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A type of sorafenib- (SOR-) loaded long-circulating nanoliposome was constructed, and the targeting performance and antitumor
effects of the prepared liposome were evaluated in the present study. Polyethylene glycol- (PEG-) modified long-circulating
nanoliposomes (LC-NPs) were designed and prepared using reverse evaporation, and the LC-NPs were used for delivering
sorafenib (LC-PEG-SOR-NPs). Then, the anti-VEGFR antibody as a targeting moiety was chemically coupled with LC-PEG-
SOR-NPs to form liver cancer-targeted nanoliposomes (anti-VEGFR-LC-PEG-SOR-NPs). The drug entrapment and loading
efficiency were measured. And the cancer-targeting performance and therapeutic efficiency were evaluated both in vitro and
in vivo. The anti-VEGFR-LC-PEG-SOR-NPs with an average of 119:8 ± 4:2 nm showed a uniform spherical structure. The drug
entrapment and loading efficiency were 92.5% and 18.5%, respectively. The killing efficiency of anti-VEGFR-LC-PEG-SOR-NPs
was up to 18% after incubating with liver cancer cells for 72 h. Furthermore, the anti-VEGFR-LC-PEG-SOR-NPs could actively
target at the tumor region and could efficiently inhibit tumor growth with negligible side effects. This newly designed
nanoliposomes had desirable dispersibility, high drug entrapment efficiency, tumor targeting and therapeutic efficiency, and
good safety. As a biocompatible nanocomposite, it was promising to become a novel and useful tumor-targeting nanodrug for
liver cancer therapy.

1. Introduction

As the sixth most common tumor worldwide, liver cancer
ranks the third in cancer mortality, while 80% of patients
were diagnosed in developing countries, and 44% were in
China [1, 2]. Early diagnosis and surgical treatment are the
best option to manage liver cancer. However, only 20% to
30% of liver cancer patients can be diagnosed early according
to the statistical data [3, 4]. Most patients in the middle and
late stages have to choose chemotherapy, radiotherapy, and
interventional therapy, but those chemical drugs also damage
normal liver tissues [5, 6]. At present, how to improve the
targeting effect of drugs for liver cancer cells, extend the effec-
tive time of drugs, and reduce the damage to normal tissues
has become a research hotspot.

Liposomes as drug delivery system are considered to be
low toxicity for normal tissues [7]. However, after intrave-

nous injection, conventional liposomes can be easily recog-
nized by the reticuloendothelial system and quickly cleared
from the circulation, resulting in limited application. The
surface modification of liposomes can effectively improve
their efficacy and biocompatibility [8, 9]. For example, PEGy-
lated liposomes can avoid the recognition of the reticuloen-
dothelial system and extend the circulation time in the
body [10, 11]. The specific ligand (such as antibodies, pep-
tides, hormones, and sugars) modification on the liposome
surface can specifically target at cells [12, 13]. Based on the
existing findings, targeted therapy plays an important role
in patients with advanced liver cancer, such as targeted ther-
apy with sorafenib (SOR) [14]. SOR is a multitargeted tyro-
sine kinase inhibitor approved by the European EMEA and
US FDA for the treatment of liver cancer in 2007 [15]. Soraf-
enib inhibits the RAS/RAF/MEK/ERK signaling pathway by
inhibiting the activity of RAF, thereby directly suppresses

Hindawi
BioMed Research International
Volume 2020, Article ID 1351046, 12 pages
https://doi.org/10.1155/2020/1351046

https://orcid.org/0000-0002-6641-0286
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/1351046


tumor cell proliferation, and induces apoptosis of cancer cells
[16]. On the other hand, SOR can also inhibit neovasculariza-
tion and cut off the supply of tumor nutrition, thereby inhi-
biting tumor growth and metastasis [17]. And SOR as a
chemical drug has a broad-spectrum antitumor effects and
is commonly used in the treatment of liver and kidney can-
cer. However, the side effects, such as cardiotoxicity, leuko-
penia, and liver damage, have seriously affected the clinical
therapeutic effects of SOR in cancer treatment [18, 19].
Developing a specific delivery system of small molecule
drugs to the tumor site and combining the targeted therapy
can not only suppress cancer development but also avoid
the potential side effects. Therefore, developing a new deliv-
ery system of tumor-targeting drug is urgently needed for
clinical application of targeted therapy. The high expression
of vascular endothelial growth factor receptor (VEGFR) in
liver cancer plays a key role in neovascularization, tumor
growth, and metastasis [20]. Therefore, VEGF and its recep-
tor VEGFR have become the targets for the development of
liver cancer drugs.

