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Dengue fever is a mosquito-borne infectious disease threatening more than a hundred tropical countries of the world. The
heterogeneity of mosquito bites of human during the spread of dengue virus is an important factor that should be considered
while modeling the dynamics of the disease. However, traditional models assumed homogeneous transmission between host and
vectors which is inconsistent with reality. Mathematically, we can describe the heterogeneity and uncertainty of the transmission
of the disease by introducing fuzzy theory. In the present work, we study transmission dynamics of dengue with the fuzzy SEIR-
SEI compartmental model. The transmission rate and recovery rate of the disease are considered as fuzzy numbers. The
dynamical behavior of the system is discussed with different amounts of dengue viruses. Also, the fuzzy basic reproduction
number for a group of infected individuals with different virus loads is calculated using Sugeno integral. Simulations are made
to illustrate the mathematical results graphically.

1. Introduction

Dengue is one of the major public health concerns. It is a
mosquito-borne fastest growing tropical disease in the world.
Dengue cases have been increasing from 2.2 million (in 2010)
to over 3.2 million (in 2015) across the America, Southeast
Asia, and Western Pacific. More than one-third of the
world’s population, approximately 3.9 billion people, are liv-
ing in the dengue risk area of 128 countries [1]. Annually,
about 390 million new dengue infections are occurring
worldwide [2]. There is no licensed vaccine and no specific
antiviral drugs for the disease. About 2.5% of those that are
infected by dengue die [1].

Dengue is one of the emerging diseases in Nepal. The
outbreak of dengue usually occurs in Nepal during June to
October. Dengue case was first reported in Nepal 2004, and
major outbreaks have occurred on 2006, 2010, 2013, 2016,
and 2019 [3]. In the year 2019, more than 14,662 DENV
infection cases were confirmed in 67 districts of Nepal.
Among them, six people were reported to die due to dengue
disease infection [4].

Dengue fever is caused by one of the four closely related
dengue viruses of different serotypes: DENV-1, DENV-2,
DENV-3, DENV-4, which circulate simultaneously in an
endemic area. Dengue viruses are single-stranded RNA
viruses of the Flaviviridae family. It is transmitted by the
day-feeding mosquito Aedes Aegypti and the Asian Tiger
mosquito, Aedes Albopictus [5].

Mathematical models are more effective tools to
understand transmission dynamics of the disease, to iden-
tify the influential parameters in spreading the disease, and
to propose strategies for the control of the disease. There
is long and distinguished history of using mathematical
models for the study of the evolution and transmission
dynamics of infectious diseases. Kermack and Mckendrick
formulated an SIR compartmental model to study infec-
tious diseases mathematically [6]. Esteva and Vargas
remodeled it to use for vector host dynamics of dengue
disease taking constant [7] and variable human population
[8]. Since then, many researchers have studied dengue
disease transmission dynamics. Gakkhar and Chavda and
Phaijoo and Gurung studied the impact of awareness on
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the spread of dengue infection in a human population [9,
10]. Mobility of human population causes the spread of
the disease in new human populations, so impact of these
mobility parameters has been studied through mathemati-
cal models [11].

In the modeling of the transmission of dengue
disease, several nonlinear models of ordinary differential
equations have been used [6, 7, 10–12]. In these models,
the variables commonly represent subpopulations of
susceptible ðSÞ, exposed ðEÞ, infectious ðIÞ, and recovered
ðRÞ.

Most of the researchers have used deterministic models
with constant model parameters. Generally, they assumed
that each individual can transmit the disease and recover
from the disease in a constant rate. But these assumptions
conflicted with real epidemic. The model parameters like
transmission rates, biting rates, and recovery rates are
uncertain. Zadeh [13] had introduced the uncertainty in
a biological model. To study this uncertainty, mathemati-
cally, he defined the fuzzy set and fuzzy theory. Mondal
et al. modified the epidemic SIS model by considering
the disease transmission parameter and treatment control
parameter as fuzzy number [14]. De Barros et al. applied
fuzzy theory technique on a SI epidemiological model
while considering different degrees of infectivity. Also, they
used the transmission coefficient as a fuzzy set [15]. Djam
and Wajiga presented a fuzzy expert system for manage-
ment of malaria, to provide the decision support platform
to malaria researchers [16]. Emokhare and Igbape pro-
posed a fuzzy logic-based approach for the early diagnosis
of Ebola hemorrhagic fever [17].

