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0e release of wastewater from textile dyeing industrial sectors is a huge concern with regard to pollution as the treatment of these
waters is truly a challenging process. Hence, this study investigates the triazo bond Direct Blue 71 (DB71) dye decolorization and
degradation dye by a mixed bacterial culture in the deficiency source of carbon and nitrogen. 0e metagenomics analysis found
that the microbial community consists of a major bacterial group of Acinetobacter (30%), Comamonas (11%), Aeromonadaceae
(10%), Pseudomonas (10%), Flavobacterium (8%), Porphyromonadaceae (6%), and Enterobacteriaceae (4%). 0e richest phylum
includes Proteobacteria (78.61%), followed by Bacteroidetes (14.48%) and Firmicutes (3.08%). 0e decolorization process op-
timization was effectively done by using response surface methodology (RSM) and artificial neural network (ANN). 0e ex-
perimental variables of dye concentration, yeast extract, and pH show a significant effect on DB71 dye decolorization percentage.
Over a comparative scale, the ANN model has higher prediction and accuracy in the fitness compared to the RSM model proven
by approximated R2 and AAD values. 0e results acquired signify an efficient decolorization of DB71 dye by a mixed
bacterial culture.

1. Introduction

Utilization of dye by major textile industries in their pro-
duction delivers a huge volume of dye effluent, and this makes
up about two-thirds of the total amount of dye production.
0e challenges in taking care of the textile effluent properly are
greater structure variability, excessive concentration of color,
and 10% being lost in coloration procedure as well as dyes will
be instantly released into the aqueous effluent about 2% [1].
0e causes of turbidity, an awful image, and bad smell of water
are due to the colloidal matter found besides colors and oily
impurities in the dye as the photosynthesis process is disrupted
due to the penetration of sunlight being blocked [2]. 0e most

severe effect of textile waste towards marine creatures causes a
lack of dissolved oxygen in the water. Eventually, the self-
purification process of water is stopped [3].

Additionally, decreased soil efficiency can be seen once
these effluents pass in the fields and clog the soil pores.
Solidified soil causes the penetration of roots to be held back.
0e sewerage tubes become rusted and encrusted due to the
wastewater which runs inside the drains causing the changes
in the grade of drinking water in hand pumps rendering it
not fit for human uptake [3].

Incorporation of significant amounts of water and
chemicals in the staining operations of the textile industry
leads to environmental pollution and the formation of a
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complex, toxic, and recalcitrant residual [4]. 0e textile
effluent needs high chemical oxygen demand and coloration
with the occurrence of dyes, pigments, and additional
chemicals which make the effluent require particular han-
dling [5]. Innovative methods were explored to attenuate the
environmental harm that may induce the removal of textile
dyes within industrial effluents. Azo dye, made up of one or
more -N�N- double bond, amounts to 60–70% of dye
production [6, 7]. Physical and chemical methods including
flocculation, adsorption, and photochemical oxidation are
great options for the decolorization of printing and dyeing
wastewater (PDW).

Several physical and chemical methods have been ap-
plied to treat Direct Blue 71 dye, including Fenton’s oxi-
dation [8], ozonation [9], ultrasound [10], and adsorption
[11]. 0e release of secondary pollutants and large operating
costs have become the main drawbacks of this method. 0e
biological practice offers the aspects of cost-effective and
simple operations in contrast to physical and chemical
methods and is currently widespread in the dye treatment
method [12]. Microorganisms are being intensively studied
regardless of physical and chemical options available [13].
Several works with the applied of fungi and bacteria have
already been designed to develop bioprocesses meant for
treating textile effluents.

At the moment, the majority of isolated bacteria require
anaerobic growing conditions to degrade azo dyes [14].
Nonetheless, the functional group associated with the azo dye
makes up a complex composition and influences the capa-
bilities of the bacteria. 0erefore, choosing the best azo dye
decolorizing bacteria is critical. Often, the deposition of toxic,
mutagenic, and carcinogenic aromatic amines is coupled with
decolorization of the azo dyes which are tolerant to degra-
dation in anoxic conditions and disrupt the food chain as it
accumulates [15, 16]. 0us, a key for the complete removal of
azo dye from the environment is the azo dye full degradation
besides only the elimination of color [17].