In this study, long-circulating nanoliposomes (LC-
NPs) modified with distearyl phosphatidylethanolamine-
polyethylene glycol (DSPE-PEG) is used for loading the
liver-targeting drug SOR by reverse evaporation, forming
the long-circulating liver-targeting sorafenib nanoliposomes
(LC-PEG-SOR-NPs). Then the anti-VEGFR antibody as a
targeting moiety was chemically coupled with LC-PEG-
SOR-NPs to form the liver cancer-targeted nanoliposomes
(anti-VEGFR-LC-PEG-SOR-NPs). Our results showed that
anti-VEGFR-LC-PEG-SOR-NPs had good specificity and
affinity for tumor cells, and the liposomes were expected to
become a novel type of antitumor drug carrier.

2. Materials and Methods

2.1. Main Reagents and Instruments. Experimental SPF-
level Balb/c-nu mice were purchased from Shanghai Slack
Laboratory Animal Co., Ltd.; DMEM medium, fetal bovine
serum, and trypsin were purchased from Gibco; VEGFR
antibody was purchased from eBioscience; DSPE-PEG was
obtained from Avanti, USA; carboxymethyl chitosan cetyl
quaternary ammonium salt (HQCMC), Prussian blue stain-
ing kit were purchased from Solarbio; 1,2-dioleoylpho-
sphatidylcholine (DOPC), dimethyl octadecyl epoxypropyl
ammonium chloride (GHDC), cholesterol, dichlorometh-
ane, N-hydroxysuccinimide (NHS), 1-ethyl-3-(3-dimethyl
ammonium propyl) ammonium bicarbonate (EDC), and
other commonly used reagents were purchased from Sino-
pharm; and cholesterol (Chol), dichloromethane, and other
commonly used reagents were purchased from Sinopharm
Group. The main instruments included the BI-90Plus laser
particle size analyzer/Zeta potentiometer (Brooke-Haiwen,
USA), LDJ9600-1 VSM magnetic performance tester (Amer-
ican Digital Instrument Company), and OLYMPUS B×61
fluorescence microscope (Olympus, Japan).

2.2. Preparation of Anti-VEGFR-LC-PEG-SOR-NP. The anti-
VEGFR-LC-PEG-SOR-NPs were prepared by reverse evapo-
ration. Oil phase: DOPC (the matrix material), cholesterol

(the skeleton material linking molecules), GHDC (the emul-
sifier), HQCMC (the surfactant), PEG-DSPE (the surface
modification material), and a prescribed amount of SOR
were co-dissolved in dichloromethane. Aqueous phase: PBS
contained surfactant Tween-80, with a pH7.4 and a con-
centration of 0.1mol/L. The two phases were mixed at a
volume ratio of 3 : 1. The mixed solution was ultrasonically
shaken using a probe type ultrasound wave with a power of
27%, a duration of 2 s, at an interval of 1 s, for a total dura-
tion of 6min, at 25°C, making it completely emulsified. A
uniform emulsion could be formed after the ultrasound
processing. Finally, the organic solvent of dichloromethane
was removed by a rotary evaporator, thereby obtaining the
water-soluble LC-PEG-SOR-NPs. The coupling agent 1-
ethyl-3-(3-dimethylammonium propylammonium) (EDC)
and N-hydroxysuccinimide (NHS) were added to the obtained
LC-PEG-SOR-NP solution. Then, the VEGFR antibody was
added while vortexing 30 s each time, every 30min, for a total
duration of 12h. After that, we centrifuged to remove the free
antibody and washed with water for three times. Then, we
collected the supernatant and used the BCA protein kit
(Solarbio) for determining the protein concentrations.

After refrigeration, the anti-VEGFR-LC-PEG-SOR-NPs
were obtained. The solid content was calculated after lyoph-
ilization and diluted to a concentration of 200μg/mL with
distilled water for later use. The preparation procedure is
shown in Figure 1.

2.3. Anti-VEGFR-LC-PEG-SOR-NP Characterization and
Protein Content Test

2.3.1. Particle Size Analysis. 10μL of anti-VEGFR-LC-PEG-
SOR-NP sample was diluted to 2mL with PBS and taken into
the sample chamber of a laser particle size analyzer (Zetasizer
Nano ZS90, Malvern) to measure the particle size distribution.

