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Purpose. This work is aimed at identifying several molecular markers correlated with the diagnosis and development of basal cell
carcinoma (BCC). Methods. The available microarray datasets for BCC were obtained from the Gene Expression Omnibus
(GEO) database, and differentially expressed genes (DEGs) were identified between BCC and healthy controls. Afterward, the
functional enrichment analysis and protein-protein interaction (PPI) network analysis of these screened DEGs were performed.
An external validation for the DEG expression level was also carried out, and receiver operating characteristic curve analysis was
used to evaluate the diagnostic values of DEGs. Result. In total, five microarray datasets for BCC were downloaded and 804
DEGs (414 upregulated and 390 downregulated genes) were identified. Functional enrichment analysis showed that these genes
including CYFIP2, HOXB5, EGFR, FOXN3, PTPN3, CDC20, MARCKSL1, FAS, and PTCH1 were closely correlated with the cell
process and PTCH1 played central roles in the BCC signaling pathway. Moreover, EGFR was a hub gene in the PPI network.
The expression changes of six genes (CYFIP2, HOXB5, FOXN3, PTPN3, MARCKSL1, and FAS) were validated by an external
GSE74858 dataset analysis. Finally, ROC analysis revealed that CYFIP2, HOXB5, PTPN3, MARCKSL1, PTCH1, and CDC20
could distinguish BCC and healthy individuals. Conclusion. Nine gene signatures (CYFIP2, HOXB5, EGFR, FOXN3, PTPN3,
CDC20, MARCKSL1, FAS, and PTCH1) may serve as promising targets for BCC detection and development.

1. Introduction

Basal cell carcinoma (BCC) is one of common malignant epi-
thelial neoplasms that derive from basal cells and accounts
for nearly 75% of skin cancers [1]. It was reported that the
BCC incidence rates have been increasing and roughly
reached 2.75 million cases around the world [2]. BCC was
generally categorized into several types such as superficial,
nodular, and nevoid BCC on the basis of its histological
and clinical characteristics. Notably, the majority of lesions
for BCC occurred on the head and neck [3]. The convincing
evidence has suggested that gender, age, sunlight exposure
(especially ultraviolet radiation), smoking, chemicals, and
fair skin were all BCC risk factors [4, 5]. Although BCC
recurrence was extremely frequent due to local tissue
destruction, it rarely metastasizes or leads to death [6]. The
imiquimod application, surgical excision, and radiation ther-
apy have been unsatisfactory for BCC treatment. Therefore,

it is imperative to develop promising strategies for early diag-
nosis and intervention of BCC.

Fortunately, the next-generation high-throughput sequenc-
ing provides fascinating opportunities for bioinformatics anal-
ysis. A growing number of studies have demonstrated that
gene expression profiling could effectively screen molecular
makers and predict pathogenesis for tumorigenesis in the last
decades, thereby offering novel therapeutic strategies for can-
cer treatment [7]. Fang et al. previously found that the expres-
sion level of EGR1 (early growth response 1) was decreased in
BCC based on a microarray analysis. Furthermore, they also
noted that EGR1 might suppress epidermal proliferation via
modulating CDC25A that is critical for cell cycle progression
from G1 to S phase [8]. Heller et al. conducted a global gene
expression analysis and identified BCC-associated differen-
tially expressed gene (DEG) targets, providing several new
diagnostic signatures for the susceptibility of BCC [9]. Later,
Yunoki et al. identified three BCC-correlated genes including
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BCL2 (B-cell lymphoma 2), PTCH1 (Patched 1), and SOX9
(SRY-box 9) and unique gene networks involved with tumor-
igenesis through a microarray analysis [10]. Additionally, Jee
et al. classified BCC into squamous cell carcinoma- (SCC-)
like BCC, normal-like BCC, and classical BCC subtypes by a
comparative analysis of gene expression profiles from BCC,
SCC, and normal skin tissues. Moreover, functional analysis
revealed that hedgehog signaling pathways were possibly
related to classical BCC development [11]. Although numer-
ous investigations have extracted several BCC-related gene
makers, a deeper insight into the underlying molecular mech-
anisms of BCC has not been completely achieved.

