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Background. This study is aimed at identifying unknown clinically relevant genes involved in colorectal cancer using bioinformatics
analysis. Methods. Original microarray datasets GSE107499 (ulcerative colitis), GSE8671 (colorectal adenoma), and GSE32323
(colorectal cancer) were downloaded from the Gene Expression Omnibus. Common differentially expressed genes were filtered
from the three datasets above. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses
were performed, followed by construction of a protein-protein interaction network to identify hub genes. Kaplan-Meier survival
analysis and TIMER database analysis were used to screen the genes related to the prognosis and tumour-infiltrating immune
cells of colorectal cancer. Receiver operating characteristic curves were used to assess whether the genes could be used as
markers for the diagnosis of ulcerative colitis, colorectal adenoma, and colorectal cancer. Results. A total of 237 differentially
expressed genes common to the three datasets were identified, of which 60 were upregulated, 125 were downregulated, and 52
genes that were inconsistently up- and downregulated. Common differentially expressed genes were mainly enriched in the
cellular component of extracellular exosome and integral component of membrane categories. Eight hub genes, i.e., CXCL3,
CXCL8, CEACAM7, CNTN3, SLC1A1, SLC16A9, SLC4A4, and TIMP1, were related to the prognosis and tumour-infiltrating
immune cells of colorectal cancer, and these genes have diagnostic value for ulcerative colitis, colorectal adenoma, and colorectal
cancer. Conclusion. Three novel genes, CNTN3, SLC1A1, and SLC16A9 were shown to have diagnostic value with respect to the
occurrence of colorectal cancer and should be verified in future studies.

1. Introduction

Colorectal cancer (CRC) is a common malignant tumour of
the digestive system. In 2018, 1,800,977 new cases of CRC
were identified globally, and the number of deaths attributed
to the disease was 861,663 [1]. CRC cells have a strong a
strong ability to invade and migrate. Postoperative recur-
rence and metastasis are the main causes of death in patients
with CRC [2]. Although comprehensive treatment measures
employed in recent years have improved the five-year sur-

vival rate of CRC patients, overall outcomes of treatment
remain poor [3].

The occurrence of CRC is closely related to ulcerative
colitis (UC) and colorectal adenoma (CRA). Previous studies
have shown that repeated stimulation of chronic inflamma-
tion is an important factor in the aetiology and pathogenesis
of tumours [4, 5]. UC is a nonspecific chronic inflammatory
disorder, mainly involving the rectal and colonic mucosa.
Typical symptoms include abdominal pain, diarrhoea, puru-
lent stools with blood, and tenesmus. One study found that

Hindawi
BioMed Research International
Volume 2020, Article ID 1204605, 12 pages
https://doi.org/10.1155/2020/1204605

https://orcid.org/0000-0001-6164-3649
https://orcid.org/0000-0001-7688-4867
https://orcid.org/0000-0001-7534-5124
https://orcid.org/0000-0003-3271-1694
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/1204605


the risk of CRC in patients with UC is about 10 times higher
than that of healthy people. With prolongation of the disease
course, the rate of developing CRC in patients with UC over a
period of 30 years is about 20% [6]. Furthermore, cancer
associated with UC can progress via an inflammation-
dysplasia-cancer sequence [7]. Dysplasia, defined as the
abnormal development of the neoplastic epithelium that is
limited above the basement membrane, is the most reliable
hallmark of UC patients with increased risk of malignancy
[8]. Dysplasia in UC has two different types of growth pat-
terns, which are either adenoma-like or non-adenoma-like
dysplasia-associated lesion or mass (DALM) [9]. Among
them, colorectal adenoma-like dysplasia (CRA) has been rec-
ognized as precancerous lesions of CRC. In patients with UC,
the incidence of CRA can reach 7.5% [10–16]. Moreover,
more than 80% of sporadic CRC is transformed from CRA
[17–19]. The average time that it takes for CRA with mild
atypical hyperplasia to progress to cancer is 18 years, and
the average time that it takes from severe atypical hyperplasia
is 3.6 years [20]. In short, UC and CRA are important transi-
tional stages in the progression of CRC. With the develop-
ment of molecular biology technologies, diagnostic markers
and gene therapies have the potential to improve the diagno-
sis and treatment of patients with CRC.