2.3.2. Atomic Force Microscopy. The atomic-to-pitch curve
could be captured by transmission atomic force microscope
(AFM), and the microscopic surface of the samples could
be obtained. One microliter of anti-VEGFR-LC-PEG-SOR-
NP sample was diluted to 20μL with PBS. Five microliter of
the diluted solution was dropped onto the mica plate and
air dried for subsequent detection.

2.3.3. Ultraviolet-Visible (UV-Vis) Analysis. 10μL of targeted
drug liposome (anti-VEGFR-LC-PEG-SOR-NP), nontargeted
drug liposome (LC-PEG-SOR-NP), targeted drug-free lipo-
some (VEGFR-LC-PEG-NP), and nontargeted drug-free lipo-
some (LC-PEG-NP) samples were taken and diluted to 2mL
with ultrapure water (ddH2O), and then the absorbance spec-
trum was detected with the UV-Vis spectrophotometer.

2.3.4. Western Blotting Analysis. The protein in anti-VEGFR-
LC-PEG-SOR-NP was extracted with the RIPA solution, and
the protein concentration was determined by the protein assay
kit (Solarbio) and was adjusted to 3μg/μL. The extracted pro-
tein solution (10μL) was mixed with 10μL of the loading
buffer for sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis (SDS-PAGE). A constant voltage of 100V was main-
tained for the electrophoresis to the bottom of the separation
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gel. A constant current of 350mA was transferred onto the
nitrocellulose membrane after 2.5 h. After blocking with 5%
skim milk powder for l h, l : 1000 diluted rabbit anti-human
KDR monoclonal antibody was added, and it was shaken
on a shaker overnight and rinsed with a phosphate buffer
containing Tween-20 (PBST) three times for 10min each
time. Then, the 1 : 500 diluted goat anti-rabbit IgG-HRP
was added, shaken on a shaker for 1 h, and rinsed with PBST
three times for 10min each time. Then, the samples were
exposed with electrochemiluminescence (ECL) reagents and
scanned with a scanner.

2.4. Determination of Anti-VEGFR-LC-PEG-SOR-NP
Entrapment Efficiency and Drug Loading. One milliliter of
the prepared anti-VEGFR-LC-PEG-SOR-NP was taken and
centrifuged at 5000 r/min for 10min. 0.2mL of the centri-
fuged liposome sample was taken and diluted to a total vol-
ume of 0.5mL with acetonitrile-water (60 : 40). The sample
was vortexed for 30 s, added with 4mL of tert-butyl methyl
ether, and vortexed for another 1min. After the mixture
was centrifuged at 4000 r/min for 10min, 3mL of the super-
natant was taken, and the organic solvent was removed by
rotary evaporation under reduced pressure. The residue was
added to 100μL of mobile phase to dissolve. Meanwhile,
the uncentrifuged liposome sample was also taken and proc-
essed similarly. The concentration of the drug was deter-
mined by HPLC-UV, and the entrapment efficiency of
liposomes was calculated by a plotted standard curve. The
chromatographic conditions are as follows: column: Venu-
silMPC18 column (4:6mm × 150mm), 5μm; mobile phase:
acetonitrile-water (60 : 40); UV-Vis detection wavelength:
227 nm; and flow rate: 1mL/min. The detected concentra-

tions ranged from 2 to 100μg/mL. The minimum detection
limit was 30ng.

The actual drug-loading rate was calculated as follows:

Actual drug − loading rate %ð Þ
= Encapsulated drug concentration/
Microsphere concentration × 100%:

ð1Þ

The drug entrapment efficiency was calculated as follows:

Drug encapsulation rate %ð Þ
= Encapsulated drug concentration/
Total drug concentration × 100%:

ð2Þ

2.5. Toxicity of Anti-VEGFR-LC-PEG-SOR-NP to Tumor
Cells. In order to investigate the inhibitory ability of the
anti-VEGFR-LC-PEG-SOR-NP on liver cancer tumor cells,
human liver cancer Huh-7 cells in the logarithmic growth
phase were selected. The cells were digested with 0.25% tryp-
sin, inoculated into a 96-well cell culture plate at a concentra-
tion of 3000 cells/well, and cultured in a 5% CO2 incubator at
37°C for 12 h. The targeted drug liposome VEGFR-LC-PEG-
SOR-NP, targeted drug-free liposome VEGFR-LC-PEG-NP,
nontargeted drug liposome LC-PEG-SOR-NP, and SOR were
dissolved in PBS (pH7.4) and added to the 96-well plate with
cells at a concentration of 200μg/mL. The cells were cultured
for 1, 3, 6, 12, 24, 48, and 72 h, respectively. Cell proliferation
was measured by the cell viability assay (MTT assay). Result
are expressed as mean ± SD (n = 6).
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Figure 1: Preparation of anti-VEGFR-LC-PEG-SOR-NPs and the active targeting of drug delivery in vivo.
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2.6. Antitumor Effects of Anti-VEGFR-LC-PEG-SOR-
NP In Vivo

2.6.1. Establishment of Animal Models. The Huh-7 cells in a
logarithmic growth phase were used, trypsinized and washed
three times with precooled PBS, adjusted to a cell concentra-
tion of 5 × 106 cells/mL, and stored at 4°C for later use.
100μL of Huh-7 cells were inoculated from the right hind
limb of male BALB/c nude mice (8 weeks old). After 10 days,
if a lump could be palpable at this site, the animal model
would be established successfully.

2.6.2. Grouping of Tumor-Bearing Nude Mice. Twenty-four
nude mice bearing tumors with a uniform tumor size were
randomly divided into four groups with six animals in each
group. The groups were divided as a targeted drug group with
anti-VEGFR-LC-PEG-SOR-NP, a nontargeted drug group
with LC-PEG-SOR-NP, a SOR group with the same concen-
tration, and a negative control group with PBS.

2.6.3. The Circulation Dynamic Characteristic of Anti-VEGFR-
LC-PEG-SOR-NP In Vivo. The anti-VEGFR-LC-PEG-SOR-
NP was labeled with Cy5.5 and intravenously injected to the
tumor-bearing mice (n = 3). Then, blood drops were taken
to detect the fluorescence intensity (Ex/Em = 675/693 nm)
at 0.5, 1, 2, 4, 8, and 16 hours later.

2.6.4. Drug Effect Experiments. Four groups of mice were
injected with VEGFR-LC-PEG-SOR-NP, LC-PEG-SOR-NP,
SOR, and PBS in situ. Each animal was administered with
100μL each time, while the drug group contained 200μg of
SOR. The dose was given every other day for two consecutive
weeks. The conditions of the mice were carefully observed.
The mice were weighed every other day, and the tumor size
was measured regularly with a vernier caliper. The relative
volume of the tumor was calculated as follows:

Tumor volume = Long tumor × Tumorwidth
× Tumorwidth/2:

Tumor relative volume = Tumor volume on dayN/
Tumor volume on day 0

ð3Þ

2.7. Statistical Analysis. All statistical analysis in this study
was performed using the SPSS 21.0 software. The significance
of the difference between more than two groups was evalu-
ated by the one-way analysis of variance (ANOVA) followed
by the post hoc multiple comparison with Tukey’s test. Pear-
son’s correlation analysis was performed to investigate the
association. P value < 0:05 was considered significant.

3. Results

3.1. Anti-VEGFR-LC-PEG-SOR-NP Characterization. The
average particle size of anti-VEGFR-LC-PEG-SOR-NP was
119:8 ± 4:2 nm (Figure 2(a)), which was measured by a parti-
cle size analyzer. Such small size implied that it was suitable
for in vivo application. Moreover, the particle sizes of the pre-
pared anti-VEGFR-LC-PEG-SOR-NPs ranged from 70.89 to
198.0 nm, with a polydispersity index (PDI) of 0.268. The

centralized distribution of the particle size indicated that
the particles were relatively uniform. According to the atomic
force detection (Figure 2(b)), the particle sizes concentrated
around 119.8 nm. The cationic polymer liposomes tended
to be in a spherical shape, and the dispersion was good.