Presently, both response surface methodology (RSM)
and artificial neural network (ANN) tools are used for the
optimization and modeling of environmental research.
Relationship determination among experimental variables
and responses use response surface methodology (RSM).
Besides that, this great technique is able to depict the main
and interaction effects. Particular experimental design
mixtures are used in RSM to build mathematical models
with linear, quadratic, and interaction terms by a provided
number of elements and response factors to get optimum
operation [18]. Azila et al. [19] and Amini et al. [20] have
reported studies in environmental issues in applying the
RSM technique.

One of the best tools for modeling nonlinear and
complex conditions is undoubtedly artificial neural net-
works (ANNs) out of various multivariate statistical tech-
niques [21]. It is a strong modeling tool because of its
flexibility to extend and learn the response of all nonlinear
and complex processes. ANN can be effectively used in the
modeling of many operations as applied by Prakash et al.
[22] and Yetilmezsoy and Demirel [23]. A major cut in the
number of experiments, as well as the information on

singular or combination effects related to the independent
variables, is possible by using multivariate statistical
methods [20]. 0is leads to the optimization and growth of
the operating system, noticeably lowering the expense of
trials. 0e response surface methodology (RSM) and arti-
ficial neural network (ANN) are the most frequently utilized
methods in research on dye decolorization literature. 0ese
two are strong data modeling tools concerning independent
variables and responses of the system to gain and depict
complex nonlinear interactions.

Different kinds of optimization for the handling of
environmental pollution have implemented RSM and ANN
techniques due to its utmost precision [24, 25]. Prediction
models received from RSM and ANN have effectively op-
timized the lead removal from industrial sludge leachate
[26], and Singh [27] used the ANN practice for methyl red
decolorization in 24 hours by optimizing the design pa-
rameters of a bacterial isolate, ITBHU01.

Abd El–Rahim et al. [28] worked on optimization of
metal ion concentration, pH, amount of adsorbent, and
temperature using RSM and ANN, which is designed to
optimize the chromium (VI) abatement by working with
cyanobacteria. Similarly, Astray [29] worked on optimizing
the capabilities of cyanobacteria in optimum condition
predicted by RSM and ANN to degrade and decolorize
distillery spent wash. Furthermore, RSM and ANN ap-
proaches were also tremendously employed in diverse fields,
for example, a simulation model of ventilated room with
thermal effects [30], predicting the suitability of sugar beet
pulp to make oligosaccharides [31], optimizing the copper
removal from synthetic wastewater by using electro-
coagulation system [32], modeling the quality parameters of
spray-dried pomegranate juice [33], predicting cold water
temperature in a forced draft cooling tower [34], and cre-
ating a stable oil-in-water for emulsification process as well
as decreasing the number of trials, time, and cost [35].
Comparison between RSM and ANN techniques was also
done by Ravikumar [36] and Sen [37] for their prediction
and optimization abilities.

In former studies, the mixed bacterial cultures were
grown in rich media supplemented with a carbon source in
anaerobic conditions to get the highest decolorization ac-
tivity [38]. Yet, these complex laboratory substrates would
not be suited for in situ application. It was discovered that
ANN has a higher prediction ability with minimum error
[36] and higher accuracy compared to the RSM model [37].
Even so, a method for mixed bacterial decolorization of
Direct Blue 71 dye by using both RSM and ANN techniques
has not been discovered yet. Hence, the main motivation
behind this study is to optimize the bioremediation of DB71
dye decolorization by using both RSM and ANN techniques
despite the absence of carbon and nitrogen source for the
decolorization process.

2. Materials and Methods

2.1. Dyes, Chemicals, and Culture Media. Direct Blue 71 dye
(C.I. 34140; dye content, 50%) used in this study was pur-
chased from Sigma-Aldrich Chemical Co., USA. 10 g of dye
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powder was added to 1 L of deionized water for the stock
solution of dye. Only analytical grade chemicals or reagents
were used in this study. 0e isolation of dye-degrading
mixed bacterial culture used minimal salt medium (MSM)
(g/L: (NH4)2SO4, 0.4; KH2PO4, 0.2; K2HPO4, 0.4; NaCl, 0.1;
Na2M0O4, 0.01; MgSO4.7H2O, 0.1; MnSO4.H2O, 0.01;
Fe2(SO4)3.H2O, 0.01; and yeast extract, 1), whereas glucose
(1% w/v) was used for the test of carbon source.

2.2. Soil Sampling. Samples were collected randomly from
polluted and nonpolluted water, soils, and sludge sites in
Malaysia. Water and soil samplings were collected in March
2018 from a depth of 8–10 cm from the water, soil, and sludge
surfaces. 0e samples were stored in 50mL centrifuge tubes
and capped on during the transfer from the site to the lab-
oratory. All samples were then stored at − 20°C.0e location of
the samples was recorded based on the map coordinates
provided by a global positioning system (GPS) locator.

