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To identify candidate key genes and miRNAs associated with esophageal squamous cell carcinoma (ESCC) development and
prognosis, the gene expression profiles and miRNA microarray data including GSE20347, GSE38129, GSE23400, and GSE55856
were downloaded from the Gene Expression Omnibus (GEO) database. Clinical and survival data were retrieved from The
Cancer Genome Atlas (TCGA). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of
differentially expressed genes (DEGs) was analyzed via DAVID, while the DEG-associated protein-protein interaction network
(PPI) was constructed using the STRING database. Additionally, the miRNA target gene regulatory network and miRNA
coregulatory network were constructed, using the Cytoscape software. Survival analysis and prognostic model construction were
performed via the survival (version 2.42-6) and rbsurv R packages, respectively. The results showed a total of 2575, 2111, and
1205 DEGs, and 226 differentially expressed miRNAs (DEMs) were identified. Pathway enrichment analyses revealed that DEGs
were mainly enriched in 36 pathways, such as the proteasome, p53, and beta-alanine metabolism pathways. Furthermore, 448
nodes and 1144 interactions were identified in the PPI network, with MYC having the highest random walk score. In addition, 7
DEMs in the microarray data, including miR-196a, miR-21, miR-205, miR-194, miR-103, miR-223, and miR-375, were found in
the regulatory network. Moreover, several reported disease-related miRNAs, including miR-198a, miR-103, miR-223, miR-21,
miR-194, and miR-375, were found to have common target genes with other DEMs. Survival analysis revealed that 85 DEMs
were related to prognosis, among which hsa-miR-1248, hsa-miR-1291, hsa-miR-421, and hsa-miR-7-5p were used for a
prognostic survival model. Taken together, this study revealed the important roles of DEGs and DEMs in ESCC development, as
well as DEMs in the prognosis of ESCC. This will provide potential therapeutic targets and prognostic predictors for ESCC.

1. Introduction

Esophageal carcinoma (EC) remains the sixth leading cause
of cancer-associated mortality worldwide, with approxi-
mately 442,000 new cases and 440,000 mortalities globally
in 2014 [1, 2]. As the predominant subtype of EC, esophageal
squamous cell carcinoma (ESCC) is frequently diagnosed in
Eastern Asian countries, including China, where it accounts
for 95% of all EC cases [3, 4]. A series of risk factors, such
as tobacco smoking and consumption of alcohol and salted
vegetables, are reported to be associated with the high inci-
dence of ESCC [5]. Currently, despite advances in diagnosis
and treatment of ESCC, its prognosis remains poor, with a

5-year overall survival rate of less than 40% [6, 7]. Therefore,
identification of the molecular mechanisms underlying the
progression and prognosis of ESCC is of utmost importance.

As a gene detection technique, gene profiling or gene
chips have been widely used during the last decade for the
comprehensive screening of differentially expressed genes
(DEGs) [8]. With the development and application of gene
chips, more and more data have been generated and stored
in public databases, which will provide valuable clues for
new research. Currently, an increasing number of studies
have reported the identification of DEGs in ESCC. For exam-
ple, Yuan et al. [9] analyzed the gene expression profile in the
GSE20347 dataset, identifying a total of 538 DEGs. Likewise,
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Xing and Liu [10] identified 1204 DEGs based on the
GSE23400 dataset generated from ESCC and matched
mucosa tissues. Furthermore, Hu et al. [11] focus on biallelic
loss and its relation to mRNA expression based on the
GSE38129 array data. Recently, differentially expressed miR-
NAs (DEMs) has been reported to be associated with differ-
entiation, invasion, and metastasis of patients with ESCC
[12]. Moreover, miRNA expression profiling analysis was
also recently performed [13]. Jang et al. [14] identified prog-
nostic markers for postoperative recurrence of ESCC by
building an easy-to-use prognostic model with three small
noncoding RNAs (sncRNAs) based on the GSE55856 data-
set. However, the majority of these reports were based on a
single dataset, which leads to the results being limited or
inconsistent. Hence, the combination of bioinformatics
methods and expression profiling techniques using different
datasets may provide valuable information for the develop-
ment of therapeutic strategies for patients with this disease.