Some gene biomarkers, such as mRNA and miRNAs,
have been previously identified to correlate with CRC and
developed as diagnostic tools to predict the occurrence, pro-
gression, and prognosis of CRC [21–24]. However, the iden-
tification of biomarker genes has only been focused on a
single stage of CRC in many studies [25–28]. By considering
all stages of disease progression, researchers can identify
more accurate and targeted diagnostic gene biomarkers to
be applied in clinical practice.

In this study, we used bioinformatic methods to identify
common differentially expressed genes (DEGs) in UC,
CRA, and CRC compared to normal tissues. Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses were performed,
followed by the construction of a protein-protein interaction
(PPI) network to screen for hub genes. Kaplan-Meier (KM)
survival analysis and TIMER database analysis were used to
screen the genes related to the prognosis and tumour-
infiltrating immune cells of CRC. Receiver operating charac-
teristic curves (ROC) were used to assess whether the genes
could be used as markers for the diagnosis of UC, CRA,
and CRC. The results will provide novel diagnostic bio-
markers and therapeutic targets for UC, CRA, and CRC at
the molecular level and help to develop novel strategies for
the prevention and treatment of CRC.

2. Materials and Methods

2.1. Dataset Sources and Searches. We conducted a search of
Gene Expression Omnibus (GEO) (https://www.ncbi.nlm
.nih.gov/geo/), which is a free public functional genomics
database including array- and sequence-based data. The
search terms ulcerative colitis, colorectal adenomas, and
colorectal cancer were used. Datasets were screened accord-
ing to the following the criteria: (1) samples compared
UC/CRA/CRC and normal colorectal tissue, (2) human sam-
ples were used, (3) expression profile arrays were performed,
(4) raw data were accessible, (5) the number of samples in
each group was greater than or equal to five, and (6) the
lesion and normal tissue are from the same subject. Reusable
datasets for our analysis complied with relevant ethical regu-
lations. The analysis pipeline is shown in Figure 1.
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Figure 1: Data analysis pipeline for the identification of clinically
relevant genes using microarray datasets.
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Figure 2: A total of 237 common DEGs were identified by Venn
analysis. Differently coloured areas represent different datasets.
Overlapping areas signify DEGs shared between datasets.
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2.2. Identification and Integration of Common DEGs. The
gene expression profiles were downloaded from the GEO
database. Raw data from each dataset were processed using
R statistical software (version 3.5.1). The analysis of screened
DEGs was carried out using the limma package [29]. The
RMA algorithm in the Affy package was used to preprocess
data [30]. The classical t-test was applied to identify DEGs.
The adjusted p value < 0.05 and ∣log 2FC ∣ >1 were consid-
ered cutoff values. Common DEGs from the datasets were
integrated by Venn analysis.

2.3. GO and KEGG Pathway Enrichment Analyses of
Common DEGs. The characteristic biological attributes of
common DEGs were identified using GO analysis (http://
www.geneontology.org). The functional attributes of com-
monly identified DEGs were determined using KEGG
(http://www.genome.ad.jp/kegg/) pathway enrichment anal-
ysis. The Database for Annotation, Visualisation, and Inte-
grated Discovery (DAVID; http://david.abcc.ncifcrf.gov/)
[31], a free online tool for the functional classification of
genes, was used to conduct GO (biological processes (BP),
cellular component (CC), and molecular function (MF)),
and KEGG pathway enrichment analyses. A p value < 0.05
was set as the cutoff criterion for these analyses.

2.4. PPI Network Construction and NetworkAnalyzer
Analysis. A PPI network of common DEGs was constructed
using the Search Tool for the Retrieval of Interacting Gene
(STRING, https://string-db.org/) [32] database. Then, Cytos-
cape software was utilised to construct a protein interaction
relationship network. NetworkAnalyzer software was used
to calculate connectivity and identify hub genes. A degree ≥
5 was set as the cutoff criterion for this analysis.

2.5. KM Survival Analysis, TIMER Database Analysis, and
ROC Analysis of Hub Genes. Gene-level correlations with
patient survival were featured in Gene Expression Profiling
Interactive Analysis (GEPIA, http://gepia.cancer-pku.cn/)
[33]. The available Cancer Genome Atlas (TCGA) contain-
ing patient survival data was used to perform KM survival
analysis and to identify CRC-related hub genes. Further-
more, we analysed the correlation of CRC-related hub genes
expression with the CRC (colon adenocarcinoma and rectum
adenocarcinoma) purity and immune infiltrating levels of B
cells, CD4+T cells, CD8+T cells, neutrophils, macrophages,
and dendritic cells by the TIMER database (https://cistrome
.shinyapps.io/timer/) [34]. Based on the expression profiles
of genes, ROC was performed to assess whether the CRC-
related hub genes could be used as markers for the diagnosis
of UC, CRA, and CRC.

