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Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, and its prognosis is still poor. Mesencephalic
astrocyte-derived neurotrophic factor (MANF) plays a key role in endoplasmic reticulum stress. ER stress plays a key role in
HCC carcinogenesis. To confirm the clinical and prognostic value of MANF in HCC, we investigated the expression level of
MANF in HCC as recorded in databases, and the results were verified by experiment. Survival analysis was probed by the
Kaplan–Meier method. Cox regression models were used to ascertain the prognostic value of MANF in HCC tissue microarray.
The diagnostic value of MANF in HCC was evaluated by receiver operating characteristic curve analysis. Potential correlation
between MANF and selected genes was also analyzed. Results showed that MANF was overexpressed in HCC. Patients with
high MANF expression levels had a worse prognosis and higher risk of tumor recurrence. Furthermore, the expression level of
MANF had good diagnostic power. Correlation analysis revealed potential regulatory networks of MANF in HCC, laying a
foundation for further study of the role of MANF in tumorigenesis. In conclusion, MANF was overexpressed in HCC and
related to the occurrence and development of HCC. It is a potential diagnostic and prognostic indicator of HCC.

1. Introduction

Liver cancer is one of the most common human malignant
gastrointestinal tumors and the fourth leading cause of
cancer-related deaths worldwide [1, 2]. Hepatocellular carci-
noma (HCC) characterized by its asymptomatic nature, high
malignancy, early metastasis, and poor curative efficacy is
responsible for >90% of primary liver cancers [3–5]. Despite
recent therapeutic approaches such as surgical resection,
radiofrequency ablation, and orthotropic liver transplanta-
tion, the prognosis of HCC remains poor. The metastasis
and recurrence of HCC significantly reduce the survival rate
and quality of life of HCC patients [5–8]. Therefore, novel
biomarkers will be substantially beneficial for HCC diagnosis
and treatment, and outcomes of HCC patients urgently need
to be improved.

Mesencephalic astrocyte-derived neurotrophic factor
(MANF), also named arginine-rich mutated in early tumors
(ARMET), was first discovered as a new dopaminergic neu-
rotrophic factor in astrocyte-conditioned medium by Petrova
et al. in 2003 [9]. Apart from being secreted into the extra-
cellular space, MANF has been found to remain inside the
cells and localize in the endoplasmic reticulum (ER) lumen
[10, 11]. Induction of ER stress in vitro causes upregulation
of endogenous MANF expression [12, 13]. Hakonen et al.
have shown that the protective effect of MANF is associated
with inhibition of the nuclear factor- (NF-) κB signaling
pathway and alleviation of ER stress. MANF also enhances
human beta cell proliferation when transforming growth
factor- (TGF-) β signaling is inhibited [14]. In recent studies,
ER stress has been shown to mediate HCC promoted by
nonalcoholic fatty liver disease, and the NF-κB pathway is
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closely associated with initiation of cancer [15, 16]. So the
diagnostic value and clinical significance of MANF in HCC
remain to be elucidated.

In this study, we investigated MANF expression in HCC
cell lines, HCC tissues, and nontumor tissues by analyzing
the data from bioinformation databases and confirmed our
findings by Western blotting, polymerase chain reaction
(PCR), and immunohistochemical staining. We examined
the clinical and prognostic value of MANF in HCC patients.

2. Material and Methods

2.1. Ethics Statement. This study was approved by the Aca-
demic Committee of Shandong Provincial Hospital Affiliated
to Shandong University and conducted according to the
principles expressed in the Declaration of Helsinki. All the
datasets were retrieved from the publishing literature, and
all written informed consent was obtained. This article does
not contain any studies with animals performed by any of
the authors.

2.2. Patients and Specimens. A total of 311 patients undergo-
ing hepatectomy between January 2011 and December 2014
were included in the study. HCC samples and paratumor tis-
sues including 45 freshly frozen HCC samples, and 266 tissue
microarrays (TMAs) were collected. We summarized their
characteristics and study cohort diagram in Table S2. None
of the patients had received chemotherapy or radiotherapy
before we obtained the tissue specimens. The clinical
staging was based on the 7th edition of the American Joint
Committee on Cancer (AJCC) Staging System.