In the present study, we obtained the original microarray
data of the GSE20347, GSE38129, and GSE23400 datasets, as
well as the miRNA microarray data of the GSE55856 dataset
from the Gene Expression Omnibus (GEO). Clinical data
and survival data were retrieved from The Cancer Genome
Atlas (TCGA). Subsequently, the DEGs or DEMs were
screened. Pathway enrichment analyses were performed,
and protein-protein interaction (PPI) networks were created
for the DEGs, in order to identify key genes and their biolog-
ical function in ESCC. Additionally, the miRNA target gene
regulatory network and miRNA coregulatory network were
constructed to investigate the underlying functions of these
miRNAs. As such, based on survival analysis of DEMs and
univariate Cox analysis, a prognostic survival model based
on the expression of different miRNAs was constructed.

2. Materials and Method

2.1. Microarray Data Collection and Preprocessing. Gene
expression profiles from the GSE20347 (34 samples),
GSE38129 (60 samples), and GSE23400 (106 samples) data-
sets between ESCC samples and matched normal controls
were obtained from the GEO (http://www.ncbi.nlm.nih
.gov/geo/) database using the Affymetrix Human Genome
U133A 2.0 Array platform. In addition, the miRNA microar-
ray GSE55856 dataset, which is composed of 216 samples
(108 ESCC samples and 108 normal controls), was obtained
using the Affymetrix Multispecies miRNA-2_0 Array.

For the preprocessing of the gene expression profile chip,
the raw data of the GSE20347, GSE38129, and GSE23400
datasets were preprocessed using the R Affy package
(version: 1.46.1) with a standardized RMA method [15].
The processing included background corrections, normaliza-
tion, and calculation of gene expression. Afterwards, the
probe ID was converted to a gene symbol, with probes that
had no corresponding gene symbols being removed. As for
the case where multiple probes correspond to the same gene
symbol, we selected the mean value of the probes as the final
gene expression value. The preprocessing of miRNA micro-
array data was done in a similar manner using the miRNA
chip platform of Affy.

2.2. Identification of DEGs and DEMs. The limma package of
R (version: 3.30.2) [16] was used to identify genes or miRNAs
that were significantly differentially expressed between the
tumor and normal tissues. P < 0:05 and log2 fold change
ðFCÞ ≥ 0:58 were selected as the cutoff values for statistically
significant DEGs or miRNAs. Subsequently, we selected 3
groups of DEGs and then analyzed whether the genes were
also significantly differentially expressed in the 3 datasets.

2.3. Prediction of DEGs Based on a Meta-analysis. By screen-
ing DEGs based on a meta-analysis, more reliable DEGs can
be obtained due to the collection of multiple experimental
datasets and enhancement of statistical ability. In order to
integrate the DEGs that were combined in the three datasets,
the MetaDE package of R (version: 1.0.5) was used [17]. Gene
expression values were examined for heterogeneity with sta-
tistic parameters including tau2, Q value, and QP value. Cri-
teria standards of tau2 = 0 and QPval > 0:05 were selected as
the homogeneity test parameter. A P value of < 0.05 was the
threshold for a significant difference in gene expression.
Moreover, a heatmap was generated with the pheatmap
[18] R package (version: 3.25).

2.4. Pathway Enrichment Analysis for DEGs. To investigate
the biofunctions of DEGs, Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis was performed
using DAVID (version: 6.8) [19]. P < 0:05 was selected as
the cutoff criterion.

2.5. Identification of PPI Network and Key Genes. To better
understand the interactions of the DEGs, the Search Tool
for the Retrieval of Interacting Genes (STRING) database
(version: 10) was employed to develop a DEG-encoded PPI
[20], with a reliability threshold of >0.9. The prediction
methods were derived from the neighborhood, gene fusion,
cooccurrence, coexpression, experiments, databases, and text
mining. The Cytoscape software (version: 3.2.1) was utilized
to construct the PPI.

Next, the random walk algorithm was used to analyze
important nodes in the PPI network. Briefly, the random
walk was started at the seed node and the importance of each
node was expressed by calculating the frequency of each node
after the random walk between nodes in the network. The
corresponding higher frequency genes may be candidate
genes that have important physiological regulatory functions.
The RWOAG package of R [21] was used to calculate the net-
work node score.

