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Background. Acute myocardial infarction (AMI) is regarded as an urgent clinical entity, and identification of differentially
expressed genes, lncRNAs, and altered pathways shall provide new insight into the molecular mechanisms behind AMI.
Materials and Methods. Microarray data was collected to identify key genes and lncRNAs involved in AMI pathogenesis. The
differential expression analysis and gene set enrichment analysis (GSEA) were employed to identify the upregulated and
downregulated genes and pathways in AMI. The protein-protein interaction network and protein-RNA interaction analysis were
utilized to reveal key long noncoding RNAs. Results. In the present study, we utilized gene expression profiles of circulating
endothelial cells (CEC) from 49 patients of AMI and 50 controls and identified a total of 552 differentially expressed genes
(DEGs). Based on these DEGs, we also observed that inflammatory response-related genes and pathways were highly
upregulated in AMI. Mapping the DEGs to the protein-protein interaction (PPI) network and identifying the subnetworks, we
found that OMD and WDFY3 were the hub nodes of two subnetworks with the highest connectivity, which were found to be
involved in circadian rhythm and organ- or tissue-specific immune response. Furthermore, 23 lncRNAs were differentially
expressed between AMI and control groups. Specifically, we identified some functional lncRNAs, including XIST and its
antisense RNA, TSIX, and three lncRNAs (LINC00528, LINC00936, and LINC01001), which were predicted to be interacting
with TLR2 and participate in Toll-like receptor signaling pathway. In addition, we also employed the MMPC algorithm to
identify six gene signatures for AMI diagnosis. Particularly, the multivariable SVM model based on the six genes has achieved a
satisfying performance (AUC = 0:97). Conclusion. In conclusion, we have identified key regulatory lncRNAs implicated in AMI,
which not only deepens our understanding of the lncRNA-related molecular mechanism of AMI but also provides
computationally predicted regulatory lncRNAs for AMI researchers.

1. Introduction

Acute myocardial infarction (AMI/MI) is regarded as an
urgent clinical entity, whose typical symptoms include
pressure and pain in the chest, shortness of breath, sweating,
and nausea [1]. In 2017, there were about 10.6 million myo-
cardial infarction cases reported worldwide [2], andMI is still
among those top life-threatening conditions and contributed
vastly to the hospital admissions and mortality globally [3].

MI can be further divided into ST-segment elevation
myocardial infarction (STEMI) and non-STEMI (NSTEMI).
Risk factors for MI include high blood pressure, smoking,
diabetes, high blood cholesterol, obesity, lack of exercise,
and excessive alcohol intake [4], yet critical epicardial

coronary disease is absent in approximately 10% of cases of
MI occurrence [5]. MI often occurs directly due to the block-
age of a coronary artery caused by the rupture or erosion of a
vulnerable coronary plaque [5], and its complications cover a
wide range including ventricular arrhythmias, cardiogenic
shock, stroke, papillary muscle rupture, and pericarditis
(Dressler syndrome). While some of these symptoms are
present immediately after an MI [6], others might take weeks
to develop, and it is challenging for physicians to identify key
factors involved in the pathogenesis of MI based on available
clinical characteristics [7].

To our knowledge, a variety of genetic factors have been
identified to play critical roles in the pathogenesis of ischemic
cardiovascular diseases. lncRNAs are an emerging class of
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noncoding RNAs, which participate in various cellular
processes through mechanisms including regulating genomic
imprinting and controlling pre-miRNA splicing and mRNA
decay [8]. Recent researches have shed some light on how
lncRNAs function in the regulation of cardiovascular systems
[9, 10]. Moreover, lncRNAs are regarded as more effective
tools in distinguishing nonischemic cases from ischemic
failing myocardium, compared with the microRNA or
mRNA [10]. Several lncRNAs are identified in MI, such as
the cyclin-dependent kinase inhibitor 2B antisense RNA 1
(CDKN2B-AS1), member 1 opposite strand/antisense tran-
script 1 (KCNQ1OT1), myocardial infarction-associated
transcript 1 (MIRT1) and 2 (MIRT2), and the lateral
mesoderm-specific lncRNA Fendrr, which are associated
with the activation of the expression of certain genes and
capable of reflecting other clinical traits [11–13]. In the pres-
ent study, we utilized gene expression profiles of circulating
endothelial cells (CEC) from 49 patients of acute myocardial
infarction (AMI) and 50 controls to identify differentially
expressed genes (DEGs), lncRNAs, and pathways, in order
to provide promising targets and reveal possible mechanisms
behind AMI pathogenesis.