3. Results

3.1. Search Results and Differentially Expressed Genes.
According to the established inclusion criteria, three data-
sets, i.e., GSE107499, GSE8671, and GSE32323, were used
in our study. Lesions and normal tissue samples were from
the same subject. A total of 12 patients with UC were
obtained from GSE107499, 32 patients with CRA were
obtained from GSE8671, and 17 patients with CRC were
obtained from GSE32323. The array datasets in GSE8671
and GSE32323 used the GPL570 platform. GSE107499
used the GPL15207 platform.

Expression profile datasets GSE107499, GSE8671, and
GSE32323 contained 1488, 1464, and 2423 DEGs that were
extracted, respectively. A total of 237 common DEGs were
identified using Venn analysis (Figure 2), of which 60 were

Table 1: A total of 237 common DEGs were identified, of which 60 were upregulated, 125 were downregulated, and 52 genes that were
inconsistently up- and downregulated in the three datasets.

Genes

Upregulated genes

AGT, CLDN1, FUT8, MMP12, RNF43, AJUBA, CLDN2, FXYD5, MMP3, SLC6A6, APCDD1, CRNDE, GRHL1,
MMP7, SLC7A5, ARNTL2, CTHRC1, HS6ST2, NEBL, SLCO1B3, BACE2, CXCL1, IFITM2, OSBPL3, SLCO4A1,

C2CD4A, CXCL11, KLK10, PDZK1IP1, SORD, CD44, CXCL2, KLK6, PHLDA1, TACSTD2, CDH3, CXCL3, KRT6B,
PSAT1, TCN1, CEMIP, CXCL5, KYNU, PTP4A3, TESC, CFB, CXCL8, LRP8, REG1B, TIMP1, CFI, CYP4X1,MMP1,

REG3A, TIMP3, CHI3L1, FOXQ1, MMP10, RNF183, and TMEM158

Downregulated genes

A1CF, CEACAM7, HEPACAM2, P2RY1, SLC25A23, ABCA8, CES2, HPGD, PADI2, SLC25A34, ABCB1, CHP2,
HRCT1, PCK1, SLC26A2, ABCC13, CLCN2, HSD17B2, PEX26, SLC30A10, ABCG2, CLDN8, IGSF9, PHLPP2,
SLC36A1, ADH1C, CLU, ISX, PIGZ, SLC4A4, ALPI, CMBL, ITPKA, PKIB, SLC51B, ANPEP, CNNM2, LAMA1,
PLCE1, SRI, APPL2, CNNM4, LRRC19, PLP1, TEX11, AQP8, CNTN3, LYPD8, PPP2R3A, THBS1, ASPA, CNTN4,

MAOA, PTPRR, THRB, BEST2, CWH43, MCOLN2, RETSAT, TMCC3, BEST4, DHRS11, MEP1B, RHOU,
TMEM171, BTNL3,DPP10,MIER3, RMDN2, TMEM37, C1orf115, EDN3,MMP28, RUNDC3B, TMEM72, C2orf88,
EMP1, MOGAT2, SCIN, TRIM36, CA1, ENTPD5, MS4A1, SCNN1B, TRPM6, CA12, FMO5, MT1F, SEMA6A,

TSPAN7, CA7, FXYD3, MT1G, SGK2, TUBAL3, CAPN13, GALNT12, MT1H, SLC13A2, UGT2A3, CD177, GBA3,
MT1M, SLC16A9, USP2, CDHR5, GCNT2, MYO1A, SLC17A4, VIPR1, CDKN2B, GNA11, NPY1R, SLC1A1,

VLDLR, CDKN2B-AS1, GUCA2A,NXPE4, SLC22A18AS,WDR78, CEACAM1, GUCA2B,OSBPL1A, SLC22A5, and
ZG16

The genes that are
inconsistently up- and
downregulated in the
three datasets

ACKR1, CD79A, FYB, MAGEH1, PTPRC, TUSC3, ADORA2B, COL14A1, GIMAP6, MFAP5, RASSF2, VIP, AQP3,
CR2, GLDN, MGP, REG4, ASRGL1, CSF2RB, HCLS1, MXRA5, RSPO3, C3, CXCL13, HLA-DPB1, NCKAP1L,
SLC22A3, CCDC80, DUSP14, IGHM, PCDH7, SPARC, CCL19, EFEMP1, IGKC, PITX2, SPINK4, CD48, EVI2B,

