real-Time PCRAnalysis. A total of 30 HCC
patients were recruited for the sampling of tumor and adjacent
nontumor tissues. 3is study was approved by the Ethics
Committee of the Second Clinical Medical College, Jilin
University. Total RNA extraction was performed using Trizol
reagent (Sangon Biotech, Shanghai, China). Reverse tran-
scription of circRNA and mRNA was performed using First
Strand cDNA Synthesis Kit (Sangon Biotech), and reverse
transcription of miRNA was performed using miRNA First

2 BioMed Research International

http://www.funrich.org/
https://circinteractome.nia.nih.gov/
http://www.targetscan.org/
http://www.targetscan.org/
http://www.mirdb.org/
http://www.omicsbean.cn/
http://gepia.cancer-pku.cn/


DECs DEMs

circinteractome

Targetscan, miRDB

Target genes

ceRNA network

PPI analysis (Enrichment analysis)

Key module (Enrichment analysis)

Key gene

qPCR

TCGA
hsa_circ_0009910 

miR-1261 
UBE2L3 mRNA

One miRNA expression profile

0

3

6

9

12

15

–6 –4 –2 0 2 4 6

Three circRNA expression profiles

–6
0

3

6

9

12

15

–4.5 –3 –1.5 0 1.5 3

Figure 1: Process of circRNA-related ceRNA regulatory network construction and identification of key genes in HCC.

Table 1: Information on the three circRNA microarrays and one miRNA microarray.

Series Type of microarray Tumor Nontumor Platforms Reference
GSE78520 circRNA profile1 3 3 GPL19978 —
GSE97332 circRNA profile2 7 7 GPL19978 [19]
GSE94508 circRNA profile3 5 5 GPL19978 [20]
GSE64632 miRNA profile 3 3 GLP18116 [21]
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Strand cDNA Synthesis (tailing reaction) (Sangon Biotech),
with the following primers: hsa_circ_0009910 (forward: 5′-GC
AGAACTGGACCCCGTTACC-3′, reverse: 5′-CAGGGACA
TTGCGCGGCCAA-3′), UBE2L3 (forward: 5′-TTAGTGCC-
GAAAACTGGAAGC-3′, reverse: 5′-ATTCACCAGTGCTA
TGAGGGAC-3′), and GAPDH (forward: 5′-GACAGT-
CAGCCGCATCTTCT-3′, reverse: 5′-ACCAAATCCGTT
GACTCCGA-3′) synthesized by Sangon Biotech. Primers of
miR-1261 and U6 were purchased from GeneCopoeia
(Guangzhou, China). 3e primer specificity of hsa_-
circ_0009910 was verified by Circprimer1.2.0.5 [24] and
Sanger sequencing. Real-time PCR was performed using
2×SG Fast qPCR Master Mix (Sangon, China), in accor-
dance with the manufacturer’s protocol, and the Light-
Cycler 480II Fast Real-Time PCR System was applied
(Roche, Indianapolis, IN, USA). All procedures were
performed in accordance with the manufacturers’ pro-
tocols. 3e relative expression was normalized to GAPDH
and/or U6 expression by the comparative CTmethod. 3e
relative expression was calculated using the 2− ΔΔCT

method.

3. Result

3.1. DECs Based on 7ree Microarray Datasets. 3ree
microarray databases (GSE78520, GSE97332, and
GSE94508) were included in our study, all of which were
from the same platform of GPL19978. A summary of the
three databases is presented in Table 1. Based on the
thresholds of P< 0.01 and |LogFC|> 1, a total of 145 DECs
(128 upregulated and 17 downregulated) were identified in
profile GSE78520, 867 DECs (440 upregulated and 427
downregulated) in profile GSE97332, and 537 DECs (200
upregulated and 337 downregulated) in profile GSE94508
(Table 2). Eleven co-upregulated DECs (hsa_circ_0072088,
hsa_circ_0051732, hsa_circ_0005397, hsa_circ_0000673,
hsa_circ_0001338, hsa_circ_0003945, hsa_circ_0027478,
hsa_circ_0092283, hsa_circ_0003923, hsa_circ_0009910,
and hsa_circ_0001901) were identified by Venn analysis
among the three databases, while no co-downregulated
DECs were identified (Figure 2). 3e basic characteristics of
the differentially expressed circRNAs are shown in Table 3.