2. Material and Methods

2.1. Microarray Data and Data Preprocessing. The microar-
ray dataset with accession number GSE66360 [14] was down-
loaded from the Gene Expression Omnibus (GEO) database
(http://www.ncbi.nlm.nih.gov/geo/), which included a total
of 99 samples. As reported by a previous study [14], circulat-
ing endothelial cells were isolated from patients experiencing
acute myocardial infarction (n = 49) and from healthy
cohorts (n = 50). The AMI patients, healthy control patients
without a history of chronic disease, and diseased control
patients with known but stable cardiovascular disease were
aged 18-80, 18-35, and 18-80 years. Refseq IDs labelled as
“NR_” were identified as lncRNAs in the Refseq database.
To conveniently calculate gene expressions, we used the
expression values of probes with the maximal variance to
represent the expression of genes matching multiple probes.

2.2. Differential Expression Analysis. Following this previous
study [15], we used t-test and fold change methods to identify
differentially expressed genes. To reduce the false-positive
rates by multiple testing, BH-adjusted P value < 0.05 for t
-test and fold change between AMI vs. controls > 2 or <1/2
were chosen as the thresholds for differential expression.

2.3. Gene Set Overrepresentation Enrichment Analysis. The R
package clusterProfiler [16] was used to perform overrepre-
sentation enrichment analysis with enrichKEGG function.
Terms in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways [17] were considered as significantly
enriched if the adjusted P value < 0.05.

2.4. Identification of Subnetwork from Protein-Protein
Interaction (PPI). The protein-protein interactions (PPIs)
were extracted from the STRINGdatabase [18–20]. The differ-
entially expressed genes (DEGs) were then mapped to the PPI
network. The Cytoscape MCODE plugin [21] was applied to

search for clustered subnetworks of highly connected nodes
from the DEG-based PPI network. The PPI subnetworks were
visualized using the Cytoscape software (http://www
.cytoscape.org).

2.5. lncRNA-Protein Interaction Analysis. The lncRNA-
protein interactions were predicted by LncADeep [22], an
ab initio lncRNA identification and functional annotation
tool based on deep learning, as well as the high correlation
between the lncRNA and the protein. We used the sequences
of differentially expressed lncRNAs and proteins, as well as
the correlation between their expression levels, to predict
their interactions.

2.6. Feature Selection and Support Vector Machine (SVM)
Model Construction. To select gene signatures for AMI diag-
nosis, we employed the MMPC algorithm, which is a
constraint-based feature selection algorithm [23]. The 99
samples were first divided into two sets (training (n = 50)
and validation (n = 49)). The features were selected from
the model trained using the training set. Based on the selected
features, a SVMmodel was constructed. The SVMmodel was
implemented in R with package e1071. The receiver operat-
ing curve (ROC) was generated by the R package ROCR [24].

2.7. Statistical Analysis. Statistical comparisons between
groups of normalized data were performed using the t-test
or Wilcoxon rank-sum test according to the test conditions.
P value < 0.05 was considered to indicate a statistically signif-
icant difference with a 95% confidence level. All the statistical
analyses were implemented in R (https://www.r-project.org/).

3. Results

3.1. Identification of Differentially Expressed Genes in AMI.
With the gene expression profiles of circulating endothelial
cells (CEC) from 49 patients of acute myocardial infarction
(AMI) and 50 controls, we identified a total of 552 differen-
tially expressed genes (DEGs) (t-test, P value < 0.05 adjusted
by Benjamini and Hochberg (BH), and fold change > 2 or
<1/2), including 503 upregulated genes and 49 downregu-
lated genes (Figure 1(a)). Principal component analysis
(PCA) revealed that the first four principal components
(PCs) accounted for more than 80% of the variance. Particu-
larly, the first PC explained about 68.13% of variance
(Figure 1(b)). Moreover, we found that the first two PCs
could clearly distinguish the AMI cases from the controls
(Figure 1(c)). Moreover, the top ten significantly deregulated
genes in AMI included NR4A2, IRAK3, NFIL3, THBD,
MAFB, IL1R2, JUN, ACSL1, CLEC4E, and BCL3 (Table 1).
Notably, all these genes were upregulated in AMI. Among
the ten genes, NR4A2, IRAK3, NFIL3, IL1R2, CLEC4E, and
BCL3 were involved in inflammatory response-related
biological functions, and JUN andMAFB were two transcrip-
tion factors. These results indicated that inflammatory
response was an important characteristic of AMI.