Figure 2(c) presented the UV-Vis absorption spectra of
the anti-VEGFR-LC-PEG-SOR-NP, LC-PEG-SOR-NP, anti-
VEGFR-LC-PEG-NP, and LC-PEG-NP. The protein ex-
hibited a characteristic absorption peak at 280nm in the
ultraviolet spectrum. Therefore, compared to the nontar-
geted LC-PEG-SOR-NP and LC-PEG-NP, the targeted
anti-VEGFR-LC-PEG-SOR-NP and anti-VEGFR-LC-PEG-
NP showed absorption peaks at around 280 nm. It indicated
that the targeting moiety of long-circulating nanoliposomes
was successfully conjugated to the liposomes. The protein
electropherograms of anti-VEGFR-LC-PEG-SOR-NP, LC-
PEG-SOR-NP, anti-VEGFR-LC-PEG-NP, and LC-PEG-NP
(Figure 2(d)) showed that the bands appeared between 130
and 170 kD, which indicated the anti-VEGFR antibody
molecular. It further confirmed that the VEGFR antibody
was modified on the surface of long-circulating nanolipo-
somes. And the binding efficiency of the antibody loading
onto the liposomes was ~23.1% according to our calculation.

3.2. Drug-Loading Efficiency of Anti-VEGFR-LC-PEG-SOR-
NP and Targeting Performance. Figure 3(a) presents the
standard spectrum of SOR drugs showing the retention time
at 9.2min and a good separation effect. The standard curve
is shown in Figure 3(b), with the drug concentration as the
horizontal coordinates and the peak area as the vertical
ordinate. The standard curve equation could be obtained
as Y = 0:373X + 0:010, R2 = 0:9999, with a good linear rela-
tionship, where Y is the peak area of SOR drugs and X is
the concentration of SOR drugs. The HPLC chromatogram
of anti-VEGFR-LC-PEG-SOR-NP samples is shown in
Figure 3(c). The sample concentration was calculated from
the detected sample peak area and the standard curve. The
anti-VEGFR-LC-PEG-SOR-NP sample had a SOR concen-
tration of 37μg/mL, and the total concentration of SOR
drugs was 40μg/mL. The concentration of the prepared
long-circulating nanoliposomes was 200μg/mL. The entrap-
ment efficiency of the long-circulating nanoliposomes was
92.5%, while the drug loading of the long-circulating nanoli-
posomes was 18.5%.

The nanoliposomes were labeled with Cy5.5 and incubated
with Huh-7 cells for 1, 2, and 4 hours. According to the flow
cytometer analysis (Figure 3(d)), either anti-VEGFR-LC-
PEG-NP or anti-VEGFR-LC-PEG-SOR-NP showed more
obviously and time-dependent accumulation within cells
than other groups due to the antibody targeting property.

3.3. The Cytotoxic of Nanoliposomes. The killing efficiency of
nanodrugs for tumor cells was detected by the MTT assay. As
shown in Figure 4(a), the anti-VEGFR-LC-PEG-SOR-NP
significantly inhibited the survival of liver cancer cells. As
the culture time extended, the survival rate of cancer cells
gradually decreased, and the survival rates were only approx-
imately 30% and 18% after 48h and 72h incubation. On the
contrary, the drug-free nanoliposome (anti-VEGFR-LC-
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PEG-NP) hardly affected the cell activity, and the survival
rate was approximately 98%. The same concentration of
SOR had no obvious killing effect on Huh-7 cells, and the

survival rate was maintained above 70%, while the nontar-
geted liposome LC-PEG-SOR-NP containing the same con-
centration of SOR showed more cytotoxic to Huh-7 cells
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Figure 2: Anti-VEGFR-LC-PEG-SOR-NP characterization and protein content test. (a) Particle size test of anti-VEGFR-LC-PEG-SOR-NPs.
(b) Atomic force test of anti-VEGFR-LC-PEG-SOR-NPs. (c) UV-Vis absorption spectrum of long-circulating nanoliposomes. (d) Protein
electropherogram of long-circulating nanoliposomes. Representative results from three independent experiments are shown.
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than that of the SOR treatment group. However, the killing
effect was also not as high as that of anti-VEGFR-LC-PEG-
SOR-NP, and the survival rate was over 46% after 72h. The
flow cytometry analysis further proved the anti-VEGFR-
LC-PEG-SOR-NP to trigger more percentage (43.22%) of
apoptosis in cancer cells which was the Annexin V-FITC

positive staining (Figure 4(b)). Since tumor angiogenesis
was vital for tumor cells proliferation and metastasis, and it
was well known that SOR suppressed tumor growth by inhi-
biting angiogenesis and destroying tumor microvessel [21],
thus, we further detected the cytotoxic effect of nanolipo-
somes for human umbilical vein endothelial cells (HUVEC).
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Figure 4: Continued.