3.2. Construction of the ceRNA Network. A total of 11
circRNAs were selected for further study, for which a total of
180 target miRNAs were predicted by CircInteractome.
Based on the thresholds of P< 0.05 and |LogFC|> 1, a total
of 315 differentially expressed miRNAs were screened out in
GSE64632, including 227 upregulated and 88 downregulated
ones (Table 2). Fifteen DEMs were identified by Venn
analysis among the 180 target miRNAs and 296 differentially
expressed miRNAs, including 8 with upregulated expression
and 7 with downregulated expression (Figure 3). 3e target
genes for each of these 15 DEMs were predicted using two
online databases, TargetScan and miRDB, and a total of 560
mRNAs that overlapped between the two databases were
selected as target genes. 3e circRNA-miRNA-target gene
network is shown in Figure 4.

3.3. Enrichment Analysis of the Target Genes. GO and KEGG
enrichment analyses were performed for the 560 target genes
of the DEMs to investigate the biological functions of the
circRNAs. 3e top 10 GO terms of each group are shown in
Figure 5(a). In the biological process category, the main
enriched categories were “biological regulation,” “regulation
of cellular process,” and “regulation of biological process.” In
the cellular component category, the main enriched cate-
gories were “membrane-bounded organelle,” “organelle,”
and “intracellular.” In the molecular function category, the
main enriched categories were “protein binding,” “binding,”
and “RNA polymerase II transcription factor activity, se-
quence-specific DNA binding.” Finally, in the KEGG
pathway analysis, the most enriched KEGG pathways were
“ubiquitin-mediated proteolysis,” “JAK-STAT signaling
pathway,” and “pathway in cancer.” 3e top 3 enriched
cancer-related pathways are shown in Figure 5(b).

3.4. Identification of Key Module in the PPI Network. On the
basis of the STRING database, we established a PPI network
to show the interactions of the 560 target genes, and the top
20 hub genes were selected using CytoHubba, which were
the nodes with higher degree in the network. Further
MCODE analysis revealed two modules from the network.
Module 1 consisted of 9 genes and 72 edges, while module 2
consisted of 8 genes and 63 edges. We found that 5 of the 8
genes in module 2 were hub genes of the PPI network, while
only 2 of the 9 genes were in module 1. 3erefore, we
identified module 2 as the key module for further analysis.
3e PPI network, hub genes, and modules are shown in
Figure 6.

3.5. Enrichment Analysis of Key Module. To further explore
the biological function of the key module, functional en-
richment analysis was performed based on the Omicsbean
database. Regarding the GO terms, the main enriched ones
were protein ubiquitination, cytosol, ubiquitin ligase com-
plex, and ubiquitin-protein transferase activity. 3e KEGG
signaling pathway analysis showed marked enrichment of
ubiquitin-mediated proteolysis. 3e results are shown in
Figure 7.

3.6. TCGA Database Analysis. To further identify key genes
with more reliable support for their involvement in the
pathogenesis of HCC from the key module, GEPIA was used
to analyze the transcript expression of the key module genes
and their correlation with tumor stages, overall survival, and
disease-free survival as derived from TCGA database. 3e
statistical samples included 50 normal samples and 369

Table 2: 3e differentially expressed circRNAs and miRNAs from
the downloaded expression profiles.

Dataset Upregulation Downregulation Total
GSE78520 128 17 145
GSE97332 440 427 867
GSE94508 200 337 537
GSE64632 227 88 315
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hepatocellular carcinoma samples. As shown in Table 4,
UBE2L3 was upregulated in HCC and showed a significant
positive correlation with tumor stage and negative corre-
lations with OS and DFS (Figure 8). It was identified as a key
gene in the pathogenesis of HCC.