In this study, the eligible mRNA microarray datasets
from BCC tissues were retrieved and downloaded from the
National Center for Biotechnology Information Gene
Expression Omnibus (GEO) database. Then, the DEGs
between BCC and normal tissues were screened followed by
functional enrichment analyses. The protein-protein (PPI)
network was also constructed to explore underlying interac-
tions among key genes. Finally, the expression levels of DEGs
were further examined by an external dataset, and diagnostic
performance of these genes were also evaluated. This work
provided novel gene signatures for BCC diagnosis and pro-
moted a deeper understanding for BCC progression.

2. Materials and Methods

2.1. Data Acquisition. The publicly accessible microarray
datasets in BCC were searched and downloaded from the
NCBI-GEO [12] database (https://www.ncbi.nlm.nih.gov/
geo/). The keyword terms of carcinoma, basal cell (MeSH
Terms) OR basal cell carcinoma (All Fields) AND “Homo
sapiens” (porgn) AND “gse” (Filter) were used for precise
searching. The inclusive criteria for datasets were as follows:
(i) the datasets were gene expression profiles, (ii) the data
was obtained from tumor tissues of patients with BCC or
normal skin tissues from healthy individuals (normal con-
trols), and (iii) the patients did not receive medication or
other treatments. Finally, five datasets (GSE103439,
GSE53462, GSE42109, GSE39612, and GSE7553) were cho-
sen according to the abovementioned screening criteria as
shown in Table 1. Of these, four datasets (GSE103439,
GSE42109, GSE39612, and GSE7553) were generated by the

GPL570 [HG-U133_Plus_2] Affymetrix Human Genome
U133 Plus 2.0 Array platform, and the platform for
GSE53462 was GPL10558 Illumina Human HT-12 V4.0
expression beadchip. These datasets would be used for the
following integrated analyses, which consisted of 48 BCC tis-
sues and 85 normal tissue samples.

2.2. Identification of Differentially Expressed Genes (DEGs). A
meta-analysis of five microarray datasets from different plat-
forms was carried out according to the guidelines provided
by Ramasamy et al. [13]. The preprocessing of raw data
across different platforms, mainly including background cor-
rection, normalization, log2 transformation, and gene expres-
sion calculation, was performed. The overlapped genes in five
datasets were selected. Then, the R metaMA package was
used to calculate effect sizes from unpaired data by either
classical or moderated t-tests (Limma) for each study and
combine these effect sizes [14]. The DEGs between BCC
and normal controls were screened according to the thresh-
old of the multiple comparison correction false discovery
rate ðFDRÞ < 0:05. The whole R sentences for data processing
and identification of DEGs in this study were shown in Sup-
plementary Materials (available here). Finally, the hierarchi-
cal clustering analysis of identified DEGs was performed by
the pheatmap package (https://cran.r-project.org/package=
pheatmap) in R language.

2.3. Gene Ontology (GO) and Pathway Enrichment Analyses.
To explore the possible biological roles of the DEGs, the
functional analyses were conducted. Firstly, the GO analysis
involving three categories of molecular function (MF), cellu-
lar component (CC), and biological process (BP) was con-
ducted with BiNGO plugin in cytoscape software [15]. The
parameters were set as follows: (i) hypergeometric test was
used as the selected statistical test; (ii) Benjamini and Hoch-
berg FDR correction was set as selected correction; (iii)
selected significance level was 0.05; and (iv) for testing
option, we used whole annotation as the reference set. In
addition, the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis was undertaken using KOBAS
(http://kobas.cbi.pku.edu.cn/index.php), which is a web-
accessible tool and could identify enriched pathways for an
input set of genes by mapping to genes using known

Table 1: The microarray datasets for basal cell carcinoma.

GEO accession Control Case Platform Year Country Author

GSE103439 2 4
GPL570 [HG-U133_Plus_2] Affymetrix
Human Genome U133 Plus 2.0 Array

2017 Japan Yoshiaki Tabuchi

GSE53462 5 16
GPL10558 Illumina Human HT-12

V4.0 expression beadchip
2014 South Korea Hyun Goo Woo

GSE42109 10 11
GPL570 [HG-U133_Plus_2] Affymetrix Human

Genome U133 Plus 2.0 Array; GPL571 [HG-U133A_2]
Affymetrix Human Genome U133A 2.0 Array

2013 USA Mayte Suarez-Farinas

GSE39612 64 2
GPL570 [HG-U133_Plus_2] Affymetrix Human

Genome U133 Plus 2.0 Array
2012 USA Paul Harms

GSE7553 4 15
GPL570 [HG-U133_Plus_2] Affymetrix Human

Genome U133 Plus 2.0 Array
2008 USA Sean Yoder

GEO: Gene Expression Omnibus.
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pathways in the KEGG database [16]. Moreover, the statisti-
cally significantly enriched pathways were selected with the
cutoff of P value < 0.05.