2.6. Construction of the miRNA-Target Gene Regulatory
Network. Mirwalk2 (http://zmf.umm.uni-heidelberg.de/
apps/zmf/mirwalk2) [22] was used for the prediction of tar-
get genes regulated by miRNAs, and differentially expressed
target genes were filtered by using the “validated target”
module. Based on the data of differentially expressed miR-
NAs and DEGs, the opposite relationship pairs (upregulated
miRNA-downregulated gene or downregulated miRNA-
upregulated gene) were selected from the miRNA-target gene
data. The regulatory network of miRNA-target genes was
constructed using the Cytoscape software [23]. Meanwhile,
we screened several miRNAs from the miR2Disease database
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(http://www.mir2disease.org/) [24] which were reported to
be related to ESCC.

2.7. Functional Analysis of miRNAs. In order to obtain infor-
mation regarding the pathways associated with the identified
miRNAs, we performed KEGG pathway analysis for differen-
tially expressed target genes using the clusterProfiler package
of R (version: 3.3.1). The enrichment significance P value was
corrected with the BH method and a P value of less than 0.05
was considered to be significant.

2.8. Construction of miRNA Coregulatory Network. Based on
the regulatory network of miRNAs and their target genes,
miRNA pairs that regulate the same target genes were
screened to construct the coregulatory network between
miRNAs.

2.9. Survival Analysis of DEMs. Clinical and survival data
from 251 patients with ESCC were retrieved from TCGA,
which were downloaded from the database of University of
California Santa Cruz (UCSC) Xena (https://xenabrowser
.net). Moreover, miRNA-seq data was downloaded from
http://gdac.broadinstitute.org/runs/stddata__2016_01_28/data/
ESCA/20160128/.

In general, TCGA data directly downloaded cannot be
directly analyzed. Therefore, in order to link different data,
we need to match, select, and delete different data by screen-
ing samples. In this study, the DEMs obtained from the inte-
gration analysis of different GEO databases intersected with
the miRNA-seq data filenames downloaded by TCGA using
an R package [25]. Additionally, miRNAs with value = 0 in
more than half of the total samples were removed from the
existing intersection data.

The optimal miRNA cutoff was determined via the surv_
cutpoint of survminer (version 0.4.3) of R package, with
>optimal cutoff being considered high expression and <opti-
mal cutoff being considered low expression. Survival analysis
was conducted with the survival (version 2.42-6) R package,
and P values < 0.05 were taken as the threshold. miRNAs
with significant correlation to prognosis were selected and
survival curves were made.

2.10. Univariate Cox Analysis and Prognostic Model
Construction.Univariate survival Cox analysis was continued
for miRNAs significantly correlated with survival, and miR-
NAs with P values < 0.05 were used for the construction of
the prognostic model.

After univariate analysis, there were still many significant
univariate factors, which were not conducive to inclusion in
the prognostic model. Therefore, some dimensionality
reduction methods were adopted to select the most impor-
tant univariate factors to be included in the prognostic model
for downstream analysis. In this study, the rbsurv R package
was used to investigate the robustness of univariate survival
analysis. Briefly, 3/4 samples were randomly selected as train-
ing data and the remaining 1/4 samples as validation data.
Multivariate Cox analysis was carried out on the obtained
models in the test training set and verification set, and risk
scores for survival verification of the model were obtained.

Finally, the overall evaluation effect of the model on progno-
sis was checked.

3. Results

3.1. Identification of DEGs and DEMs. After data preprocess-
ing, a total of 2575, 2111, and 1205 DEGs between ESCC and
normal tissues were identified in the gene expression profile
of the GSE20347, GSE38129, and GSE23400 datasets, respec-
tively, based on the cutoff criteria. Moreover, 226 DEMs were
identified in GSE55856, of which 190 were upregulated and
36 were downregulated.

3.2. Meta-analysis of DEGs and Hierarchical Clustering.
Based on the meta-analysis, 1001 DEGs, including 700 upreg-
ulated genes and 301 downregulated genes were obtained. As
shown in Figure 1, hierarchical clustering revealed that the
DEGs obtained from the meta-analysis and DEMs could effec-
tively cluster the samples from the GSE20347, GSE38129,
GSE23400, and GSE55856 datasets, which suggests that the
ESCC samples could easily be distinguished from the normal
controls by analyzing the DEGs or miRNAs.