3.7. Construction of circRNA-miRNA-Key Gene Network and
qRT-PCR. UBE2L3 was selected as a key gene from the key
module; then, the hsa_circ_0009910–miR-1261–UBE2L3
axis was constructed based on the former ceRNA network.
3e expression levels of the axis members were examined by
qRT-PCR in 30 pairs of samples including HCC tissues and
adjacent nontumor tissues. 3e results showed that the
relative expression levels of hsa_circ_0009910 and UBE2L3
were 1.812± 0.291-fold and 2.41± 0.4792-fold upregulated

and that of miR-1261 was 0.634± 0.1109-fold downregulated
in HCC versus adjacent nontumor tissues (Figure 9).

4. Discussion

As a result of the development of high-throughput RNA
sequencing and novel biochemical/computational biology
methods, an increasing number of studies have shown the
importance of circRNAs in the initiation and development
of various diseases, including malignant cancers [25].
circRNAs can often serve as biomarkers for diagnosis and
prognosis because of their diversity and tissue-specific ex-
pression as well as their stability based on the covalently
closed loop structures [26]. In HCC in particular, substantial
evidence has been accumulated to prove the critical roles of
circRNAs. With the intensification of research on the
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Figure 2: Differentially expressed circRNA screening. (a) Venn analysis of commonly upregulated circRNAs. (b) Venn analysis of
commonly downregulated circRNAs. Heatmap of 11 commonly upregulated circRNAs in GSE78520 (c), GSE97332 (d), and GSE94508 (e).
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mechanisms of circRNA activity, their function of acting as
miRNA sponges in the process of tumor development has
been proven [5, 13]. Although the roles of some circRNAs in
HCC have been identified [27, 28], it is suggested that many

more potentially significant circRNAs have yet to be iden-
tified, which requires further exploration and research.

In the present study, using multiple cohort profile
datasets and integrated bioinformatic analysis, a total of 11

Table 3: Basic characteristics of differential expressed circRNAs.

Circbase ID Spot_ID Position Spliced
length Strand Best transcript Gene

symbol Regulation

hsa_circ_0072088 hsa_circRNA_103809 chr5 : 32379220-32388780 693 − NM_016107 ZFR Up

hsa_circ_0051732 hsa_circRNA_102587 chr19 : 48660270-
48660397 127 − NM_000234 LIG1 Up

hsa_circ_0005397 hsa_circRNA_102034 chr17 : 30500849-
30503232 233 + NM_001033568 RHOT1 Up

hsa_circ_0000673 hsa_circRNA_101707 chr16 :11940357-
11940700 251 NM_015659 RSL1D1 Up

hsa_circ_0001338 hsa_circRNA_001416 chr3 :128824688-
128825122 434 − NM_001204883 RAB43 Up

hsa_circ_0003945 hsa_circRNA_104760 chr9 : 33953282-33956144 258 − NM_018449 UBAP2 Up

hsa_circ_0027478 hsa_circRNA_101094 chr12 : 69109406-
69125499 1029 + NM_020401 NUP107 Up

hsa_circ_0092283 hsa_circRNA_400071 chr22 : 36681395-
36681695 300 − NM_002473 MYH9 Up

hsa_circ_0003923 hsa_circRNA_102954 chr2 : 238933982-
238940895 162 + NM_080678 UBE2F Up

hsa_circ_0009910 hsa_circRNA_100053 chr1 :12049221-12052747 315 + NM_014874 MFN2 Up

hsa_circ_0001901 hsa_circRNA_000996 chr9 :138773785-
138774005 220 − NM_015447 CAMSAP1 Up

106 28115

Target miRNAs of
DE circRNAs

DE miRNAs in GSE64632

(a)

hsa-miR-188-3p

hsa-miR-421

hsa-miR-331-3p

hsa-miR-532-3p

hsa-miR-384

hsa-miR-409-3p

hsa-miR-140-3p

hsa-miR-767-5p

hsa-miR-520f-5p

hsa-miR-330-3p

hsa-miR-1261

hsa-miR-1299

hsa-miR-1827

hsa-miR-1270

hsa-miR-892a

G
SM

15
75

88
9

G
SM

15
75

89
1

G
SM

15
75

89
3

G
SM

15
75

89
0

G
SM

15
75

88
8

G
SM

15
75

89
2

–9.00

–6.25

–4.00

–2.25

2.25

4.00

6.25

9.00

(b)