2.3. Real-Time PCR. Total RNA from liver tissues was iso-
lated by the TRIzol reagent (Invitrogen, Life Technologies,
Carlsbad, CA, USA), and 1μg mRNAwas reverse transcribed
to cDNA using the PrimeScript RT Reagent Kit Perfect Real
Time (Takara Bio, Japan) according to the manufacturer’s
instructions. Reverse transcription- (RT-) PCR was con-
ducted using the LightCycler 480 II Real-Time PCR System
(Roche, Switzerland) with SYBR Green PCR Master Mix
(Toyobo, Osaka, Japan). An initial denaturation at 95°C for
10min was followed with PCR cycling: 94°C (30 s), 60°C

(30 s), and 72°C (60 s) for 40 cycles. The primers of MANF
were as follows: forward—5′-GTGCACGGACCGATTT
GTAG-3′, reverse—5′-GGAAAGCTCCAGGCTTCACA-
3′. The primers of β-actin were as follows: forward—5′
-GAAGAGCTACGAGCTGCCTGA-3′, reverse—5′-CAGA
CAGCACTGTGTTGGCG-3′. Products were analyzed by
melt curve analysis and agarose gel electrophoresis to deter-
mine product size and to confirm that no byproducts were
formed. Results were expressed relative to the number of
β-actin transcripts used as an internal control.

2.4. Western Blot Analysis. Liquid nitrogen frozen liver tis-
sues were immersed in RIPA-added phenylmethylsulfonyl
fluoride (100 : 1) (Beyotime, China) supplemented with
protease and phosphatase inhibitors and sonicated on ice
to obtain a homogenate. Specimens were centrifuged at
15 000 × g for 15min, and the supernatant was used for
Western blotting and ELISA. Concentration of the protein
was assessed by BCA protein assay kit (Beyotime). Proteins
were separated on SDS-PAGE and transferred to nitro-
cellulose membranes. After incubation with horseradish
peroxidase-conjugated secondary antibodies for 2 h at room
temperature, signals were detected by chemiluminescent
reagents (Millipore, USA) and β-actin served as an internal
control. The primary antibodies were as follows: rabbit
anti-ARMET (Abcam, Cambridge, MA, USA; diluted
1 : 1000) and rabbit anti-β-actin (Cell Signaling Technology,
Danvers, MA, USA; diluted 1 : 1000). Immunoreactivity
was detected using the FluorChem Chemiluminescent
Western Blot Imaging System (Cell Biosciences, Santa Clara,
CA, USA).

2.5. Immunohistochemical (IHC) Detection of Tissue
Microarray (TMA). Two hundred and sixty-six HCC
patients, including 259 who had follow-up information, were
analyzed. For immunohistochemistry, 5μm tissue sections
were prepared from each block. Tissue sections were deparaf-
finized, rehydrated, and rinsed in distilled water. After heat-
ing the sections in 10mmol/L citrate buffer for antigen
retrieval, the sections were incubated with primary antibody
against ARMET (Abcam; dilution at 1 : 100) at 4°C, followed
by secondary antibody for 1 h at room temperature. An

Table 1: The significant changes of MANF expression in transcription level of HCC vs. normal tissues (ONCOMINE database).

Tissue types Fold change P value t-test References Overexpression gene rank

HCC vs. normal 1.945 1.54E-53∗∗ 1.77E+01
Roessler Liver 2 Statistics
(Roessler et al., Cancer Res

2010/12/15)

386 of 12,624 measured genes
(in top 4%)

HCC vs. normal 1.398 0.0000514∗∗ 3.984
Chen Liver Statistics (Chen et al.,

Cancer Res 2010/12/15)
1850 of 10,802 measured genes

(in top 18%)

HCC vs. normal 1.435 0.011∗ 2.391
Roessler Liver Statistics (Roessler
et al., Cancer Res 2010/12/15)

3333 of 12603 measured genes
(in top 27%)

HCC vs. normal 1.482 0.122 1.236
Wurmbach Liver Statistics

(Wurmbach et al., Hepatology
2007/04/01)

7466 of 19,574 measured genes
(in top 39%)

HCC vs. normal -2.279 1 -6.273
Mas Liver Statistics (Mas et al.,

Mol Med 2008/12/21)
12189 of 12,603 measured

genes (in top 97%)