7BioMed Research International



The MTT results showed a similar trend to that of Huh-7 cells
(Figure 4(c)). The flow cytometry analysis further proved the
anti-VEGFR-LC-PEG-SOR-NP triggered more cellular apo-
ptosis (29.93%) in endothelial cells (Figure 4(d)). More
importantly, the anti-VEGFR-LC-PEG-SOR-NP remarkably
inhibited the HUVEC tube formation on a basement mem-
brane substrate (Figure 4(e)), which confirmed that SOR-
loaded targeting nanoliposomes not only suppressed the can-
cer cell proliferation but also inhibited angiogenesis. These
results indicated that even at the concentration of 200μg/mL,
the drug-free liposome did not affect the cell viability and
showed good biocompatibility to be a drug carrier. On the
other hand, although SOR had weak lethality for Huh-7 cells,
the killing efficiency remarkably enhanced after SOR loaded
into the targeted nanoliposomes.

3.4. Tumor Suppression Effect of Nanoliposomes. Firstly, we
evaluated the circulation time of the fluorescence-labeled
anti-VEGFR-LC-PEG-SOR-NP after being intravenously
injected into the mice. The half time of nanoliposomes was
nearly 10 hours, which revealed their long circulation capa-
bility (Figure 5(a)). The tumor growth curve of mice model
showed that compared with the PBS treatment group, the
groups with the same concentration of SOR and LC-PEG-
SOR-NPs could significantly suppress the tumor growth
(P < 0:05). However, the inhibitory effect of the LC-PEG-
SOR-NP group was more significant than that of the SOR
group (Figure 5(b)). The underlying reason was that the
LC-PEG-SOR-NPs could stay longer in the blood circulation
of mice, leading to more obvious antitumor effect. The anti-
VEGFR-LC-PEG-SOR-NP group could more significantly
suppress tumor growth than the other groups (P < 0:05).
All tumor-bearing mice were killed on the 14th day, and
the photographs of respective tumor tissues showed the sim-
ilar trend with growth curve (Figure 5(c)). The tumor histo-
logical slices stained by hematoxylin and eosin (H&E)
showed more severe damage in anti-VEGFR-LC-PEG-SOR-
NP group than that in other groups (Figure 5(d)). It was
attributed to “active targeting” after being conjugated with
anti-VEGFR, which enabled the nanodrugs to accurately
identify the tumor cells. This indicated that the targeted
long-circulating nanoliposomes could be used as a drug car-
rier with active targeting and sustained release. In addition, in

order to examine whether the corresponding treatment
caused the toxic side effects, the nude mice were weighed
every other day. As shown in Figure 5(e), the bodyweight of
mice in each group did not decrease and remained stable at
24:5 ± 0:6 g. This indicated that the treatment of PBS, SOR,
LC-PEG-SOR-NP, and anti-VEGFR-LC-PEG-SOR-NP did
not have obvious toxicity to mice. Subsequently, we investi-
gated the expression of SOR target-related proteins in tumor
tissues through western blotting. As shown in Figure 6(a),
the levels of SOR target-related proteins including p-RAF,
p-ERK, p-MEK, VEGFR2, VEGFR3, and PDGFR were sig-
nificantly reduced. Importantly, the anti-VEGFR-LC-PEG-
SOR-NP group showed more significantly lower levels of
p-RAF, p-ERK, p-MEK, VEGFR2, VEGFR3, and PDGFR
(Figure 6(b)). However, there was no obviously dysregulation
of SOR target-related proteins in tumor tissues in response to
LC-PEG-SOR-NP. These results collectively indicated that
anti-VEGFR-LC-PEG-SOR-NP exhibited strong cytotoxicity
on tumor cells.

4. Discussion

Nowadays, chemotherapy has become one of the major
options for cancer therapy. However, chemical drugs often
damage normal organs due to a lack of selectivity, causing
serious systemic adverse reactions.