3.2. Functional Enrichment Analysis of the DEGs. On these
differentially expressed genes, the overrepresentation enrich-
ment analysis (ORA) was performed and revealed that
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inflammatory response-related pathways, including the TNF
signaling pathway, IL-17 signaling pathway, Toll-like
receptor signaling pathway, cytokine-cytokine receptor
interaction, NF-kappa B signaling pathway, and NOD-like
receptor signaling pathway, were highly enriched by the
upregulated genes (BH-adjusted P value < 0.05, Figure 2(a)).
However, the downregulated genes were not enriched in any
KEGG pathways with the threshold of 0.05 for the BH-
adjusted P value. Specifically, we further investigated the com-
ponents involved in the TNF signaling pathway and found
that the key transcription factors, such as AP-1 (JUN and
FOS), CEBPB, and CREB5, as well as their target genes, such
as IL1B, LIF, TNF, BCL3, NFKBIA, SOCS3, and TNFAIP3,
were highly upregulated in AMI patients (Figure 2(b)). These
results indicated that the TNF signaling pathway may be a
major pathway involved in AMI.
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Figure 1: Overview of the differentially expressed genes (DEGs). (a) The upregulated and downregulated genes are colored by red and blue,
respectively. (b) The top four principal components (PCs) of the DEGs. (c) The visualization of the samples by first and second PCs. Each
point represents one sample, and the AMI cases and controls are represented by red and blue colors, respectively.

Table 1: The top ten significantly deregulated genes in AMI.

Gene symbol t-statistic P value FDR log2FC

NR4A2 10.17 7:74E − 17 1:89E − 12 2.57

IRAK3 10.16 5:14E − 16 6:29E − 12 2.92

NFIL3 9.23 7:76E − 15 6:32E − 11 2.64

THBD 9.60 1:60E − 14 9:75E − 11 3.04

MAFB 9.04 2:89E − 14 1:41E − 10 3.25

IL1R2 9.44 6:75E − 14 2:75E − 10 3.58

JUN 8.70 8:56E − 14 2:99E − 10 1.67

ACSL1 8.86 1:30E − 13 3:67E − 10 2.45

CLEC4E 8.88 1:35E − 13 3:67E − 10 2.84

BCL3 8.50 2:38E − 13 5:28E − 10 1.61

FDR: false discovery rate; log2FC: log2 fold change.
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Figure 2: The KEGG pathways enriched by DEGs. (a) The overview of the KEGG pathways enriched by the DEGs. (b) The DEGs involved in
the TNF signaling pathway. The upregulated genes were colored by red.
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3.3. PPI Network Construction. To identify key subnetworks
from the protein-protein interaction (PPI) network, we
applied the Cytoscape MCODE plugin to search for clustered
subnetworks of highly connected nodes from the PPI network.
We successfully identified two subnetworks with high connec-
tivity (Figure 3, the Plugin MCODE with the following default
parameters: degree cut-off, ≥3; and nodes with edges, ≥3-core,
and found that OMD (Osteoadherin) and WDFY3 (WD
Repeat and FYVE Domain Containing 3) were the hub genes
of the two subnetworks with the highest connectivity. More-
over, the two subnetworks were then found to be involved in
circadian rhythm (Figure 3(a)) and organ- or tissue-specific
immune response (Figure 3(b)), respectively, suggesting that
circadian rhythm and organ- or tissue-specific immune
response may be associated with AMI.

3.4. Identification of AMI-Associated Long Noncoding RNAs.
In addition to some protein-coding genes (PCGs), some long
noncoding RNAs (lncRNAs) could also be quantified using
the microarray platform. Based on the gene annotation, we
identified 2,242 lncRNAs, 23 of which were differentially
expressed between AMI and control groups (Figure 4(a)).
Specifically, XIST and its antisense RNA TSIX, which have
been reported to be associated with several diseases [25–27],
were significantly downregulated in AMI samples. In accor-
dance with the upregulated genes, the majority of the differen-
tially expressed lncRNAs in AMI samples were the upregulated
lncRNAs.

To identify functional lncRNAs that could potentially
interact with proteins, we applied a deep learning algorithm,
LncADeep [22], to predict the lncRNA-protein interactions.
Totally, 71 lncRNA-protein interactions, which consisted of
6 lncRNAs and 32 proteins, were identified and selected
based on LncADeep and Pearson correlation coefficient
(r > 0:6, Figure 4(b)). Notably, LINC00528, LINC00936, and
LINC01001 were predicted to have interactions with TLR2
(Toll-like receptor 2). Consistently, the three lncRNAs and
TLR2 were also predicted to participate in the Toll-like
receptor signaling pathway (Figures 4(c)–4(e)). These results
indicated that these three functional lncRNAs may partici-
pate in the pathogenesis of AMI via regulating the Toll-like
receptor signaling pathway.