3.3. Functional Enrichment Analysis of DEGs Screened from
the Meta-analysis. As illustrated in Figure 2, DEGs were clas-
sified into four functional categories, including pathways,
biological process, cellular components, and molecular func-
tion. KEGG pathway analysis revealed that the upregulated
DEGs were mainly enriched in 18 pathways, including
DNA replication, cell cycle, proteasome, base excision
repair, and the spliceosome signaling pathway (all, P <
0:05; Table 1). Similarly, 18 KEGG pathways were signifi-
cantly enriched in downregulated DEGs, such as regulation
of actin cytoskeleton, glycine, serine, and threonine metabo-
lism, cGMP-PKG signaling pathway, valine, leucine, and iso-
leucine degradation and the arginine and proline metabolism
signaling pathway (all, P < 0:05).

3.4. Identification of Key Candidate Genes and Pathways by
DEGs PPI Network Analysis. As shown in Figure 3, a series
of DEGs were filtered into the PPI network, which contained
448 nodes and 1144 interaction pairs. Among the nodes, the
key candidate node genes were identified by filtering the ran-
dom walk score. The top 20 nodes, including 17 upregulated
and 3 downregulated genes were summarized in Table 2.
Among these DEGs, the MYC protooncogene (MYC) had
the highest score.

3.5. Regulatory Network of miRNA Target Genes. According
to the screening principles of an upregulated miRNA-
downregulated gene or downregulated miRNA-upregulated
gene, we constructed the miRNA-target gene regulatory net-
work. As shown in Figure 4, a total of 72 upregulated miR-
NAs which targeted 130 downregulated genes, as well as 19
downregulated miRNAs which targeted 133 upregulated
genes were filtered in the network. Based on the miRNAs
associated with ESCC obtained from miR2Disease (http://
www.mir2disease.org/), 8 miRNAs, including miR-196a,
miR-21, miR-205, miR-194, miR-103, miR-223, miR-203,
and miR-375, were found to be significantly differentially

3BioMed Research International

http://www.mir2disease.org/
https://xenabrowser.net
https://xenabrowser.net
http://gdac.broadinstitute.org/runs/stddata__2016_01_28/data/ESCA/20160128/
http://gdac.broadinstitute.org/runs/stddata__2016_01_28/data/ESCA/20160128/
http://www.mir2disease.org/
http://www.mir2disease.org/


U
pr

eg
ul

at
ed

D
ow

nr
eg

ul
at

ed

N
or

m
al

 ex
p 

m
ea

n

ES
CC

 ex
p 

m
ea

n

Expression
2
1
0
−1
−2

Normal exp mean
9
8
7
6
5

ESCC exp mean
12
10
8
6
4

Sample_type
ESCC
Normal

(a)

Figure 1: Continued.

4 BioMed Research International



U
pr

eg
ul

at
ed

D
ow

nr
eg

ul
at

ed

N
or

m
al

 ex
p 

m
ea

n

ES
CC

 ex
p 

m
ea

n

Expression
2
1
0
−1
−2

Normal exp mean
9
8
7
6
5

ESCC exp mean
12
10
8
6
4

Sample_type
ESCC
Normal

(b)

Figure 1: Continued.

5BioMed Research International



U
pr

eg
ul

at
ed

D
ow

nr
eg

ul
at

ed

N
or

m
al

 ex
p 

m
ea

n

ES
CC

 ex
p 

m
ea

n

Expression
2
1
0
−1
−2

Normal exp mean
10
8
6
4

ESCC exp mean
12
10
8
6
4

Sample_type
ESCC
normal

(c)

Figure 1: Continued.

6 BioMed Research International



expressed in miRNAmicroarray datasets. Among these miR-
NAs, 7 miRNAs excluding miR-203 were found in the net-
work. Moreover, the gene with the highest score in the PPI
network, MYC, was coregulated by miR-125a-3p, miR-940,
and miR-375, among which miR-375 has been reported to
be related to ESCC.