Notes: ∗P < 0:05; ∗∗P < 0:01.
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Figure 1: Continued.
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intensity score of 0–3 was assigned for the intensity of tumor
samples (0, none; 1, weak; 2, intermediate; and 3, strong) and
the percentage of stained cells, assigning a score of 0–300. To
assess the average degree of staining within a sample, multiple
regions were analyzed. AnH score was calculated using the fol-
lowing formula: H = ðpercentage of cells of weak intensity × 1Þ
+ ðpercentage of cells of moderate intensity × 2Þ + ðpercentage
of cells of strong intensity × 3Þ. The scoring was independently
assessed by two assessors who were not aware of the clinical
outcomes.

2.6. GEO Data Source. Meta-analysis of 24 sets of microar-
rays from the GEO database (http://www.ncbi.nlm.nih.gov/
geo/) including 1475 HCC specimens and 981 nontumor
specimens was used to evaluate the diagnostic power of
MANF. The 24 cohorts consisted of GSE17548, GSE20140,
GSE29722, GSE31370, GSE36411, GSE39791, GSE41804,
GSE45050, GSE45267, GSE47595, GSE57958, GSE62232,
GSE63898, GSE64041, GSE75285, GSE76311, GSE76427,
GSE84006, GSE84402, GSE84598, GSE98383, GSE102083,
GSE112791, and GSE121248 datasets. We summarized their
characteristics such as cohort ID, RNA-seq platform, samples

size (nontumor and tumor samples), publication year, and
country in Table S1.

2.7. Statistics for Meta-analysis. Stata 12.0 was utilized to ana-
lyze the pooled diagnostic value of MANF with the data from
the GEO dataset. I2 was used to evaluate the heterogeneity of
those studies, which indicated significant heterogeneity at
I2 > 50%. The random effects model was used, and sub-
group analysis was performed to explore the source of hetero-
geneity, while heterogeneity was conspicuous between those
studies. Publication bias was determined by Begg’ s funnel
plot and Egger’s test.

2.8. ONCOMINE Analysis. ONCOMINE (http://www
.oncomine.org/), an online cancer microarray database, was
used to analyze differential expression classification in differ-
ent cancers with their respective normal tissues and their
clinical and pathological characteristics. MANF expression
in HCC samples was compared with that in nontumor sam-
ples. The P value was generated utilizing Students’ t-test. The
cut-off P value and fold change were defined as 0.01 and 2,
respectively.
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Figure 1: MANF expression levels in different types of human tumors. (a) Increased or decreased MANF in datasets of different tumors
compared with normal tissues in the ONCOMINE database. Cell color is determined by the best gene rank percentile for the analyses
within the cell. An analysis may be counted in more than one cancer type. (b) GEPIA generates box plots for comparing MANF
expression in HCC (n = 369) and normal (n = 50) tissues (∗P < 0:01) (c) Bar plot of MANF expression profile across all tumor samples
and paired normal tissues. (d) Human MANF expression levels in different tumor types from the TCGA database were analyzed by
GEPIA. Bar height represents the median expression of certain tumor type or normal tissue.
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2.9. GEPIA Dataset. The online database Gene Expression
Profiling Interactive Analysis (GEPIA), providing customiz-
able functions, is a newly developed interactive web server
for analyzing the RNA sequencing expression data and prog-
nostic value. Tumors and nontumor specimens in the GEPIA
database were derived from The Genotype-Tissue Expression
(GTEx) and The Cancer Genome Atlas (TCGA) projects
(http://gepia.cancerpku.cn/index.html) [17]. Tumor/nontu-
mor differential expression analysis, patient survival analysis,
and correlation analysis were explored using the GEPIA
database. We selected the median as the group cut-off for
survival plots.

2.10. CCLE Dataset. Cancer Cell Line Encyclopedia (CCLE)
project is a collaboration concentrated on a detailed genetic
and pharmacological characterization of a large panel of
human cancer cell lines, in order to develop integrated
computational analyses that link distinct pharmacological
vulnerabilities to genomic patterns and to translate cell line
integrative genomics into clinical application. Genomic data,
analysis, and visualization providing by CCLE for around
1000 cell lines are available for public access [18]. CCLE gene

expression data of MANF were downloaded and collected
from https://portals.broadinstitute.org/ccle/data.