Recently, fuzzy theory has been introduced in many
models of engineering, banking, public health, and biol-
ogy. Also, the theory has been used to study the diagno-
sis of the diseases. Previous studies regarding the general
epidemic models (SI, SIR) of infectious disease have been
developed with a fuzzy transmission parameter for the
diseases which are transmitted to human from human
directly [14, 15, 18]. Dengue is an infectious disease
which cannot be transmitted to human from human
directly without the intermediate vector, the Aedes mos-
quito. In the disease dynamics, the transmission rate
and recovery rate of the disease are not deterministic;
they are uncertain. So, in the present work, we consider
these parameters as fuzzy numbers. We compute fuzzy
basic reproduction number to study the stability of the
equilibrium points.

This paper is organized as follows. Fuzzy set and fuzzy
expected value are defined in Subsections 1.1 and 1.2. In Sec-
tion 2, we present the analysis of the fuzzy epidemiological
model. Also, positivity and boundedness of the solution of
the model are described in Subsection 2.2. In Section 3, we
perform stability analysis with basic reproduction number
of the dengue disease, using a next-generation matrix
method. We present a fuzzy basic reproduction number
and compare it with the deterministic basic reproduction
number with different virus loads of dengue disease in Sub-
section 3.3. In Section 4, numerical results and discussion
about the work are presented.

1.1. Fuzzy Set. Let X be a nonempty crisp set. A fuzzy subset S
of X is denoted by ~S and is defined as

~S = x, μ~S xð Þð Þ: x ∈ Xf g, ð1Þ

where μ~S : X ⟶ ½0, 1� is a membership function associated
with a fuzzy set ~Swhich describes the degree of belongingness
of x with X.

Here, we use the membership function μðxÞ to indicate
the fuzzy subset ~S. Also, μðxÞ is called fuzzy number if X is
the set of real numbers.

1.2. Fuzzy Measure and Fuzzy Expected Value. Let Ω be a
nonempty set and PðΩÞ denote the set of all subsets of Ω.
Then, μ : PðΩÞ⟶ ½0, 1� is a fuzzy measure [19] if

(i) μðϕÞ = 0 and μðΩÞ = 1
(ii) for A, B ∈ PðΩÞ, μðAÞ ≤ μðBÞ if A ⊂ B

Let u : Ω⟶ ½0, 1� be an uncertain variable; i.e., u is a
fuzzy subset and μ a fuzzy measure on Ω. Then, fuzzy
expected value (FEV) of u is the real number, defined by
the Sugeno integral [19],

FEV uð Þ =
ð
Ω

u dμ = sup inf α, k αð Þð Þf g, 0 ≤ α ≤ 1, ð2Þ

where

k αð Þ = μ ω ∈Ω : u ωð Þ ≥ αf g: ð3Þ

2. Fuzzy SEIR-SEI Model of Dengue

In this paper, we propose a SEIR-SEI model for dengue
transmission by incorporating the fuzzy number. The
model describes the interaction between susceptible,
exposed, infected, and recovered human population and
susceptible, exposed, and infected mosquito population by
the system of nonlinear ordinary differential equations
[11]. In the deterministic model proposed in [11], we use
the fuzzy number. Among the individuals of the popula-
tion, there are different degrees of susceptibility and infec-
tivity, so the concept of susceptible and infectious is
uncertain. Focusing on the population heterogeneity, we
consider the disease transmission coefficient βh between
susceptible and infected individuals as a fuzzy number.
The recovery of the infection of the disease is also uncer-
tain. The infected individual will recover from the disease,
when the amount of virus is reducing from the body. So,
we consider that the recovery rate γh is also a fuzzy num-
ber. To describe the virus load on these parameters, we
use the membership function βhðvÞ and γhðvÞ for the trans-
mission rate and recovery rate, respectively. Then, the fuzzy
SEIR-SEI model of dengue disease is described by the
following system of differential equations:

dSh
dt

= μhNh −
βh vð Þb
Nh

ShIm − μhSh,
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dEh

dt
= βh vð Þb

Nh
ShIm − kh + μhð ÞEh,

dIh
dt

= khEh − γh vð Þ + μhð ÞIh,

dRh

dt
= γh vð ÞIh − μhRh,

dSm
dt

= A −
βmb
Nh

SmIh − μmSm,

dEm

dt
= βmb

Nh
SmIh − km + μmð ÞEm,

dIm
dt

= kmEm − μmIm: ð4Þ

Here, Nh = Sh + Eh + Ih + Rh and Nm = Sm + Em + Im,
where Nh is the host (human) population size, Sh is number
of susceptibles in the host population, Ih is the number of
infectives in the host population, Rh number of immunes
(recovered) in the host population, Nm is the vector (mos-
quito) population size, Sm is the number of susceptibles in
the vector population, Im is the number of infectives in the
vector population, μh is the birth/death rate in the host popu-
lation, μm is the death rate in the vector population, βh is the
transmission coefficient from vector to host, βm is the trans-
mission coefficient from host to vector, γh is the recovery rate
in the host population, b is the biting rate of vector, kh is the
host's incubation rate, and km is the vector’s incubation rate.

2.1. Membership Function. The fuzzy membership function
of the transmission parameter βhðvÞ which depends on the
amount of virus load v is given by [15, 20]

βh vð Þ =

0, if v < vmin,
v − vmin
vM − vmin

, if vmin ≤ v ≤ vM ,

1 if vM ≤ v ≤ vmax

8>>><
>>>:

ð5Þ

Here, vmin represents the minimum amount of virus
needed for the disease transmission to occur. When the
amount of virus in an individual is less than vmin, the chance
of transmission of disease is negligible. Moreover, for the cer-
tain amount of virus vM , the transmission rate of the disease is
maximum and equal to 1. Furthermore, we suppose that for
the dengue disease, the individual’s amount of virus is always
limited by vmax. The diagram of βhðvÞ is given in Figure 1.

Here, γhðvÞ represents the recovery rate from the infec-
tion of the disease which depends on the amount of virus
load. When the virus load is higher, it will take a longer time
to recovery from the disease. Thus, the fuzzy membership
function of recovery rate γhðvÞ is given by [18]

γh vð Þ = γ0 − 1ð Þ
vmax

v + 1, if 0 < v < vmax, ð6Þ

where 0 < γ0 < 1 is the lowest recovery rate. The diagram of
γhðvÞ is given in Figure 2.

We assume that the amount of virus of the studied
group V may be different for different individuals. So,
with the classification of the studied group given by an
expert, it can be seen as a linguistic variable such as
weak, medium, and strong. Each classification of the
linguistic variable with membership function ΓðvÞ is
given by [15]

Γ vð Þ =

0, if v < �v − δ,
v − �v + δ

δ
, if �v − δ ≤ v ≤ �v,

− v − �v − δð Þ
δ

, if �v < v ≤ �v + δ,

1, if v > �v + δ:

8>>>>>>><
>>>>>>>:

ð7Þ

The parameter �v represents a central value, and δ is
the dispersion of each one of the fuzzy set assumed by
V . The diagram of ΓðvÞ is given in Figure 3.

2.2. Nonnegativity and Boundedness

Theorem 1. The solutions of the system (4) are nonnegative
for all t > 0.

Proof. Suppose D = fðSh, Eh, Ih, Rh, Sm, Em, ImÞ ∈ℝ7 : 0 ≤ Sh
, Eh, Ih, Rh, Sm, Em, Img:

We show that D should be positively invariant. To prove it,
we examine the behavior of the state variables at the bound-
aries of D.

(a) At the boundary Sh = 0, we get

Sh′ = μhNh > 0 ð8Þ

Thus, the solution cannot exit D by crossing this
boundary.
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Figure 1: Membership function βhðvÞ:
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(b) At the boundary Eh = 0, we get,

Eh′ =
βh vð Þb
Nh

ShIm ð9Þ

Case 1. If Eh = 0, Sh > 0, and ImðtÞ > 0, then Eh′ > 0.

Case 2. If Eh = 0, Sh > 0, and Im = 0, then Eh′ = 0:

Case 3. If Eh = 0, Sh = 0, and Im > 0, then Eh′ = 0:

In each of these cases, Eh′ ≥ 0, so the solution cannot exit
D, by crossing the boundary Eh = 0.