Figure 3: Identification of differentially expressed miRNAs. (a) Venn analysis of target miRNAs of DECs and differentially expressed
miRNAs of GSE64632 dataset. (b) Heat map of 15 DEMs in GSE64632 dataset.
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differentially expressed circRNAs and 315 differentially
expressed miRNAs were screened from four GEO databases.
Based on the mechanism of conserved endogenous circR-
NAs harboring abundant miRNA binding sites to act as
miRNA sponges and to function as ceRNAs to regulate gene
expression [29–31], a total of 15 DEMs were screened out to
interact with the candidate circRNAs and 560 mRNAs were
selected as potential target genes of them. To further
speculate on the function of the ceRNA network, functional
annotation and pathway analysis of the target genes were
performed. 3e results of the GO and KEGG pathway en-
richment analyses suggested that the target genes were
significantly enriched in different cancer-related functions
and pathways. To identify key module in the target genes, a
PPI network was constructed and combined with hub gene
and module analyses, and module 2 was identified as a key

module. Its genes were found to be particularly associated
with protein ubiquitination (in Biological Process terms)
and ubiquitin-mediated proteolysis (in the KEGG pathway
analysis). 3ey were also significantly related to the cancer
process. 3e module genes were further analyzed based on
the TCGA database and UBE2L3 was identified as a key gene
associated with the pathogenesis of HCC. 3en, the
hsa_circ_0009910–hsa-miR-1261–UBE2L3 regulatory axis
was constructed and its expression was verified by qPCR. In
the study, the expression of hsa_circ_0009910 and UBE2L3
was upregulated and that of hsa-miR-1261 was down-
regulated in HCC, which is consistent with the theory of
ceRNA [29].

It is well known that circRNA-mediated ceRNA path-
ways are essential for multiple functions, with the target
mRNA determining their function based on ceRNA theory
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Figure 5: Continued.
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Figure 5: Enrichment analysis of target genes. (a) GO enrichment analysis of target genes. (b) KEGG pathway analysis of target genes.
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Figure 6: Continued.
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[32]. In the current study, the functions of the target genes
and the key module were all particularly associated with
ubiquitin-mediated proteolysis, as revealed by the KEGG

pathway analysis. Protein ubiquitination is an important
posttranslational mechanism for regulating the activity and
levels of proteins in various conditions, including cancer
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Figure 6: PPI analysis. (a) PPI analysis and hub gene screening of target genes. (b) Module 1 of the PPI network. (c) Module 2 of the PPI
network. Red represents hub genes.
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Table 4: TCGA analysis of key module genes.

Module gene Hub gene (top 20) Upregulate
Stage Overall survival Disease-free

survival
F value P value HR P value HR P value

VHL Yes – 2.4 0.0677 1.4 0.083 1.5 0.015∗
CDC26 No – 2.4 0.04∗ 1.5 0.025∗ 1.6 0.0031∗∗
ANAPC11 No Tumor∗ 2.61 0.513 1.3 0.13 1.3 0.084
UBE2L3 Yes Tumor∗ 4.5 0.00409∗ 1.8 0.0011∗∗ 1.5 0.0077∗∗
SOCS3 Yes Normal∗ 0.651 0.583 1 0.92 0.95 0.72
NEDD8 Yes Tumor∗ 1.13 0.336 1.3 0.11 1.6 0.0041∗∗
UBE2G1 Yes – 1.01 0.39 1.1 0.67 0.9 0.49
HECTD2 No – 1.76 0.155 1.8 0.0011∗∗ 1.5 0.0077∗∗
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Figure 8: TCGA analysis of UBE2L3 by GEPIA. (a) Boxplots depicting expression levels in HCC versus nontumor liver tissues. (b) Violin
plots depicting expression levels associated with tumor grades in HCC. (c) Kaplan–Meier plots comparing the overall survival rates with
high expression and low expression in HCC. (d) Kaplan–Meier plots comparing the disease-free survival rates with high expression and low
expression in HCC.
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[33]. In recent years, many studies have indicated the roles of
protein ubiquitination and ubiquitin-mediated proteolysis
in tumorigenesis, involved in regulating cell cycle pro-
gression, apoptotic factors, cancer metastasis, and the tu-
mor-associated microenvironment. Disrupted regulation of
protein ubiquitination may be one of the triggers for tumor
development [34]. 3erefore, the circRNAs in the ceRNA
network may also play a tumor regulatory role through
ubiquitin-mediated proteolysis.