Although the nanoliposome was approved by FDA for
several years, it was proved nonideal targeting characteristic
and poor stable and prone to leakage in vivo. Positive-
targeted nanoliposomes are proven to be desirable carriers
for chemotherapy drug due to the following features: (1) lipo-
somes are biocompatible and less toxic [22]; (2) nanolipo-
somes can easily penetrate through blood barrier and reach
the target organs [23]. In addition, it can be modified with
a large number of targeting molecules due to its large surface
area and abundant modification sites [24]; (3) after PEG-
modified long-circulating liposomes are engulfed by the liver
and spleen, silicon is reduced, and they show a sufficient cir-
culating half-life in the blood [25]; (4) after the targeting
ligand is linked to liposomes, it does not affect the structural
and biological properties of the drugs loaded in the liposomes
[26]; and (5) benefiting from the ligand-receptor effect, it can
specifically target to the tumor site, so that the drugs

Control
Anti-VEGFR-
LC-PEG-NP SOR LC-PEG-SOR-NP

Anti-VEGFR-LC-
PEG-SOR-NP

(e)

Figure 4: The killing effects of different sample treatment for Huh-7 and HUVEC cells. (a) Cell viability of Huh-7 cells determined by CCK8
assay following different treatments. (b) Cell apoptosis rate of Huh-7 cells determined by flow cytometry following different treatments. (c)
Cell viability of HUVEC cells determined by CCK8 assay following different treatments. (d) Cell apoptosis rate of HUVEC cells determined by
flow cytometry following different treatments. (e) Images of angiogenesis of HUVEC cells following different treatments. The data are
presented as the mean ± SD. ∗P < 0:05, ∗∗P < 0:01 vs. the control group; #P < 0:05, ##P < 0:01 vs. the anti-VEGFR-LC-PEG-NP group;
&P < 0:05, &&P < 0:01 vs. the SOR group; $P < 0:05, $$P < 0:01 vs. the LC-PEG-SOR-NP group.
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concentrate in the target organ and reduce distribution in
other organs [27, 28].

VEGFR was a universal target overexpressed on vascula-
ture of multiple solid tumor types and other disease models,
which were specific receptors for VEGF. It was closely
related to the pathogenesis and metastasis of many common
tumors in the body because it would bind with VEGF and
promote the neovascularization, proliferation, and migra-
tion of vascular endothelial cells. Therefore, it was not a
unique targeting receptor for liver cancer cells, which was
not an ideal target for the liver cancer therapy only depend-

ing on the anti-VEGFR antibody. Fortunately, the combina-
tion of nanocarriers (nanoliposomes), targeting antibodies
(anti-VEGFR antibodies), and molecular targeting drugs
(SOR) cleverly improved the targeting and therapeutic effi-
ciency in this work.

Mounting evidence indicates that delivery of nanomedi-
cine to solid tumors depends on the enhanced permeability
and retention effect. The size of nanoparticle plays a pivotal
role in optimizing drug delivery and therapeutic outcome
[29, 30]. Our results indicated that anti-VEGFR-LC-PEG-
SOR-NPs could positively target the tumor and efficiently
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Figure 5: The tumor suppression effect in vivo. (a) Monitoring of the fluorescence-labeled nanoliposomes after intravenous injection. (b) The
relative volume curve of mice in each treatment group. (c) The photographs of collected tumor tissues. (d) H&E staining of the tumor slices.
(e) The weight change curves of mice in each treatment group. The data are presented as the mean ± SD. ∗P < 0:05, ∗∗P < 0:01.

9BioMed Research International



inhibit tumor growth. Moreover, SOR as a multitarget and
multikinase inhibitor can specifically inhibit serine/threonine
kinase and tyrosine kinase receptor on tumor cells and tumor
blood vessels [31, 32]. Most importantly, the activation of
RAS-RAF-ERK-MEK-MAP kinase pathway is related to the
pathogenesis of malignancies, which promotes cell prolifera-
tion and differentiation, and inhibits cell apoptosis [33, 34].
Liver cancer is a typical vascular rich tumor and VEGFR is
reported to promote the development and metastasis of liver
cancer through promoting lymph angiogenesis and angio-
genesis [35, 36]. PDGFR is found to regulate cell prolifera-
tion, differentiation, growth, and development [37]. The
inhibition of nanodrugs on these proteins explains the cyto-
toxicity of tumor cells treated with anti-VEGFR-LC-PEG-
SOR-NPs. In summary, we designed the targeting nanolipo-
somes (anti-VEGFR-LC-PEG-SOR-NPs) that hardly show
side effects on mice and are promising for clinical application
transformation.

5. Conclusion

In summary, the prepared liver cancer-targeted anti-
VEGFR-LC-PEG-SOR-NPs could effectively improve the
in vivo distribution of SOR drugs and enhance its safety
and efficacy in vivo. The prepared liposomes were expected
to become a novel and effective antitumor drug carrier.
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in this published article. The data used to support the find-
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