(c) At the boundary Ih = 0, we have Ih′ = khEh

If Ih = 0, Eh > 0, then Ih′ > 0.
Thus, the solution cannot exit D, by crossing the bound-

ary Ih = 0.
In the similar manner, we can show that the solution of

the system cannot exit D by crossing the boundary of any
of the state variables.

Theorem 2. The solutions of the system (4) are bounded on ½
0, bÞ for some b > 0.

Proof. We have from the system (4) Nh = Sh + Eh + Ih + Rh
and dNh/dt = 0. Thus, Nh is constant for all t ∈ ½0, bÞ for

some b > 0. Therefore, ShðtÞ, EhðtÞ, IhðtÞ, RhðtÞ are all
bounded on ½0, bÞ.

Again, we have,

Nm = Sm + Em + Im, ð10Þ

which implies

dNm

dt
= A − μmNm,

Nm = A
μm

+ Nm 0ð Þ − A
μm

� �
e−μmt:

ð11Þ

Hence,

lim sup
t→∞

Nm ≤
A
μm

: ð12Þ

Therefore, SmðtÞ, EmðtÞ, and ImðtÞ are bounded above by
A/μm on ½0, bÞ for some b > 0. Since all the variables are non-
negative, these are bounded below by 0. Hence, the solution
of the system (4) are bounded on ½0, bÞ for some b > 0 [21].

2.3. Existence and Uniqueness. Here, we show the existence
and uniqueness of solutions of the model (4). We assume that
the system has the initial conditions as follows:

Sh 0ð Þ > 0,
Eh 0ð Þ ≥ 0,
Ih 0ð Þ > 0,
Rh 0ð Þ ≥ 0,
Sm 0ð Þ > 0,
Em 0ð Þ ≥ 0,
Im 0ð Þ ≥ 0:

ð13Þ

Theorem 3. Consider the system (4) with nonnegative initial
condition (13). Solutions to the system (4) with initial condi-
tions (13) exist and are unique for all t ≥ 0.

Proof. Let xðtÞ = ðShðtÞ, EhðtÞ, IhðtÞ, RhðtÞ, SmðtÞ, EmðtÞ, Imðt
ÞÞ ∈ℝ7. The system (4) is written in the form x′ = f ðxÞ. Let
f i, i = 1, 2, 3, 4, 5, 6, 7 denote the components of the vector
field f; we have

f1 = μhNh −
βh vð Þb
Nh

ShIm − μhSh,

f2 =
βh vð Þb
Nh

ShIm − kh + μhð ÞEh,

f3 = khEh − γh vð Þ + μhð ÞIh,
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f4 = γh vð ÞIh − μhRh,

f5 = A −
βmb
Nh

SmIh − μmSm,

f6 =
βmb
Nh

SmIh − km + μmð ÞEm,

f7 = kmEm − μmIm: ð14Þ

The vector field f consists of the algebraic polynomials of
state variables. Thus, f i are continuous autonomous functions
on ℝ7 and partial derivatives ∂f i/∂Sh, ∂f i/∂Eh, ∂f i/∂Ih, ∂f i/∂
Rh, ∂f i/∂Sm, ∂f i/∂Em, and ∂f i/∂Im exist and are continuous.
Hence, by existence and uniqueness theorem, a unique solution
of the system x′ = f ðxÞ exists for any initial condition xð0Þ ∈
ℝ7 [22].

3. Stability Analysis of the Model

3.1. Basic Reproduction Number. Basic reproduction number
is defined as the average number of secondary infections
caused by a single infectious individual during their entire
infectious lifetime [23, 24]. The number is denoted by R0.

Assume that F is the matrix of transmission terms and V
is the matrix of transition terms of the system (4). R0 is
defined as the spectral radius of the matrix FV−1, i.e., ρðF
V−1Þ. R0 is obtained by using the next-generation matrix
method [23, 24]. For the model (4),

F =

0 0 0 βh vð Þb
Nh

Sh

0 0 βmb
Nh

Sm 0

0 0 0 0

0 0 0 0

2
66666666664

3
77777777775
,

V =

p 0 0 0

0 α 0 0

−kh 0 q 0

0 −km 0 μm

2
6666664

3
7777775
,

p = kh + μh, α = km + μm, and q = γh vð Þ + μh:

ð15Þ

Thus, the basic reproduction number is

R0 vð Þ = ρ FV−1� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βh vð Þβmb

2kmkhA
μ2mαpqNh

:

s
ð16Þ

3.2. Equilibrium Points. There are two equilibrium points of
the system of differential equations (4), the disease-free
equilibrium point P0ðNh, 0, 0, 0, A/μm, 0, 0Þ and endemic

equilibrium point P1ðS∗h , E∗
h , I∗h , R∗

h , S∗m, E∗
m, I∗mÞ. Here,

S∗h =
Nh R2

0μhμmNhα + βh vð ÞbAkm
� �

R2
0 μhμmNhα + βh vð ÞbAkmð Þ ,

E∗
h =

R2
0 − 1

� �
μhμ

2
mN

2
hqα

βmbkh βh vð ÞbAkm + μhμmNhαð Þ ,

I∗h =
R2
0 − 1

� �
μhμ

2
mN

2
hα

βh vð Þb2Aβmkm + μhμmNhαβmb
� � ,

R∗
h =

R2
0 − 1

� �
γh vð Þμ2mN2

hα

βmb βh vð ÞbAkm + μhμmNhαð Þ ,

S∗m = A βh vð ÞbAkm + μhμmNhαð Þ
R2
0μhμ

2
mNhα + μmβh vð ÞbAkm

,

E∗
m = R2

0 − 1
� �

μhNhAμm
R2
0μhμmNhα + βh vð ÞbAkm

� � ,
I∗m = R2

0 − 1
� �

μhNhAkm
R2
0μhμmNhα + βh vð ÞbAkm

� � :

ð17Þ

Theorem 4. The disease-free equilibrium point P0ðNh, 0, 0, 0
, A/μm, 0, 0Þ is locally asymptotically stable when R0 < 1 and
unstable when R0 > 1.

Proof. The Jacobian matrix of system of Equation (4) is

J =

−
βh vð Þb
Nh

Im − μh 0 0 0 0 0 −
βh vð Þb
Nh

Sh

βh vð Þb
Nh

Im −p 0 0 0 0 βh vð Þb
Nh

Sh

0 kh −q 0 0 0 0
0 0 γh vð Þ −μh 0 0 0

0 0 −
βmb
Nh

Sm 0 βmb
Nh

Ih − μm 0 0

0 0 βmb
Nh

Sm 0 βmb
Nh

Ih −α 0

0 0 0 0 0 km −μm

2
66666666666666666666664

3
77777777777777777777775

:

ð18Þ

The characteristic equation at the disease-free equilib-
rium point is

∣J − λI∣ = 0⇒ μh + λð Þ2 μm + λð Þ − p + λð Þ q + λð Þ α + λð Þ½

� μm + λð Þ + βmb
2βh vð ÞkhkmA
Nhμm

#
= 0:

ð19Þ

Therefore,

λ = −μh,−μh,−μm,

λ4 + A1λ
3 + A2λ

2 + A3λ + A4 = 0, ð20Þ
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where

A1 = p + q + α + μm,

A2 = p q + αμm + p + qð Þ α + μmð Þ,
A3 = p q α + μmð Þ + α μm p + qð Þ,
A4 = p q α μm 1 − R2

0
� �

:

ð21Þ

βhðvÞ and γhðvÞ have different values for different virus
loads. Thus, we have the following three cases for virus loads
ðvÞ.

Case 1. v < vmin,

βh vð Þ = 0⇒ R2
0 = 0,

γh vð Þ = γ0 − 1ð Þ/vmaxv + 1 > 0: ð22Þ

Since the parameters p, q, α, and μm are all positive, in the
above condition,

A1 > 0, A3 > 0, A4 > 0,

A1A2 − A3 = p + q + α + μmð Þ pq + αμm + p + qð Þ α + μmð Þ½ �
− pq α + μmð Þ + αμm p + qð Þ½ �

= p + qð Þpq + αμm α + μmð Þ
+ p + q + α + μmð Þ p + qð Þ α + μmð Þ > 0,

A1A2A3 = p + q + α + μmð Þ pq + αμm + p + qð Þ α + μmð Þ½ �
� pq α + μmð Þ + αμm p + qð Þ½ �

= p2q2 p + qð Þ α + μmð Þ + p2q2 α + μmð Þ2
+ 2pqαμm p + qð Þ α + μmð Þ
+ pqαμm α + μmð Þ2 + pq p + qð Þ2 α + μmð Þ2
+ pq p + qð Þ α + μmð Þ3 + pqαμm p + qð Þ2
+ α2μ2m p + qð Þ2 + α2μ2m p + qð Þ α + μmð Þ
+ αμm p + qð Þ3 α + μmð Þ + αμm p + qð Þ2 α + μmð Þ2,

A2
3 = p2q2 α + μmð Þ2 + α2μ2m p + qð Þ2

+ 2pqαμm p + qð Þ α + μmð Þ,

A4A
2
1 = pqαμm p + qð Þ2 + α + μmð Þ2�

+ 2 p + qð Þ α + μmð Þ�,

A1A2A3 − A2
3 − A4A

2
1 = p + qð Þ α + μmð Þ pq − αμmð Þ2�

+ pq p + qð Þ α + μmð Þ + pq α + μmð Þ2�
+ p + qð Þ α + μmð Þ αμm p + qð Þ2�
+ αμm p + qð Þ α + μmð Þ� > 0:

ð23Þ

Therefore, A1 > 0, A4 > 0, A3 > 0, A1A2 − A3 > 0, and A1
A2A3 − A2

3 − A4A
2
1 > 0.

Case 2. vmin ≤ v ≤ vM ,

βh vð Þ = v − vmin
vM − vmin

,

γh vð Þ = γ0 − 1ð Þ
vmax

v + 1 > 0: ð24Þ

We have A1 > 0, A3 > 0, A1A2 − A3 > 0,
A4 > 0 if 1 − R2

0 > 0, R2
0 < 1, and R0 < 1 and A1A2A3 − A2

3 −
A4A

2
1 > 0 if 1 − R2

0 > 0, R2
0 < 1, and R0 < 1:

Case 3. vM ≤ v ≤ vmax

βh vð Þ = 1,

γ vð Þ = γ0 − 1ð Þ
vmax

v + 1 > 0: ð25Þ

We have A1 > 0, A1A2 − A3 > 0, A3 > 0, andA4 ≥ 0 and
A1A2A3 − A2

3 − A4A
2
3 = A1A2A3 − A2

3 > 0.

According to the Routh-Hurwitz criterion [25], the roots
of Equation (20) have negative roots or roots with negative
real parts. Hence, the disease-free equilibrium point is
asymptotically stable in all cases.

Theorem 5. The system has an endemic equilibrium point
P1ðS∗h , E∗

h , I∗h , R∗
h , S∗m, E∗

m, I∗mÞ which exists only when R0 > 1.
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Proof. We have endemic equilibrium point P1ðS∗h , E∗
h , I∗h , R∗

h
, S∗m, E∗

m, I∗mÞ, where

I∗h =
R2
0 − 1

� �
μhμ

2
mN

2
hα

βh vð Þb2Aβmkm + μhμmNhαβmb
� � : ð26Þ

(a) When v < vmin, we have

βh vð Þ = 0 R2
0 = 0 ð27Þ

We get

I∗h =
−μmNh

βmb
< 0: ð28Þ

So, the disease dies out.

(b) When vmin ≤ v ≤ vM , we have

βh vð Þ = v − vmin
vM − vmin

> 0,

R2
0 =

v − vminð Þβmkmkhb
2A

vM − vminð Þpqαμ2mNh
> 0: ð29Þ

So, I∗h > 0 if R0 > 1. Thus, the disease is endemic.

(c) When vM ≤ v ≤ vmax, we have

βh vð Þ = 1,

R2
0 =

βmkmkhb
2A

pqαμ2mNh
> 0: ð30Þ

So, I∗h > 0 if R0 > 1. Thus, the disease is endemic.
Hence, the endemic equilibrium point exists if virus load

v ≥ vmin.