2.11. LinkedOmics Dataset. LinkedOmics is a user-friendly
bioinformatics web in the software ecosystem for disseminat-
ing data from large-scale cancer omics projects. It uses pre-
processed and normalized data from the Broad TCGA
Firehose and CPTAC data portal to reduce redundant efforts
and focuses on exploration and interpretation of attribute
associations and thus complements existing cancer data por-
tals [19]. Correlation analysis data were collected and down-
loaded from http://www.linkedomics.org/admin.php.

2.12. EMBL-EBI Dataset. EMBL-EBI (https://www.ebi.ac.uk)
is a user-friendly bioinformatics web and programmatic tool
framework providing free and open access to a range of bio-
informatics applications for sequence analysis [20]. The
expression data of MANF in HCC cell lines was collected
from the EMBL-EBI dataset.

2.13. Data Analysis and Statistics. SPSS version 22.0 (IBM
Corporation, Armonk, NY, USA) and GraphPad Prism ver-
sion 6.0 (GraphPad Software, La Jolla, CA, USA) were used
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Figure 2: MANF expression levels in different types of cell lines. (a) Expression of MANF translational in HCC cell lines was tested by
EMBL-EBI bioinformatics website. The darker the blue, the higher the level of MANF expression. (b) Expression of MANF in the cell
lines was analyzed via CCLE databases. Liver cell lines are indicated by the red arrow.
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Note: weights are from random effects analysis
Overall (I-squared = 0.0%, P = 0.489)
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for statistical analyses. We select the median expression level
for splitting the high-expression and low-expression cohorts.
Samples with expression level higher than this threshold are
considered the high-expression cohort. Samples with expres-
sion level lower than this threshold are considered the low-
expression cohort. The χ2 test was used to explore the
correlation between MANF expression levels and the clinico-
pathological parameters. Survival analysis was performed by
the Kaplan–Meier method. The relationship between differ-
ent variables and survival was determined by the multivariate
Cox proportional hazards method. The pooled diagnostic
value of MANF in HCC was analyzed via receiver-
operating characteristic (ROC) curves. The linear association
between two variables was evaluated by Pearson’s correla-
tion. All of the data of samples are presented as the mean ±
standard deviation (SD). The differences between tumor
and nontumor samples were determined with nonparametric
tests. In all cases, P < 0:05 was considered to be statistically
significant.

3. Results

3.1. MANF Overexpression in HCC Was Explored by
Analyzing Bioinformation Databases. We analyzed MANF
mRNA expression in HCC tissues and paired nontumor tis-
sues using the ONCOMINE and GEPIA databases. Com-
pared to nontumor samples, ONCOMINE demonstrated
that MANF was significantly upregulated in HCC samples
(P < 0:01), while the other two statistics had no significance
in this regard (Table 1). We compared transcriptional levels
of MANF in cancer with those in normal tissues using
ONCOMINE (Figure 1(a)). GEPIA showed that mRNA of

MANF was significantly overexpressed in HCC samples
and many other types of cancer (Figures 1(b)–1(d)).

We used the EMBL-EBI bioinformatics website to mea-
sure the expression of MANF in HCC cell lines, which indi-
cated that MANF was upregulated in 21 HCC cell lines
(Figure 2(a)). The CCLE database showed that MANF was
highly expressed in a variety of cell lines originated from
different tissue types (Figure 2(b)).

To explore further whether MANF expression was higher
in HCC tissues than in nontumor tissues, 24 HCC microar-
rays from the GEO database were subjected to meta-
analysis. Like the forest plot in Figure 3(a), higher MANF
expression was found in HCC tissues than in the nontumor
tissue [pooled odds ratio ðORÞ = 5:28, 95% confidence inter-
val ðCIÞ = 4:367–6.388, I2 = 0%, P = 0:489]. All the data were
generated by a random effects model, and the χ2 test was
used to analyze study heterogeneity. Publication bias was
assessed with Begg’s test, Egger’s test, and funnel plots
(Figures 3(b)–3(d)). There were no significant publication
bias and heterogeneity. As shown in the sensitivity analysis,
there were no significant differences between these microar-
rays (Figure 3(e)). Hence, high expression of MANF in
HCC samples was identified by meta-analysis.