Based on the integrated bioinformatic analysis, UBE2L3
was finally identified as a key gene among the target genes. It
is one of the 38 ubiquitin-conjugating enzymes (E2) and
participates in the ubiquitin transfer pathway and protein
degradation [35]. It was previously observed that UBE2L3
expression may play an important role in the pathobiology
of HCC and be expressed more highly in HCC samples than
in normal tissues; in addition, increased expression of
UBE2L3 is associated with the development of HCC, which
matches our results. We also found that its expression was
positively correlated with tumor stage through TCGA da-
tabase. Liu et al. found that UBE2L3 was ubiquitously
expressed in all cell lines, but it was expressed more highly in
the strongly metastatic types. Upon UBE2L3’s over-
expression in the SNU-423 cell line, cellular proliferation

and migration were enhanced, while they were inhibited
upon its knockdown in QGY-7703. Further study found that
UBE2L3 may degrade CDKN2B and CLDN1 [36]. 3ere-
fore, UBE2L3 may be an important oncogene in the de-
velopment of HCC, but the upstream mechanism associated
with it has not previously been reported.

It is widely recognized that miRNA-mediated pathways
play roles in tumorigenesis, including cell proliferation,
migration, and apoptosis. In the ceRNA network established
in this study, 15 differentially expressed miRNAs were in-
cluded, including 8 upregulated and 7 downregulated ones
in tumor samples. 3ey mediated the link between circRNA
and target genes. Hsa-miR-1261, upstream of UBE2L3, was
downregulated in HCC; its role in tumorigenesis has been
reported in several different tumor types. For example,
Zhang et al. reported that miR-1261 could regulate the
expression of circ-PTPRZ1/PAK1 and inhibit the pro-
liferation and invasion and promote the apoptosis of glioma
cells [37]. Moreover, Hong et al. reported that miR-1261 was
downregulated in thyroid cancer cells and plays an in-
hibitory role against proliferation and invasion [38].3e role
of miR-1261 as identified in the present study appears to be
similar to the results of previous research, but further
verification of this is required.
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Figure 9: Regulatory axis construction and qPCR validation. (a) hsa_circ_0009910–miR-1261–UBE2L3 regulatory axis. (b) Sanger se-
quencing for circRNA primer verification. (c–e) Validation of expression of hsa_circ_0009910–miR-1261–UBE2L3 axis members in 30 pairs
of HCC and adjacent nontumor tissues by qRT-PCR. ∗P< 0.05, ∗∗P< 0.01.
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Hsa_circ_0009910 was one of the 11 commonly upre-
gulated circRNAs in the three datasets. Its role in tumors has
been tentatively explored in recent years. For example, Ping
et al. reported that circ_0009910 was significantly upregu-
lated in acute myeloid leukemia patients compared with its
level in iron deficiency anemia patients, and its high ex-
pression was predictive of poor prognosis; moreover, its
silencing could inhibit cell proliferation and induce apo-
ptosis through increasing miR-20a-5p [39]. Its procancer
effects have also been verified in gastric cancer and osteo-
sarcoma [40, 41], but its expression and its correlation with
prognosis in HCC have never been reported.

In our study, hsa_circ_0009910 and UBE2L3 were
confirmed to be highly expressed and miR-1261 was
expressed at a low level by qPCR in 30 pairs of samples from
HCC patients, including tumor tissues and adjacent non-
tumor tissues. Combined with bioinformatic prediction, it is
preliminarily suggested that hsa_circ_0009910–miR-1261–
UBE2L3 axis may exhibit a regulatory relationship in the
pathogenesis of HCC. Hsa_circ_0009910 may be a novel
molecule involved in the carcinogenesis of HCC. However,
our study is based on bioinformatic analysis, so further
experiments are needed to confirm the conclusions made
here.
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