3.3. Fuzzy Basic Reproduction Number. Since the transmis-
sion rate of disease and recovery rate of infection of dis-
ease are assumed as a function of the virus load, the
basic reproduction number will be a function of the virus
load. The classical basic reproduction number R0ðvÞ is
increasing with virus load v. It is not a fuzzy set, and it
can be greater than 1, but γ0 is always a positive fraction
with the highest value 1, so 0 ≤ γ0R0ðvÞ ≤ 1. Thus, γ0R0ðv
Þ is a fuzzy set and hence, FEVðγ0R0ðvÞÞ is well defined.
Under this view, we introduce the fuzzy basic reproduc-
tion number of the fuzzy SEIR-SEI model [18].

The fuzzy basic reproduction number is given by

Rf
0 =

1
γ0

FEV γ0R0 vð Þð Þ, ð31Þ

where

FEV γ0R0 vð Þð Þ = sup inf α, k αð Þð Þf g, 0 ≤ α ≤ 1,
k αð Þ = μ v : γ0R0 vð Þ ≥ αf g = μ Xð Þ,

ð32Þ

which is a fuzzy measure.
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Figure 4: Weak, medium, and strong virus load with transmission rate βhðvÞ.
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We have to define fuzzy measure μ to obtain FEVðγ0R0
ðvÞÞ. For this, the possibility measure [15]

μ Xð Þ = sup Γ vð Þ, ∀v ∈ X, X ⊂ R: ð33Þ

We know that R0ðvÞ is not decreasing with v; from FEV
ðγ0R0ðvÞÞ, we have X = ½�v, vmax�, where �v is the solution of
the equation

γ0
βh vð Þβmb

2kmkhA
μ2mαpqNh

= α: ð34Þ

Thus, kðαÞ = μ½v′, vmax� = sup ΓðvÞwith v′ ≤ v ≤ vmax,
where kð0Þ = 1 and kð1Þ = ΓðvmaxÞ.

The amount of virus v in the population was assumed as a
linguistic meaning which is classified into three states: weak
virus load, medium virus load, and strong virus load. Each
state has a fuzzy behavior based on values vmin, vM , and
vmax described in Figure 4.

Case 1. Weak virus load when �v + δ ≤ vmin; we have

βh vð Þ = 0,
R0 vð Þ = 0:

ð35Þ

So, FEVðγ0R0ðvÞÞ = 0 < γ0 ⇔ Rf
0 < 1.

Then, the disease will die out.

Case 2.Medium virus load when �v − δ ≥ vmin and �v + δ ≤ vM ;
we have

βh vð Þ = v − vmin
vM − vmin

,

R0 vð ÞÞ = βh vð Þβmb
2kmkhA

μ2mαpq vð ÞNh
,

k αð Þ =
1 if 0 < α ≤ γ0R0 �vð Þ,
Γ v′
	 


, if γ0R0 �vð Þ < α ≤ γ0R0 �v + δð Þ
0 if γ0R0 �v + δð Þ < α ≤ 1

8>>><
>>>:

ð36Þ

Thus, if δ > 0, kðαÞ is continuous and a decreasing func-
tion with kð0Þ = 1 and kð1Þ = 0. Hence, the FEVðγ0R0ðvÞÞ is
the fixed point of k and

γ0R0 �vð Þ ≤ FEV γ0R0 vð Þð Þ ≤ γ0R0 �v + δð Þ,

R0 �vð Þ ≤ Rf
0 ≤ R0 �v + δð Þ: ð37Þ
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As a function R0ð�vÞ is increasing and a continuous func-
tion, by intermediate value theorem, there exist v with �v < v
< �v + δ such that

Rf
0 = R0 vð Þ > R0 �vð Þ: ð38Þ

Thus, there exists a virus load v such that Rf
0 = R0ðvÞ; i.e., Rf

0
and R0ðvÞ coincide. Furthermore, Rf

0 > R0ð�vÞ. Therefore, the
fuzzy average number of secondary infection Rf

0 is higher
than the number of secondary infection R0ð�vÞ due to the
medium amount of virus.