3.2. MANF Upregulated in HCC Was Confirmed by
Experiments. To confirm the expression level of MANF, we
examined mRNA and protein levels of MANF in HCC and
paired nontumor samples, utilizing quantitative RT-PCR
and Western blotting. MANF expression in HCC tissues
(n = 45) was higher than that in nontumor tissues (n = 45)
(PCR, P < 0:05; Western blotting, P < 0:01) (Figures 4(a)–
4(c)). We characterized MANF protein expression in human
HCC and nontumor specimens by TMA. We analyzed
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Figure 3: Meta-analysis for evaluating expression level of MANF in HCC. Each point represents a single microarray study. (a) Forest plot
evaluating differences in MANF expression between HCC and nontumor tissues. Low and high MANF-expressing samples were regarded
as the control and experimental groups, respectively. (b) Begg’s test for the publication bias test of GEO databases. (c) Egger’s test for the
publication bias test of GEO databases. (d) Funnel plot for the publication bias test of GEO databases. (e) Sensitivity analysis was
calculated by omitting each microarray in turn.
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MANF protein expression by immunohistochemical staining
of HCC and paired nontumor tissues and found that MANF
was significantly upregulated in HCC tissues compared with
adjacent nontumor tissues (n = 266) (P < 0:01) (Figures 4(d)
and 4(e)).

3.3. Diagnostic Value of MANF. The diagnostic value of
MANF in identifying HCC and nontumor samples was eval-

uating by ROC curve analysis. Areas under the curve (AUCs)
from GEO databases were as follows: GSE39791, 0.811 (95%
CI: 0.740–0.882, P < 0:0001; Figure 5(a)) with cut-off point,
and respective specificities and sensitivities were 10.075,
0.722, and 0.806; GSE63898, 0.677 (95% CI: 0.625–0.730,
P < 0:0001; Figure 5(b)) with cut-off point, and respective
specificities and sensitivities were 10.4102, 0.544, and
0.821; GSE64041, 0.710 (95% CI: 0.619–0.801, P < 0:0001;
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Figure 4: MANF expression levels in HCC compared with nontumor tissues. (a, b) MANF mRNA (∗∗∗P < 0:001) and protein (∗P < 0:05)
expression levels in HCC clinical specimens compared with paired nontumor specimens were shown by box plots. (c) Representative
Western blotting of HCC clinical specimens compared with paired nontumor specimens. N: normal tissue; T: tumor tissue.
(d) Immunohistochemical analysis of MANF in HCC tissues and adjacent nontumor tissues previously analyzed by TMA (∗∗∗P < 0:001).
(e) Representative MANF staining in HCC and normal tissues.
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Figure 5: Continued.
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Figure 5(c)) with cut-off point, and respective specificities
and sensitivities were 9.1892, 0.631, and 0.750; GSE76427,
0.749 (95% CI: 0.668–0.830, P < 0:0001; Figure 5(d)) with
cut-off point, and respective specificities and sensitivities
were 3357.82, 0.722, and 0.750; GSE102083, 0.782 (95%
CI: 0.727–0.838, P < 0:0001; Figure 5(e)) with cut-off point,
and respective specificities and sensitivities were 9.542,
0.618, and 0.848. AUCs from immunohistochemistry of
TMA were 0.570 (95% CI: 0.522–0.619, P < 0:01;
Figure 5(f)) with cut-off point, and respective specificities
and sensitivities were 152.7620, 0.643, and 0.5. Results
indicate thatMANFwas a reliable diagnostic marker in HCC.

To analyze expression levels of MANF in dysplastic nod-
ules, the GEO database was searched. GSE98620 was the only
database that meets the retrieval requirements. The result
showed that higher MANF expression was found in HCC tis-
sues than in dysplastic nodules (P < 0:001) (Figure 5(g)), and
there was no statistical difference between normal tissues and
dysplastic nodules.