IKZF1, PLN, SPINK5, CD52, FAM129A, IL10RA, PLXNC1, SYNPO2, CD69, FDCSP, INSL5, PRKCB, and
TRAF3IP3
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upregulated and 125 were downregulated; 52 genes were
inconsistently up- and downregulated in the three datasets
(Table 1). Moreover, 146 common DEGs were identified
between UC and CRC, 151 common DEGs were identified
between UC and CRA, and 656 common DEGs were identi-
fied between CRA and CRC.

3.2. GO and KEGG Enrichment Analyses. Gene enrichment
analysis (Figures 3(a)–3(d)) revealed that common DEGs
were markedly enriched in particular CC (Figures 3(a)),
which included the extracellular exosome, integral component
of membrane, plasmamembrane, extracellular space, extracel-
lular region, and integral component of plasma membrane
categories (the number of enriched genes was greater than
40). In addition, in BP, genes were mainly enriched in proteol-
ysis. In MF, genes were mainly enriched in calcium ion bind-
ing. In the KEGG pathway, genes were mainly enriched in
cytokine-cytokine receptor interaction (Figure 4).

3.3. PPI Network Analysis. The STRING database was used to
construct a PPI network with 182 nodes and 455 edges

(nodes without connectors were removed) and used the
Cytoscape software for visual analysis (Figures 5). Sixty-
four hub genes were identified using Cytoscape software.
Furthermore, we analysed 42 genes that consistently changed
in the three datasets.

3.4. KM Survival Analysis, TIMER Database Analysis, and
ROC Analysis of Hub Genes. TCGA database containing
362 CRC patients (270 colon adenocarcinoma and 92 rec-
tum adenocarcinoma) was used for KM survival analyses
to screen hub genes related to prognosis of CRC patients.
The results showed that the survival rate of CRC patients
with high expression of CEACAM7, CNTN3, CXCL3,
CXCL8, SLC1A1, and SLC16A9 (p < 0:05) was higher than
that in CRC patients that weakly expressed these genes
(Figures 6(a)–6(e) and 6(g)). The trend of TIMP1 (p < 0:05)
was the opposite (Figures 6(h)). Those with high expression
of SLC4A4 had a higher survival rate than those with low
expression up to near 100 months after the occurrence of
CRC, but the opposite trend was seen after 100 months
(Figures 6(f)).
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Figure 3: GO enrichment analysis (cellular component (CC, a), molecular function (MF, b), and biological processes (BP, c)) and KEGG
pathway analysis (d).
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In colon adenocarcinoma and rectum adenocarcinoma,
the expressions of CEACAM7 and CNTN3 were signifi-
cantly positively correlated with infiltrating levels of B cells
(Figures 7(a) and 7(b)). The expression of CXCL3 has
significantly negatively related to infiltrating levels of mac-
rophages and had significantly positive correlations with
infiltrating levels of neutrophils (Figure 7(c)). The expression
of CXCL8 (IL8) was significantly negatively related to CRC
purity and had significantly positive correlations with infil-
trating levels of CD8+T cells, neutrophils, and dendritic cells

(Figure 7(d)). The expression of SLC1A1 was significantly
positively correlated with infiltrating levels of CD8+T cells
and dendritic cells (Figure 7(e)). The expression of SLC4A4
was significantly negatively related to CRC purity and had
significant positive correlations with infiltrating levels of
CD8+T cells (Figure 7(f)). The expression of SLC16A9 was
significantly negatively related to infiltrating levels of neutro-
phils and had significantly positive correlations with infiltrat-
ing levels of B cells (Figure 7(g)). The expression of TIMP1
was significantly negatively related to CRC purity and had
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Figure 6: Kaplan-Meier survival analyses of CEACAM7 (a), CNTN3 (b), CXCL3 (c), CXCL8 (d), SLC1A1 (e), SLC4A4 (f), SLC16A9 (g), and
TIMP1 (h) based on 362 CRC patients (270 colon adenocarcinoma and 92 rectal adenocarcinoma) from the TCGA database.
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significantly positive correlations with infiltrating levels of
CD4+T cells, macrophages, and neutrophils (Figure 7(h)).