3.6. Coregulatory Network between miRNAs. In order to con-
struct the coregulatory network, the miRNAs that regulated
the same target gene were identified via the miRNA-target
gene regulatory network. As illustrated in Figure 5, several
miRNAs which are reported to be disease related, such as
hsa-miR-198a, hsa-miR-103, hsa-miR-223, hsa-miR-21,
hsa-miR-194, and hsa-miR-375, had common target genes
with other DEMs. These miRNAs have played an essential
in proliferation, invasion, and metastasis of malignant dis-
ease, which is closely related to pathogenesis and prognosis.

3.7. Survival Analysis of DEMs.After processing of the TCGA
data described above, a total of 184 cancer samples and 174
differentially matched miRNAs were obtained. Survival anal-
ysis revealed that there were 91 DEMs significantly correlated
with the outcome of ESCC patients (Supplementary Table 1).

3.8. Univariate Cox Analysis and Prognostic Model
Construction. A total of 13 DEMs were obtained after the
univariate Cox analysis. According to the model analysis, a
prognostic survival model with 4 DEMs, including hsa-
miR-1248, hsa-miR-1291, hsa-miR-421, and hsa-miR-7-5p
was obtained. Among these miRNAs, hsa-mir-1248, hsa-
miR-1291, and hsa-miR-421 were the DEMs in the GEO
data. Moreover, hsa-miR-7-5p was concentrated as the pre-
cursor of hsa-miR-7 in the GEO data.

Multivariate Cox analysis was carried out for the follow-
ing 4 DEMs, hsa-miR-1248, hsa-miR-1291, hsa-miR-421,
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Figure 1: Heatmap clustering of the differentially expressed genes (DEGs) and miRNAs (DEMs) between ESCC and normal tissues samples
in the GSE20347 (a), GSE38129 (b), GSE23400 (c), and GSE55856 (d) datasets. “Red” represents high relative expression and “green”
represents a low relative expression.
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Figure 2: DEG functional enrichment analysis in ESCC. Upregulated (a) and downregulated (b) DEGs were enriched in four functional
categories, including pathways, biological processes, cellular components, and molecular functions.
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and hsa-miR-7-5p, in the training set and validation set,
respectively, and the regression coefficients were obtained
(Table 3). Furthermore, the corresponding risk score was cal-
culated for survival analysis and survival test. The threshold
determination of the prognostic model was performed. The
threshold of the cutoff point in the training set is 1.48
(Figure 6(a)) and in the validation set is 1.56 (Figure 6(b)),
respectively. As illustrated in Figures 6(c) and 6(d), the
survival analysis results of the risk score obtained by
the prognostic model composed of the 4 miRNAs were
appropriate in both the training and validation sets (both,
P < 0:01).

4. Discussion

During the past few decades, an increasing number of studies
have investigated the causes and potential mechanisms of
ESCC tumorigenesis. However, the high incidence and mor-
tality of ESCC worldwide still pose a challenge, as most stud-
ies only focus on a single genetic event [9, 26]. Gene profiling
or microarray technologies have been widely used to predict
potential targets for the treatment of different tumors. In our
study, we downloaded three original microarray data and
identified 2575, 2111, and 1205 DEGs, as well as 226 DEMs,
between ESCC and normal tissues. Moreover, the meta-

Table 1: Signaling pathway enrichment analysis of DEGs in ESCC.