2.4. Protein-Protein Interaction (PPI) Network. The Biologi-
cal General Repository for Interaction Datasets (BioGRID)
database is available online and provides 1,728,498 biological
PPI interactions by August 2019. Here, we performed a PPI
analysis for screened DEGs based on this database to identify
significant protein pairs. The cytoscape software (http://apps
.cytoscape.org/apps/cytonca) was utilized to construct the
PPI network. Moreover, the CytoNCA [17] (http://apps
.cytoscape.org/apps/cytonca), a cytoscape plugin, was used
to analyze topological characteristics of PPI nodes using the
without weight parameter. Several metrics such as Degree
Centrality (DC), Betweenness centrality (BC), and Closeness
centrality (CC) were estimated. In this study, hub protein was
determined on the basis of high scores. In addition, the
MCODE plugin (http://apps.cytoscape.org/apps/mcode) in
cytoscape software was employed to further identify several
PPI submodules using the default parameters of degree
cutoff = 2, node score cutoff = 0:2, K‐core = 2, and max:
depth = 100 [18]. Notably, the PPI score > 3 was considered
as the cutoff for screening significantly enriched functional
modules from the PPI network.

2.5. Validation of DEG Expression Levels by a Noncoding
RNA Expression Profile. The GSE74858 dataset, including
3 BCC patients and 3 healthy individuals, was obtained
from the GEO database and used as a verification dataset
to evaluate the expression levels of DEGs. Furthermore,
the receiver operating characteristic (ROC) analysis was
also carried out to assess the performance of DEGs in this
research using the “pROC” package (https://cran.r-project
.org/web/packages/pROC/index.html) in R language. The
area under the ROC curve (AUC) was then computed.
Herein, if AUC values of the genes were greater than
0.9, these genes were considered to discriminate patients
undergoing BCC from healthy controls with high specific-
ity and sensitivity.

3. Results

3.1. DEG Screening. The meta-analysis of five gene expression
profiles was conducted, and the DEGs were identified. Con-
sequently, a total of 804 DEGs were extracted between BCC
and normal controls according to screening criteria
described in Materials and Methods. Of these, there were
414 upregulated genes and 390 downregulated genes in
patients with BCC. Moreover, the clustering analysis of these
DEGs indicated that they could clearly distinguish BCC and
healthy controls as exhibited in Figure 1, suggesting that
the differential gene expression was possibly responsible for
BCC occurrence.

3.2. Functional Enrichment Analyses of DEGs. As shown in
Table 2, the GO functional annotation analysis showed that
identified DEGs were enriched in 53 GO-BP terms including
cellular component organization, cell cycle, cell proliferation,
and ectoderm development. Meanwhile, they were focused

on 54 GO-CC terms such as intracellular part, intracellu-
lar, and cytoplasm. It was also observed that there were
three GO-MF terms (protein binding, binding, and ribo-
nuclease H activity). Notably, numerous genes were closely
associated with the cellular process, including CYFIP2
(cytoplasmic FMR1 interacting protein 2; upregulated),
HOXB5 (homeobox B5; downregulated), EGFR (epidermal
growth factor receptor; downregulated), FOXN3 (forkhead
box N3; upregulated), PTPN3 (protein tyrosine phospha-
tase nonreceptor type 3; downregulated), CDC20 (cell divi-
sion cycle 20; upregulated), MARCKSL1 (myristoylated
alanine rich protein kinase C substrate like 1; upregulated),
FAS (fas cell surface death receptor; downregulated), and
upregulated PTCH1. More specifically, FOXN3, CDC20,
and EGFR played essential roles in the cell cycle process,
and PTCH1 and EGFR were involved in cell proliferation.
Additionally, KEGG pathway enrichment analysis revealed
that these genes were primarily enriched in pathways in
cancer, p53 signaling pathway and BCC pathway. We also
noted that PTCH1 exerted critical biological roles in the
BCC pathway (Figure 2).