Case 3. Strong virus load when �v − δ ≤ vM and �v + δ ≤ vmax;
we have

βh vð Þ = 1,

R0 vð Þ = βmb
2kmkhA

μ2mαpq �vð ÞNh
,

k αð Þ =

1, if 0 < α ≤ γ0R0 �vð Þ,

Γ v′
	 


, if γ0R0 �vð Þ < α ≤ γ0R0 �v + δð Þ,

0, if γ0R0 �v + δð Þ < α ≤ 1:

8>>>><
>>>>:

ð39Þ

As in Case 2, we have

γ0R0 �vð Þ ≤ FEV γ0R0 vð Þð Þ ≤ γ0R0 �v + δð Þ,

βmb
2kmkhA

μ2mαpq �vð ÞNh
≤

1
γ0

FEV γ0R0 vð Þð Þ ≤ βmb
2kmkhA

μ2mαpq �v + δð ÞNh
,

R0 �vð Þ ≤ Rf
0 ≤ R0 �v + δð Þ: ð40Þ

Thus, Rf
0 > 1; the disease will be endemic.

4. Numerical Results and Discussion

We explore the influence of dengue virus load with the
fuzzy behavior on the transmission dynamics of the den-
gue disease. We have simulated the fuzzy SEIR-SEI model
with different values of dengue virus loads, 357, 5 × 107,
and 1:04 × 1010 RNA per ml [26, 27].

As virus load v increases, the infection rate increases. It
causes the increase in an infectious human population. So,
the susceptible human population decreases. Figures 5–7
describe the dynamics of susceptible, infectious, and recov-
ered host, respectively, for different virus loads. When the
virus load is minimum (357 RNA per ml), the infectivity of
the disease is negligible, so there is no transmission of the dis-
ease at this moment of virus load (Figure 5). It is noted that
when the virus load is maximum (1:04 × 1010 RNA per ml),
the susceptible human population decreases significantly to
its least value (Figure 5), due to significant increases in trans-
mission rate. Initially, the infectious human population
increases due to high transmission rate. Later on, the popula-
tion starts decreasing due to recovery from the disease and
natural death (Figures 6 and 7).

To illustrate the dynamics of dengue disease transmission
with the fuzzy behavior, different values of parameters are
needed (Table 1).

Basic reproduction number indicates whether the dengue
disease will vanish or persists in the population over time.
When the fuzzy transmission rate of the disease increases,
the infectious population increases, so the basic reproduction
number also increases (Figure 8). The basic reproduction
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Table 1: Parameters and their values.

Parameters μh kh Nh μm km b βm A

Values 1/(70 ∗ 365) 0.5 160000 0.02941 0.1428 0.75 0.375 250000

Units Day −1 Day −1 Number Day −1 Day −1 Day −1 Dimensionless Number/day
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Figure 9: Basic reproduction number with recovery rate of disease.
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number decreases with the increase of the recovery rate of the
disease. From maximum to the medium virus loads (107
RNA per ml), the basic reproduction number decreases
slightly, since at that situation, infection of the disease will
be very high. After that, it decreases very sharply (Figure 9);
because the recovery rate is very high, it means the virus load
is very low. Thus, when transmission rate increases, the dis-
ease will be endemic and when recovery rate increases, the
disease will die out (Figure 10).

Different phenomena of transmission dynamics of the
dengue disease are observed due to fuzziness of the model
parameters which are considered functions of virus loads.
These phenomena cannot be observed in deterministic
models. Thus, the fuzzy model can describe transmission
dynamics of dengue in a more realistic than deterministic
model of the disease.

5. Conclusion

In this paper, we have studied the SEIR-SEI epidemic model
of dengue disease in a crisp and fuzzy system. We have stud-
ied the dynamical behavior of the system. We considered the
two parameters, transmission rate of disease and recovery
rate, from infection as a function of virus loads and defined
their fuzzy membership functions. Also, we analyzed the sta-
bility of the model at disease-free equilibrium point with dif-
ferent virus loads. We computed the fuzzy basic reproduction
number.

Dengue disease cannot be spread among the population if
the amount of dengue virus is very low due to the natural
immunity. It will be endemic if the amount of the virus is
high. In the fuzzy system, these phenomena could be consid-
ered, but it cannot be considered in the crisp system. In the
classical system, the basic reproduction number is the func-
tion of system parameters only, whereas in the fuzzy system,
the basic reproduction number is a function of disease-
spreading virus. Thus, the fuzzy model is more realistic, flex-
ible, and balanced than the crisp model of the dengue disease.

The uncertain model parameters, transmission rate and
recovery rate, play a crucial role in the disease transmission
dynamics. So, we have considered only these parameters as
a function of dengue virus loads. We may consider the other
uncertain parameters of the model as the function of virus.
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