Term Count P value

Up

hsa03030:DNA replication 13 3.51E-08

hsa04110:cell cycle 21 8.02E-07

hsa03050:proteasome 11 2.33E-05

hsa03410:base excision repair 9 9.52E-05

hsa03040:spliceosome 17 3.83E-04

hsa03430:mismatch repair 7 4.78E-04

hsa00240:pyrimidine metabolism 14 9.29E-04

hsa03420:nucleotide excision repair 8 5.35E-03

hsa05222:small-cell lung cancer 11 5.50E-03

hsa00480:glutathione metabolism 8 8.42E-03

hsa05230:central carbon metabolism in cancer 9 8.77E-03

hsa04062:chemokine signaling pathway 17 1.18E-02

hsa03013:RNA transport 16 1.29E-02

hsa04510:focal adhesion 17 2.83E-02

hsa00230:purine metabolism 15 3.25E-02

hsa04115:p53 signaling pathway 8 3.39E-02

hsa04512:ECM-receptor interaction 9 4.68E-02

hsa04145:phagosome 13 5.00E-02

Down

hsa04810:regulation of actin cytoskeleton 11 4.23E-03

hsa00260:glycine, serine, and threonine metabolism 5 4.86E-03

hsa04022:cGMP-PKG signaling pathway 9 9.30E-03

hsa00280:valine, leucine and isoleucine degradation 5 9.45E-03

hsa00330:arginine and proline metabolism 5 1.17E-02

hsa00072:synthesis and degradation of ketone bodies 3 1.29E-02

hsa00410:beta-alanine metabolism 4 1.72E-02

hsa04710:circadian rhythm 4 1.72E-02

hsa04270:vascular smooth muscle contraction 7 1.91E-02

hsa04924:renin secretion 5 2.68E-02

hsa04713:circadian entrainment 6 2.68E-02

hsa04510:focal adhesion 9 3.02E-02

hsa00982:drug metabolism-cytochrome P450 5 3.25E-02

hsa04610:complement and coagulation cascades 5 3.40E-02

hsa00360:phenylalanine metabolism 3 3.59E-02

hsa04020:calcium signaling pathway 8 4.01E-02

hsa05146:amoebiasis 6 4.02E-02

hsa00071:fatty acid degradation 4 4.30E-02
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analysis was used to further obtain more reliable DEGs, and
1001 genes that could be used for sample clustering of each
dataset were identified. Furthermore, based on the clinical,

survival, and miRNA-seq data downloaded from TCGA, a
total of 85 DEMs were found to be significantly associated
with the outcome of ESCC patients. As such, a prognostic
survival model composed of 4 DEMs, including hsa-miR-
1248, hsa-miR-1291, hsa-miR-421, and hsa-miR-7-5p was
constructed.

It has been known that tumorigenesis is a complex pro-
cess that involves the interaction of various genes and signal-
ing pathways [26, 27]. In ESCC, an increasing number of
signaling pathways have been reported to play important
roles in the progression of the disease [28–30]. Therefore,
the analysis of pathways related to neoplasia could provide
information regarding tumor development. In the present
study, the KEGG pathway analysis revealed that both upreg-
ulated and downregulated DEGs were mainly enriched in 18
pathways, such as the DNA replication, cell cycle, p53, protea-
some, BcGMP-PKG signaling pathway, valine, leucine, and
isoleucine degradation, beta-alanine metabolism, and arginine
and proline metabolism signaling pathways. Among these
pathways, recent studies have shown a correlation between
the proteasome pathway and ESCC carcinogenesis [31]. Zhou
et al. [32] revealed that the cell growth and apoptosis of ESCC
could be regulated via activation of the p53 signaling pathway.
Moreover, the beta-alanine metabolism pathway was reported
as a novel subpathway related to ESCC, by the cooperative use
of different genes in different pathways [33]. Taken together,
the detection of molecules related to these pathways may help
predict the occurrence and progression of ESCC.

Furthermore, the PPI network of proteins encoded by the
identified DEGs was constructed. It contained 448 nodes and
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Figure 3: DEGs protein-protein interaction (PPI) network in ESCC. There were 448 nodes and 1144 interactions identified in the network.
White represents upregulated genes and gray represents downregulated genes.

Table 2: The key genes (top 20) in the PPI network in ESCC.