Correlation analysis of MANF expression and TNM
staging was performed using LinkFinder of LinkedOmics.
There was no significant correlation between high
MANF expression and TNM pathological stage (P > 0:05)
(Figures 5(h)–5(k)).
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Figure 5: Diagnostic value of MANF in HCC was evaluated by ROC curve analysis among GEO databases. The blue line indicates HCC
tissues while the green one indicates nontumor tissues. (a) ROC curve analysis of GSE39791 from GEO databases. (b) ROC curve analysis
of GSE63898 from GEO databases. (c) ROC curve analysis of GSE64041 from GEO databases. (d) ROC curve analysis of GSE76427 from
GEO databases. (e) ROC curve analysis of GSE102083 from GEO databases. (f) ROC curve analysis of TMA. (g) MANF expression value
of different types of tissues in GSE98620 database (∗∗∗P < 0:001). (h–k) Correlation analysis of MANF expression and TNM staging
obtained in LinkFinder of LinkedOmics.
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3.4. Prognostic Value of MANF. To investigate further the
prognostic role of MANF in HCC patients, GEPIA database
and supporting clinical data of TMA were analyzed. We ana-

lyzed TCGA prognostic data and MANF transcriptional level
of HCC (n = 364) using the GEPIA database. The overall sur-
vival rates of HCC patients with high expression of MANF
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Figure 6: Correlation between MANF expression and clinical or prognostic parameters. (a, b) Association between MANF expression and
overall survival and disease-free survival in HCC patients, from the GEPIA database. The log-rank test (Mantel–Cox test) was used to
analyze the relationship between overall survival (P < 0:05), disease-free survival (P > 0:05), and MANF expression in patients with HCC.
(c, d) Association between MANF expression and overall survival and disease-free survival in HCC patients from TMA analysis. The
Kaplan–Meier test was used to analyze the relationship between overall survival (P > 0:05), disease-free survival (P < 0:05), and MANF
expression in patients with HCC.
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were significantly lower (P < 0:05) (Figure 6(a)) than those of
patients with low expression of MANF. Disease-free survival
did not differ significantly (Figure 6(b)). Beyond that, the
TMA analysis of 259 HCC patients showed that patients with
high MANF expression had shorter disease-free survival
(P < 0:05) (Figure 6(d)) compared with patients with low
expression of MANF. No significant difference was found
in overall survival (Figure 6(c)). Therefore, high expression
of MANF is a prognostic factor for HCC.

Patients with high MANF expression levels had a signif-
icantly higher risk of tumor recurrence (P < 0:05) (Table 2).
There was no correlation of MANF expression with age,
sex, α-fetoprotein (AFP) levels, hepatitis B virus infection,
cirrhosis, tumor size, tumor number, TNM stage, differentia-

tion grade, and venous invasion. Univariate Cox regression
analysis showed that tumor number (P < 0:01), AFP level
(P < 0:05), TNM stage (P < 0:05), and venous invasion
(P < 0:001) were independent prognostic factors for HCC
patients. Multivariate Cox regression analysis showed that
only venous invasion (P < 0:001) was an independent prog-
nostic factor for HCC (Table 3).

3.5. Coexpression Genes Correlated with MANF in HCC.
MANF association results were confirmed using LinkFinder
of LinkedOmics to analyze mRNA sequencing data from
367 HCC patients in the TCGA via Pearson’s correlation test.
The volcano plot (Figure 7(a)) shows that there were 3773
genes positively correlated with MANF (marked by red dots)

Table 2: The relationship between MANF status and clinicopathological features of HCC (tissue microarray).

Clinicopathological features Number of cases (n)
MANF expression, n (%)

P value
High Low

Age

≥Median 133 64 (48.1) 69 (51.9) 0.54

<Median 133 69 (51.9) 64 (48.1)

Gender

Male 241 123 (51) 118 (49) 0.293

Female 25 10 (40) 15 (60)

HBV

Positive 245 124 (50.6) 121 (49.4) 0.495

Negative 21 9 (42.9) 12 (57.1)

Cirrhosis

Positive 220 108 (49.1) 112 (50.9) 0.517

Negative 46 25 (54.3) 21 (45.7)

Tumor size

≥5 221 106 (48) 115 (52) 0.141

<5 45 27 (60) 18 (40)

Tumor number

Single 153 73 (47.7) 80 (52.3) 0.385

Multiple 113 60 (53.1) 53 (46.9)

AFP

≥20 201 95 (47.3) 106 (52.7) 0.117

<20 65 38 (58.5) 27 (41.5)