3.3. PPI Analysis. PPI network analysis was conducted to
explore the underlying interactions of DEGs. In total, 549
gene nodes (296 upregulated genes and 254 downregulated
genes) and 1462 protein pairs were obtained in the PPI net-
work (Figure 3(a)). The top 5 gene nodes with a high degree
were EGLN3 (Egl-9 family hypoxia inducible factor 3;
degree = 82), XPO1 (exportin 1; degree = 81), EGFR
(degree = 77), CFTR (CF transmembrane conductance regu-
lator; degree = 48), and MCM2 (minichromosome mainte-
nance complex component 2; degree = 47), and they were
regarded as hub genes. Furthermore, the PPI submodule
analysis suggested that 3 significantly enriched submodules
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Figure 1: The heatmap of differentially expressed genes in basal cell
carcinoma. The “label” represents sample type (basal cell carcinoma
and normal skin samples). The light red color shows the basal cell
carcinoma samples, and light blue color shows normal skin samples.
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were identified based on the PPI score > 3 (Figures 3(b)–
3(d)). Interestingly, we found that the genes in submodule
1 were all upregulated.

3.4. Verification of DEG Expression Levels and ROC
Analysis. A noncoding RNA profile GSE74858 was down-
loaded from the GEO repository, and there were 145 over-
lapped genes between this dataset and the integrated
datasets. We found that 25 overlapped genes exhibited sig-
nificant differential expression, and their expression trends
were also consistent with our integration analysis. More nota-
bly, six genes (CYFIP2, HOXB5, FOXN3, PTPN3,MARCKSL1,
and FAS) were predominately correlated with the cellular bio-
logical process, and their expression patterns were validated
by an external GSE74858 dataset (Figure 4). Besides, the ROC
curve analysis was conducted to assess the diagnostic values of
DEGs in BCC by fivemicroarray datasets. There were 439 genes
according to AUC > 0:9, and 129 genes were overlapped with
DEGs by integrated analysis and then extracted. Our findings
revealed that CYFIP2 (AUC = 0:949), HOXB5 (AUC = 0:908),
PTPN3 (AUC = 0:952), MARCKSL1 (AUC = 0:962), PTCH1
(AUC = 0:981), and CDC20 (AUC = 0:956) could significantly
distinguish BCC samples and healthy controls, implying that
these genes might serve as diagnostic makers for BCC detec-
tion (Figure 5).

4. Discussion

In the present study, we performed an integrated bioinfor-
matics analysis using five microarray datasets about BCC.
In total, 804 DEGs (414 upregulated and 390 downregu-
lated genes) were screened between BCC and normal con-
trol tissues. The GO functional analysis showed that
several genes, including CYFIP2, HOXB5, EGFR, FOXN3,
PTPN3, CDC20, MARCKSL1, FAS, and PTCH1, primarily
played pivotal roles in cellular processes. Moreover, the
expression patterns of six genes (CYFIP2, HOXB5, FOXN3,
PTPN3, MARCKSL1, and FAS) were validated in an exter-
nal noncoding RNA dataset. Additionally, CYFIP2, HOXB5,
PTPN3, MARCKSL, CDC20, and PTCH1 had superior diag-
nostic values for BCC prediction.

Overwhelming evidence has suggested that the patched
gene (PTCH) family played vital roles in BCC induction
and progression [19, 20]. A previous study highlighted that
PTCH could encode a receptor for the hedgehog signaling
pathway which was important for vertebrate development
and tumorigenesis [21]. Undén et al. found that the expres-
sion level of PTCH mRNA was overexpressed in BCC cells
compared with nontumor epidermal cells, which was similar
to our finding that PTCH1 was upregulated in BCC patients
[22]. Interestingly, numerous researchers pointed out that
approximately 90% of function mutations in PTCH1 were

Table 2: The functional analyses of differentially expressed genes in BCC.