Node Direction Random walk score

MYC Up 0.00656632

PCNA Up 0.005105377

AURKB Up 0.005066962

STAT1 Up 0.004433487

CXCL12 Down 0.003986094

POLR2K Up 0.003855735

CDC20 Up 0.003688161

PIK3CA Up 0.003613145

CDC6 Up 0.003570703

PRKDC Up 0.00355442

SHMT2 Up 0.003539976

CHEK1 Up 0.003533405

PPARGC1A Down 0.003496619

MAGOH Up 0.003355163

SERPINE1 Up 0.003290157

CCR1 Up 0.003277042

LYN Up 0.003267606

HK2 Up 0.003262363

WDR12 Up 0.003251239

PIK3R1 Down 0.003241252
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1144 interactions.MYC, with the highest random walk score,
could be regarded as the key gene in the PPI network. Indeed,
accumulating evidence has demonstrated that MYC is an
important factor in biological development and tumorigene-
sis. For instance, Kwon et al. [34] showed that MYC was
overexpressed in ESCC patients and that its expression could
predict better overall survival (OS) for patients. Likewise,
Zhong et al. [35] revealed thatMYC is involved in the tumor-
igenicity of ESCC by regulating the expression of the
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Figure 5: The coregulatory network between miRNAs. Several reported disease-related miRNAs shared common target genes with other
DEMs. Gray represents a downregulated expression and white represents an upregulated expression. The blue thickened edge represents
miRNAs reported to be disease related.

Table 3: The regression coefficients of 4 miRNAs.

Training set Validation set

hsa-miR-1248 0.62396 PANTR1 0.37498

hsa-miR-1291 0.40231 LINC01266 0.09693

hsa-miR-421 -0.02532 FGF13-AS1 0.10180

hsa-miR-7-5p 0.19866 TMEM132D-AS1 0.34272
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composed of 4 miRNAs.
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hydroxymethylglutaryl coenzyme A reductase (HMGCR).
Therefore, further research on MYC will provide a basis for
targeted therapy against ESCC.

miRNAs, which are endogenous, noncoding single-
stranded RNAs, have been reported to play critical roles in
various biological processes via binding to their target
mRNAs [36, 37]. In the present study, a miRNA-target gene
regulatory network using the identified DEMs was con-
structed, and seven miRNAs associated with ESCC, including
miR-196a, miR-21, miR-205, miR-194, miR-103, miR-223,
and miR-375 were identified in both the microarray data
and the miRNA-target gene regulatory network. Among
these miRNAs, miR-196a, miR-21, and miR-205 were previ-
ously found to be abnormally expressed in ESCC [38–40].
Notably, miR-125a-3p, miR-940, and miR-375 collectively
regulated the expression of MYC, suggesting that these miR-
NAs might play a role in ESCC by regulating the MYC
expression. Additionally, the miRNAs that regulated the
same target gene were identified using the coregulatory net-
work, and miR-198a, miR-103, miR-223, miR-21, miR-194,
and miR-375 were reported to be miRNAs related to ESCC
[41–44]. Survival analysis showed that a total of 85 DEMs
were related to prognosis, among which hsa-miR-1248,
hsa-miR-1291, hsa-miR-421, and hsa-miR-7-5p were used
in a prognostic survival model. Indeed, miR-1248 has been
reported to be involved in the microRNA signature model
for the prediction of prognosis in patients with the Wilms
tumors [45]. Moreover, miR-1291 and miR-421 are associ-
ated with OS in patients with lung adenocarcinoma [46,
47]. However, a prognostic survival model using these miR-
NAs has not been constructed for ESCC. The results of our
study revealed that the tumorigenesis of ESCC may be the
result of the coregulation of multiple miRNAs. Moreover,
several miRNAs, such as hsa-miR-1248, hsa-miR-1291, hsa-
miR-421, and hsa-miR-7-5p could be used to construct a
prognostic survival model for the prediction of ESCC patient
outcomes.

In conclusion, in the present study, we conducted a com-
prehensive bioinformatics analysis of DEGs, DEMs, and
pathways, based on different datasets. As such, we identified
DEGs such as MYC, miRNAs such as miR-125a-3p, miR-
940, miR-375 miR-196a, miR-21, miR-205, miR-194, miR-
103, miR-223, and miR-198a, and pathways such as the
proteasome, p53, and beta-alanine metabolism pathways,
which may be involved in ESCC development. Notably,
survival analysis showed that 85 DEMs were related to prog-
nosis, among which hsa-miR-1248, hsa-miR-1291, hsa-miR-
421, and hsa-miR-7-5p were used to construct a prognostic
survival model. Taken together, these findings have important
clinical significance, as they can improve our understanding of
the pathogenesis and molecular mechanisms of ESCC. More-
over, our results provide potential biomarkers for the predic-
tion of ESCC prognosis. However, further studies are still
needed to confirm the function of the identified genes.
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