TNM stage

Stage I-II 124 68 (54.8) 56 (45.2) 0.104

Stage III-IV 142 65 (45.8) 77 (54.2)

Differentiation grade

Grade 1-2 182 94 (51.6) 88 (48.4) 0.429

Grade 3-4 84 39 (46.4) 45 (53.6)

Vasoinvasion

Yes 53 28 (52.8) 25 (47.2) 0.645

No 213 105 (49.3) 108 (50.7)

Tumor recurrence

Yes 110 64 (58.2) 46 (41.8) 0.025 ∗

No 156 69 (44.2) 87 (55.8)

Notes: ∗P < 0:05; ∗∗P < 0:01.
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and 4404 genes negatively correlated (marked by green dots)
(P < 0:01, FDR < 0:01). The top 50 significant gene sets pos-
itively and negatively correlated with MANF are shown in
the heat map (Figures 7(b) and 7(c)). As it turns out, MANF
has extensive influence on the transcriptome.

We examined the correlations between MANF and the
top 10 genes with the highest expression multiples in HCC.

MANF was significantly correlated with UBD, MDK, and
AKR1B10 and had some degree of correlation with other
genes (Figures 8(a)–8(c)).

To confirm the role of MANF expression in the develop-
ment of cancer, we used LinkFinder or LinkedOmics to ana-
lyze the relationship with common oncogenes and tumor
suppressor genes. There were negative correlations between

Table 3: Univariate and multivariate analyses of prognostic variables for overall survival in HCC patients.

Clinicopathological features
Univariate analysis Multivariate analysis

HR 95% (CI) P value HR 95% (CI) P value

MANF expression (T)

Low 1.000

High 1.070 0.829-1.380 0.605

MANF expression (NT)

Low 1.000

High 0.896 0.694-1.158 0.401

Age

<Median 1.000

≥Median 1.014 0.786-1.307 0.917

Gender

Male 1.000

Female 0.751 0.470-1.202 0.233

HBV

Negative 1.000

Positive 1.169 0.731-1.870 0.514

Cirrhosis

Negative 1.000

Positive 0.931 0.664-1.304 0.677

Tumor size

<5 1.000

≥5 1.218 0.869-1.705 0.252

Tumor number

Single 1.000 1.000

Multiple 1.442 1.114-1.867 0.005∗∗ 1.278 0.955-1.710 0.099

AFP

<20 1.000 1.000

≥20 1.360 1.013-1.827 0.041∗ 1.142 0.838-1.555 0.401

TNM stage

Stage I-II 1.000 1.000

Stage III-IV 1.404 1.086-1.814 0.010∗ 0.991 0.726-1.353 0.957

Differentiation grade

Grade 1-2 1.000

Grade 3-4 0.955 0.725-1.260 0.746

Vasoinvasion

No 1.000 1.000

Yes 2.757 1.993-3.813 <0.001∗∗ 2.521 1.769-3.591 <0.001∗∗

Tumor recurrence

No 1.000

Yes 0.815 0.630-1.054 0.119

Notes: ∗P < 0:05; ∗∗P < 0:01. T: tumor tissue; NT: nontumor tissue.
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MANF expression and RB1 (Pearson’s correlation = ‐0:3048,
P < 0:01) and BRCA2 (Pearson’s correlation = ‐0:3493,
P < 0:01) (Figures 8(d) and 8(e)).

4. Discussion

HCC accounts for >90% of the histological types of primary
malignant liver tumors, which are highly malignant and have
a high recurrence rate and poor prognosis [3, 4]. Therefore,

elucidating the molecular mechanisms underlying the pro-
gression and initiation of HCC is important for treatment
selection.