Category Term Count P value Genes

GOTERM_BP (top 5)

Cellular component organization 183 3:92E − 10 RNH1, KDM1A, ZWILCH, DSCC1, HDAC11,
INPPL1, TESK2, BUB1B, UBE3A, FNBP1L,…

Cellular process 507 1:22E − 09 CYFIP2, RPL7, HOXA5, HOXB5, EGFR,
FOXN3, PTPN3, CDC20, FAS, PTCH1, IDH2,…

Cell cycle phase 49 8:98E − 09 ZWILCH, CDC20, EGFR, FOXN3, HSPA2,
NDC80, ZWINT, TPX2, CENPF, KIF18A, MC1R,…

M phase 42 1:86E − 08 CDCA3, ZWILCH, DSCC1, CDCA8, BUB1B,
TTK, MKI67, NCAPH, CDC20, PSMC3IP,…

Cell proliferation 48 2:47E − 08 ACHE, CSE1L, EGFR, PTCH1, WNT5A, EMP1,
SOX11, CBFA2T3, EREG, TPX2,…

GOTERM_CC (top 5)

Intracellular part 552 1:83E − 12 CYFIP2, PTPN3, EGFR, CDC20, FAS, FOXN3,
NUP107, RNH1, TESK2, NOC2L,…

Intracellular 560 5:23E − 11 CYFIP2, PTPN3, EGFR, CDC20, FAS, FOXN3,
SPI1, NUP107, RNH1, TESK2,…

Cytoplasm 403 4:48E − 09 CYFIP2, PTPN3, EGFR, CDC20, FAS, RNH1,
TESK2, FNBP1L, RPL7, AKT1,…

Intracellular organelle 473 4:91E − 09 PTPN3, EGFR, CDC20, FAS, FOXN3, SPI1,
NUP107, RNH1, TESK2, NOC2L,…

Spindle 26 5:26E − 09 CDCA8, BUB1B, TTK, CDC14A, CDC20,
CCNB1, RACGAP1, HAUS7, MYC, AKT1,…

GOTERM_MF

Protein binding 448 2:09E − 12 CYFIP2, EGFR, FOXN3, PTPN3, CDC20,FAS,
PTCH1, MARCKSL1, CNTFR, SPI1,…

Binding 603 7:51E − 09 CYFIP2, EGFR, FOXN3, PTPN3, CDC20,
FAS, PTCH1, MARCKSL1, HOXB5, CNTFR,…

Ribonuclease H activity 4 1:21E − 04 FEN1, RNASEH2A, RNH1, EXO1

GO: Gene Ontology; BP: biological process; MF: molecular function; CC: cellular component; BCC: basal cell carcinoma.
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strongly related to BCC initiation and progression [23].
Gianferante et al. evaluated 18 nevoid BCC syndrome
National Cancer Institute families by whole exome sequenc-
ing and found that 89% of families exhibited a pathogenic
PTCH1 mutation [24]. A recent investigation has reported
that PTCH1 had two mutational statuses (germinal and
somatic mutation). Moreover, there was a higher expression
level of PTCH1 in BCC with germinal and somatic PTCH1
mutations than that only with germinal PTCH1 mutation
[25]. Additionally, our functional analyses showed that
PTCH1 played significant roles in cell proliferation and
BCC pathway. However, few reports investigated the
detailed molecular mechanisms of the biological roles of
PTCH1 on BCC cell proliferation and growth. Herein,
we performed a ROC curve analysis of PTCH1, and the
result indicated that this gene was capable of discriminating
BCC patients and healthy controls with a relatively high
AUC value (AUC = 0:981). Taken together, our findings sug-
gested that PTCH1 might be involved in the pathogenesis of
BCC and has a great diagnostic value for BCC detection.

We found that four genes (upregulated CYFIP2 and
MARCKSL1 and downregulated HOXB5 and PTPN3) were
also key players in cell biological processes. Furthermore,
their expression patterns were validated by the differential
expression analysis based on an external dataset. Besides,
these four genes could clearly differentiate BCC patients from
normal controls. CYFIP2 was reported to be a direct p53 tar-
get gene, and its overexpression was closely linked with the
development of various cancers [26, 27]. Ling et al. analyzed