ROC analysis indicated that the area under the curve
(AUC) of CEACAM7, CNTN3, CXCL3, CXCL8, SLC1A1,
SLC4A4, SLC16A9, and TIMP1 in UC (Figure 8(a)), CRA
(Figure 8(b)), and CRC (Figure 8(c)) was greater than
0.7 (p < 0:01).

4. Discussion

Our study integrated three original microarray datasets, i.e.,
GSE107499, GSE8671, and GSE32323. The analysis identi-
fied 237 common DEGs, including 60 upregulated, 125
downregulated, and 52 genes that were inconsistently up-
and downregulated in the three datasets. The Venn analysis
suggested that UC-CRA-CRC is a gradual process. Gene
enrichment analysis showed that common DEGs were
mainly enriched in the cellular component category. Eight
hub genes, i.e., CEACAM7, CNTN3, CXCL3, CXCL8,
SLC1A1, SLC4A4, SLC16A9, and TIMP1, were shown to be
associated with the prognosis of CRC. These hub genes are
related to cancer purity and immune infiltration of different

cells in CRC. Specifically, they have strong diagnostic value
for UC, CRA, and CRC.

Among the eight hub genes, CXCL3 (C-X-C motif che-
mokine ligand 3) and CXCL8 (C-X-C motif chemokine
ligand 8) were upregulated in CRC patients, which is con-
sistent with previous studies [35, 36]. CXCL3 and CXCL8
are members of the CXC chemokine family. Studies have
shown that chemokines can regulate the proliferation of
tumour cells and mediate the infiltration of tumours with
immune cells [37, 38]. In our study, we also found that
the expression of CXCL3 in CRC is significantly negatively
correlated with the infiltration of macrophages and has
significantly positive correlations with the infiltrating levels
of neutrophils. Another study confirmed that the CXCL8
can promote the proliferation and metastasis of a CRC cell
line [39]. In addition, CXCL3 and CXCL8 are also closely
related to UC and CRA. For example, it has been found
that CXCL3 [28] and CXCL8 [40] participate in the path-
ogenesis of UC and can be used as therapeutic targets for
UC. For CRA, a study by Mclean et al. showed that the
inflammatory cytokine genes CXCL1, CXCL2, CXCL3,
CCL20, IL8 (CXCL8), CCL23, CCL19, CCL21, and CCL5are
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Figure 7: Correlation of CEACAM7 (a), CNTN3 (b), CXCL3 (c), IL8 (CXCL8, d), SLC1A1 (e), SLC4A4 (f), SLC16A9 (g), and TIMP1 (h)
expression with immune infiltration level in COAD (colon adenocarcinoma) patients and READ (rectal adenocarcinoma) patients. The
expression level of immune infiltrate markers is represented on the x-axis, and the expression level of hub genes is on the y-axis. The
expression level of immune infiltrate markers and genes are displayed with log2 RSEM.

7BioMed Research International



dysregulated in CRA [25]. Hence, our research validates the
important role of the CXCL3 and CXCL8 in UC, CRA, and
CRC.

Multiple studies have also confirmed that SLC4A4, CEA-
CAM7, and TIMP1 are related to UC, CRA, and CRC. Bian
et al. found that the SLC4A4 (solute carrier family 4 member
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Figure 8: ROC analysis of CRC-related hub genes in the datasets of UC (a), CRA (b), and CRC (c). All p < 0:01.

8 BioMed Research International



4) and CEACAM7 (carcinoembryonic antigen-related cell
adhesion molecule 7) have been found to be associated with
an unfavourable prognosis in CRC [41]. SLC4A4 was also
found to be a differentially expressed gene common to UC
and CRC [42]. The downregulation of CEACAM7 expression
in hyperplastic polyps and early adenomas represents some
of the earliest observable molecular events leading to CRC
[43]. TIMP1 (tissue inhibitor of metalloproteinase-1) is a
member of the tissue inhibitor of metalloproteinase (TIMP)
family that inhibits matrix metalloproteinases (MMPs) [44].
TIMP proteins are classically identified as tumour inhibitory
based on their capacity to inhibit matrix metalloproteinase-
(MMP-) dependent activity [45]. In a number of studies,
the expression of TIMP1 was increased in cancer patients
[26, 27, 46]. This phenomenon is also true in our study. In-
depth studies have revealed that TIMP1 accelerates cell pro-
liferation by activating YAP/TAZ in cancer, suggesting that
the TIMP1-YAP/TAZ axis may be a novel potential drug tar-
get for the treatment of cancer patients [44]. In addition,
studies have also shown that TIMP1 is an important marker
of UC [47] and CRA [48].