ER stress can be induced by oncogene activation, such as
B-Raf proto-oncogene mutations, H-Ras proto-oncogene
mutations, and c-Myc amplification, as well as chemothera-
peutic drugs [21]. When the ER functions, only correctly
folded proteins can reach their cell compartment and
unfolded or misfolded proteins accumulate within the ER
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Figure 7: Genes differentially expressed in correlation with MANF in HCC (LinkedOmics). (a) Correlations between MANF and genes
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lumen. Overwhelming cellular demand and shortage of cellu-
lar energy availability lead to the accumulation of wrongly
folded proteins [22]. Unfolded protein response (UPR) helps
cells to reestablish homeostasis by decreasing protein syn-
thesis and increasing the folding and clearance capacity of

the ER [23]. Under sustained ER stress conditions, ER
homeostasis mediated by UPR cannot be restored and
leads to initiation of apoptosis [24]. However, cancer cells
have evolved UPR to alleviate ER stress conditions as a
survival mechanism for progression [25, 26]. MANF
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Figure 8: Genes correlated with MANF in HCC. (a–c) Correlations between MANF and the top 10 genes including UBD, MDK, and
AKR1B10, which have the highest expression multiples in HCC (P < 0:01). (d, e) Correlations between MANF and tumor suppressor
genes RB1 and BRCA2 (P < 0:01).
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protects SH-SY5Y cells against 6-OHDA-induced toxicity
by activating the PI3K/Akt/mTOR pathway and alleviating
ER stress [27]. ER stress regulated by UPR also plays an
important role in mechanisms of chemotherapy or radia-
tion resistance in cancer [28]. MANF is a neurotrophic
factor secreted from cells [29]. Kim et al. have indicated
that MANF can serve as a urinary biomarker for detecting
ER stress in podocytes or renal tubular cells [30]. Expression
of MANF has been confirmed to be closely related to ER
stress, which is a mediator in the initiation of HCC [16].

The liver is an important organ for the synthesis of pro-
teins and lipids, so hepatocyte ER has appropriate adaptive
capacity [31]. When the liver is in a state of inflammation
for a long time, ER stress is maintained at a high level, which
leads to hepatic dysfunction and progression of liver diseases,
even HCC [32].

Our study is believed to be the first to explore mRNA
expression and prognostic value of MANF in HCC. We
analyzed MANF expression in HCC samples using gene
expression and clinical prognostic data in the TCGA, CCLE,
EMBL-EBI, GEPIA, LinkedOmics, and ONCOMINE data-
bases, clinical specimens from our hospital, and HCC TMAs.
We found that MANF was always highly expressed in HCC
and many other cancers, indicating the significance of
MANF in tumorigenesis.

Although previous studies have shown that MANF is
highly expressed in HCC, there is a lack of reliable means
to prove the diagnostic value of MANF in HCC. Therefore,
we conducted a meta-analysis of MANF expression in previ-
ous studies retrieved from the GEO HCC dataset. ROC
curves from GEO datasets were used to confirm the satisfac-
tory diagnostic performance of MANF. However, diagnostic
performance of MANF in TMA analysis was not entirely
satisfactory, which may be caused by the subjectivity of
immunohistochemical staining analysis. Overall, MANF
was shown to be a potential diagnostic marker for distin-
guishing between HCC and nontumor tissues.

As shown in the analysis of the GEPIA database and
TMA supporting clinical data, MANF is a novel potential
prognostic marker for HCC patients. Consistent with these
findings, patients with high MANF expression levels had a
higher risk of tumor recurrence. Dysfunction of ER stress
and UPR signal underline the resistance of cancer cells to
chemotherapy, and ER stress response was inhibited in
chemoradiotherapy-resistant cells compared with that in
sensitive cells [33]. MANF could alleviate ER stress and
reduce ER stress-induced cell death, and ER stress activation
could cause upregulation of MANF in vivo and in vitro
[13, 34]. The higher recurrence rate and worse prognosis
might be due to MANF-ER stress-mediated chemotherapy
or targeted drug resistance; it needs further validation.

Our study proved that MANF was upregulated in HCC
tissues more than in nontumor tissues. High expression of
MANF was also involved in the development and progres-
sion of HCC and a potential indicator in the diagnosis, treat-
ment, and prognosis of HCC. In addition, the molecular
mechanism involved in MANF expression and occurrence
of HCC remains unknown. In order to study further the
important role of MANF in occurrence and development

of HCC, more in vitro and in vivo experiments should
be conducted.

5. Conclusion

MANF was overexpressed in HCC and related to poor
prognosis and progression of HCC. Our results showed
that MANF is a potential diagnostic and prognostic indicator
of HCC.
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Supplementary Materials

Supplementary material is the basic characteristics of 24
HCC cohort from GEO supporting meta-analysis in this
study. (Supplementary Materials)
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