p53 mutations in sporadic and hereditary BCC tumors, and
genetic alterations of p53 were responsible for BCC progres-
sion [28]. Later on, Huang et al. stated that p53 activation by
imiquimod contributed to cell apoptosis of a skin
BCC/KMC1 cell line [29]. These findings provided indirect
evidence for the hypothesis that CYFIP2 participated in the
pathogenic mechanism of BCC. HOXB5 is a member of the
homeobox (HOX) gene B cluster and plays key roles in sev-
eral cancers [30, 31]. Lee et al. suggested that HOXB5
increased cell proliferation and invasiveness in estrogen
receptor- (ER-) positive breast cancer [32]. More interest-
ingly, this research group also found that HOXB5 could
upregulate EGFR expression and thereby promote HOXB5-
driven invasion in ER-positive breast cancer [33]. In this
work, we noted that EGFR was involved in cell cycle and pro-
liferation and served as a pivotal hub gene in PPI analysis.
Whether the HOXB5/EGFR axis participated in BCC devel-
opment remains to be illuminated in the following analysis.
PTPN3 (also known as PTPH1) was also reported to be
strongly correlated with diverse cancers including colorectal
cancer and gastric adenocarcinoma [34–36]. Furthermore,
Li et al. unraveled that the PTPN3 depletion could block the
degradation of EGFR, which accelerated cell proliferation
and tumorigenicity in lung cancer cells [37]. The potential
roles of the PTPN3/EGFR axis on BCC occurrence also need
to be clarified in the future.MARCKSL1 is a cytoskeletal reg-
ulator and implicated with the initiation of multiple cancers
[38]. Our results implied that MARCKSL1 might be a prom-
ising diagnostic maker for BCC prediction. However, the
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Figure 3: The protein-protein interaction (PPI) network analysis: (a) PPI network of differentially expressed genes: (b) submodule 1; (c)
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underlying pathogenic mechanisms of the four-gene signa-
ture (CYFIP2, MARCKSL1, HOXB5, and PTPN3) for BCC
progression have not been expatiated.

The FAS gene contains a highly conserved cytoplasmic
death domain and encodes a transmembrane protein of the
tumor necrosis factor receptor superfamily. Existing evidence
has shown that FAS could bind to a death ligand, FAS ligand
(FASL), to induce the cell apoptotic pathway [39]. The early
research indicated that FAS normally was underexpressed
and even undetectable in BCC while there was a high FASL
level, possibly inducing cell death and contributing to cancer-
ization [40]. A later study examined the expression level of
FAS/FASL in BCCs using the immunohistochemical method.
The results implied that FASL was located on the cell mem-
brane of keratinocytes at the basal cell layers and FAS/FASL
was markedly decreased in BCC [41]. Wang et al. revealed
that FAS/FASL mRNA expression and protein levels were
reduced in the BCC compared to the normal skin samples
and FASL immunostaining levels were strongly related to
the ability of tumor invasiveness and metastasis [42]. Simi-
larly, we found that there was a lower FAS expression in
BCC tissues than healthy controls, which was also confirmed
by a bioinformatics analysis with another BCC dataset.
Therefore, we speculated that FASmight be a key gene driver
in BCC development. The other two genes’ (CDC20 and
FOXN3) levels were increased in BCC tissues compared to
normal tissues, and functional analysis showed that they

were mainly involved in the cell cycle process. We also
observed that CDC20 exhibited a good performance for
BCC diagnosis based on a ROC analysis. Therefore, we
inferred that the aberrant expression of CDC20 and FOXN3
was probably associated with BCC development. However,
the influence of these two genes on BCC pathogenesis has
not been fully investigated.

There are still limitations in our analysis. Firstly, only one
external noncoding RNA dataset GSE74858 was obtained
and used to evaluate expression levels of identified DEGs
due to lack of gene expression profile of BCC. Notably, the
expression patterns of six genes (CYFIP2, HOXB5, FOXN3,
PTPN3, MARCKSL1, and FAS) were consistent with our ini-
tial differential expression analysis in the training dataset.
However, the expression levels of other key genes still need
to be further evaluated by using a larger sample size. Sec-
ondly, the corresponding experimental assays such as cell
and animal experiments were not performed to validate our
conclusion primarily due to lack of enough patients’ samples
and limited research funding. Thirdly, the underlying molec-
ular mechanism between several signaling pathways involv-
ing key genes and BCC development remains to be
deciphered. Fourthly, the relevant clinical characteristics are
also required to be collected to assess BCC prognosis.

In summary, nine gene signatures (CYFIP2, HOXB5,
EGFR, FOXN3, PTPN3, CDC20, MARCKSL1, FAS, and
PTCH1) may play central roles in the initiation and
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Figure 4: Validation of the expression levels of six differentially expressed genes in T basal cell carcinoma based on GSE74858 dataset. The x
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progression of BCC, which provides deeper insights into BCC
management. However, experimental verification and inte-
grated bioinformatics analyses still need to be carried out in
the future.
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