3.5. Selection of Gene Signatures for AMI Diagnosis.With the
gene expression profiles of circulating endothelial cells (CEC)
isolated from whole blood, we then attempted to obtain gene
signatures for the classification of AMI and healthy controls.
The 99 samples were first randomly divided into training
(n = 50) and validation (n = 49) sets. We identified six gene
signatures, including CRTAM, EGR2, GIMAP7, IRAK3,
JDP2, and MGP, based on the MMPC algorithm, which
identified minimal feature subsets of all the genes from the
training set. These six genes were then used to construct six
SVM (Support Vector Machine) models based on the train-
ing set, separately. The predictive performance of the six
models in the validation set revealed that the area under the
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Figure 4: Computational prediction of functional lncRNAs in AMI. (a) The expression profiles of differentially expressed lncRNAs. (b) The
lncRNA and protein interaction network. The predicted pathway that the three lncRNAs may participate in is illustrated in (c–e).
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curve (AUC) of each model was about 0.8, except the SVM
built with EGR2 (Figures 5(a)–5(f)). Particularly, the multi-
variable SVM model based on these six genes achieved the
highest performance (AUC = 0:97) as compared with each
of these six SVM models. These results suggested that the
selected gene signatures could be potential diagnostic bio-
markers for AMI.

4. Discussion

In the present study, we used gene expression profiles of
circulating endothelial cells (CEC) from 49 patients of acute
myocardial infarction (AMI) and 50 controls to identify a
total of 552 differentially expressed genes (DEGs), including
503 upregulated genes and 49 downregulated genes, and
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Figure 5: The performance of SVMmodels built based on the six signature genes. The ROCs of SVMmodels separately built by six signature
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observed that inflammatory response-related genes NR4A2,
IRAK3, NFIL3, IL1R2, CLEC4E, and BCL3 were highly
upregulated in AMI, which was in accordance with the
observation that inflammatory response-related pathways
were enriched by these upregulated genes, indicating that
inflammatory response was one of the important characteris-
tics in AMI. Among the dysregulated KEGG pathways, the
TNF signaling pathway was the most significant inflammatory
response-related pathway. We found that the key
transcription factors, such as AP-1 (JUN and FOS), CEBPB,
and CREB5, as well as their target genes, such as IL1B, LIF,
TNF, BCL3, NFKBIA, SOCS3, and TNFAIP3, were highly
upregulated in AMI. Notably, some polymorphisms of
susceptible genes, key receptors and ligands, and downstream
target genes involved in TNF signaling [28–30] have been
widely reported by previous studies. When mapping these
DEGs to the PPI network, we have identified two PPI subnet-
works and found that OMD (Osteoadherin) and WDFY3
(WD Repeat And FYVE Domain Containing 3) were the
hub nodes of these two subnetworks with the highest connec-
tivity, which could be involved in circadian rhythm and organ-
or tissue-specific immune response. The protein coded by
OMD, osteomodulin, has been reported to be associated with
cardiovascular risk traits [31]. AlthoughWDFY3 has not been
reported to cause AMI, the involvement of WDFY3 in organ-
or tissue-specific immune response further demonstrated its
critical role in AMI. Moreover, the circadian rhythm was also
associated with AMI [32].

Among the DEGs, 23 lncRNAs were differentially
expressed between AMI and control groups. Specifically,
XIST and its antisense RNA, TSIX, which have been reported
to be associated with several diseases [25–27], were
dominantly downregulated in AMI, suggesting that this pair
of lncRNAs may also be responsible for the occurrence of
AMI. The predicted interactions between lncRNAs and pro-
teins also highlighted three lncRNAs, namely, LINC00528,
LINC00936, and LINC01001, which were predicted to
interact with TLR2 and participate in the Toll-like receptor
signaling pathway. As the TLR2 and Toll-like receptor signal-
ing pathway have been reported as a critical regulator and
pathway in AMI [33, 34], these lncRNAs may also act as
the upstream regulators of this pathway. Recently,
LINC00528 was identified to regulate myocardial infarction
by targeting the miR-143-3p/COX-2 axis [35]. Furthermore,
we also searched for gene signatures that could discern AMI
samples from healthy controls and employed the MMPC
algorithm to identify six gene signatures, including CRTAM,
EGR2, GIMAP7, IRAK3, JDP2, and MGP for AMI diagnosis.
Particularly, the multivariable SVM model based on the six
genes achieved high performance (AUC = 0:97), suggesting
that these selected gene signatures could be potential diag-
nostic biomarkers for AMI. Particularly, EGR2, a proapopto-
tic gene, was upregulated in AMI, and its high expression
might induce apoptosis in cardiomyocytes [36].

In addition, some limitations also existed in the present
study. First, molecular experiments would be needed to
validate the biological function of these regulatory lncRNAs.
Second, more samples are needed to further validate the
performance of the gene signatures for AMI diagnosis. We

hope to conduct further research with molecular experiments
and more samples in the near future. In conclusion, we have
identified key regulatory lncRNAs implicated in AMI and
identified six gene signatures in circulating endothelial cells
to predict the presence of AMI, which might be useful for
the early diagnosis of AMI in clinical application.

Data Availability

The microarray dataset is with accession number GSE66360.
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