At present, there is still a lack of research into SLC1A1,
SLC16A9, and CNTN3 related to intestinal diseases. The
downregulated hub gene SLC1A1 (solute carrier family 1,
member 1) is located on chromosome 9p24 and encodes
for a member of the high-affinity glutamate aspartate trans-
porter family, which is essential for the transport of gluta-
mate across plasma membranes [49]. The studies related to
SLC1A1 have most commonly involved the investigation of
neuropsychiatric disorders [50, 51]. There have been few
studies investigating the relationship between SLC1A1
expression and cancer. Bianchi et al. found that increased
expression of SLC1A1 is correlated with the differentiation
of glioma cells [52], and Fan et al. found that SLC1A1 may
play a major role in osteosarcoma development via bioinfor-
matics analysis [53]. Regarding CRC, one study showed that
SLC1A1 expression and glutamate transporter activity were
altered in SN38-resistant CRC cells [54]. The downregulated
hub gene of SLC16A9 (solute carrier family 16, member 9),
also known as monocarboxylate transporter 9, belongs to a
family of proton-linked plasma membrane transporters
[55]. The monocarboxylate transporter family now com-
prises 14 members, of which only the first four have been
demonstrated to catalyse the proton-linked transport of
metabolically important monocarboxylates such as lactate,
pyruvate, and ketone bodies across biological membranes.
Malignant tumours rely heavily on aerobic glycolysis and
thus need to efflux lactic acid via such transporters to the
tumour microenvironment to maintain a robust glycolytic
flux and to avoid poisoning themselves [56]. CNTN3 (Con-
tactin 3) is a member of the contactin family that is primarily
expressed in the nervous system. Hence, it may function in
the formation and maintenance of specific neuronal net-
works [57–59]. For cancer, a previous study suggested that
CNTN3 is a potential target gene of hsa-miR-3675b in breast
cancer, and it was demonstrated that CNTN3 may be associ-
ated with cell proliferation, apoptosis, and cell cycle progres-
sion [60]. Another study shows that the lower expression
levels of CNTN3may be an independent biomarker that pre-

dicts poor overall survival time in patients with glioblastoma
multiforme [61]. The above studies indicate that SLC1A1,
SLC16A9, and CNTN3 are very likely to play important roles
in the development of cancer. At the same time, our research
also shows that they undergo consistent changes in UC, CRA,
and CRC, and all have diagnostic value. Therefore, we spec-
ulate that SLC1A1, SLC16A9, and CNTN3 are the key factors
in the development of CRC.

This study has some limitations. First, biomarkers were
only evaluated at the gene level. They require further verifica-
tion using in vivo experiments. Second, the sample size is not
big enough; therefore, statistically significant conclusions
cannot be drawn. Third, UC, CRA, and CRC are divided into
different subtypes according to different molecular pathways
of onset. For example, the chromosomal instability (CIN)
pathway and the microsatellite instability (MSI) pathway
are the two main molecular pathways leading to CRC. The
common differentially expressed genes among CRC, UC,
and CRA caused by different pathways may be different.
Due to the limitations of the sample source, our study did
not conduct further analysis. Moreover, the lack of clinical
information for patients included in the microarray datasets
could affect the accuracy of the evaluation of the diagnostic
value of these biomarkers.

In conclusion, our study identified eight hub genes, i.e.
CXCL3, CXCL8, CEACAM7, CNTN3, SLC1A1, SLC16A9,
SLC4A4, and TIMP1 by bioinformatics analysis, which have
clinical diagnostic value for UC, CRA, and CRC. Among the
hub genes, CXCL3, CXCL8, CEACAM7, CNTN3, SLC4A4,
and TIMP1 have been shown to be related to CRC. Impor-
tantly, we found that three novel genes, SLC1A1, SLC16A9,
and CNTN3 have potential diagnostic value for indicating
the occurrence of CRC. It is necessary to further carry out
related molecular biological experiments to explore the role
of them in CRC progression.
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