2.3. Isolation of Direct Blue 71 Dye-DegradingMixed Culture.
0e soil or sludge (1 g weight) or water (1mL) samples were
mixed in 50mL minimal salt medium (MSM) under three
different mediums in which MSM was added with glucose as a
carbon source or without glucose and ammonium sulfate or
MSM only with all the mediums supplemented with 50mg/L
Direct Blue 71 dye. All three mediums were exposed at room
temperature in two different conditions which were incubated
on a rotary shaker (150 rpm) and also a static condition for four
days. All the different conditions were necessary to find out the
best conditions that fit with the mixed bacterial culture. 0en,
1% of the culture was transferred into 20ml of the fresh
medium of the same conditions as before in a universal bottle
until decolorization was observed. After 7 times subculturing,
1ml cultures were taken out aseptically and underwent serial
dilutions. 0en, 50μl of the diluted aliquots was spread on the
Direct Blue 71 dye agar in Petri dishes based on the condition
that the mixed cultures preferred referring to the addition of
glucose or MSM only or without glucose and ammonium
sulfate.0e plates were incubated for one to three days until the
bacterial colonies were visible.

2.4. Screening of Direct Blue 71 Dye Mixed Culture. MSM of
50mg/L Direct Blue 71 dye was used to grow the isolate with
or without glucose as a carbon source or without both
glucose and ammonium sulfate and then exposed to two
conditions which were static and shaken conditions for at
least 4 days to screen for the highest degradation of Direct
Blue 71 dye. After 4 days, 1ml aliquots of culture fluid were
pipetted out and centrifuged. Suspended particles and cells
were eliminated from withdrawn samples by centrifuge
(12,000 rpm) for 10 minutes to avoid absorbance readings
error. 0e decrement in absorbance was measured from the
supernatants obtained after centrifugation with uninocu-
lated dye serving as a control relative to the dye relevant
wavelength. UV-visible double-beam spectrophotometer at
587 nm wavelength was used to monitor the absorbance of
the original and treated samples, and the blank was the

uninoculated medium without the dye. All tests were per-
formed in triplicate and calculation involved the average
values obtained from the entire test. 0e decolorization
percentage of DB71 was done as follows:

decolorization(%) �
Ab0 − Ab1( 

Ab0
  × 100, (1)

where Ab0 is the dye solution’s initial absorbance and Ab1 is
the dye solution’s final absorbance after decolorization.
Next, testing with different dye concentrations ranging from
50 ppm to 150 ppm was done for secondary screening.
Isolates with the highest percentage of decolorization,
constant degrading of the dye for all subculturing, can
degrade high concentration of dye, and possessed special
characteristics were chosen from the isolates that required
neither glucose nor ammonium sulfate as their carbon and
nitrogen source to live and degrade the Direct Blue 71 dye.

2.5. Metagenomics Analysis. Metagenomics of microorgan-
isms applies towards discovering collections of genomes out of
a mixed population of microbes in non-culture-driven meth-
odology [39]. Studies regarding variations in bacterial and viral
communities coming from diverse ecosystems were a success
through genomic studies in which total DNA extraction for
samples of selected mixed bacterial culture was prepared to
amplify the microbial sequences [40]. 0e extracted DNA can
then be analyzed for metagenomics to determine the microbial
communities in the sample that is accountable to degrade
Direct Blue 71 dye. Metagenomics analysis of the mixed
bacterial culture was carried out by Apical Scientific Sdn. Bhd.

2.6. Optimization of Decolorization Using Response Surface
Methodology (RSM). Apractical design by RSMwas proposed
for modeling and analysing tasks holding different parameters
associated with mathematical and statistical methods as well as
to optimize amethod with a practical utilization of the resource
elements [41]. It is also designed for projecting the functional
relationship involving experimental parameters and the re-
sponse [42]. 0e optimum levels of three significant param-
eters, including dye concentration, yeast extract, and pH, were
identified through the RSM approach besides determining the
relationship concerning the input parameters and the response
functions. Design-Expert 6.0.8 was used to evaluate the ac-
quired outcomes. Model evaluation was done by comparing
the RSM predicted values with the experimental values [43].
Evaluation of the experimental results was done through a
number of regressions, and the F test was calculated to obtain
the significance of the regression value [44]. Values of R2
(coefficient of determination) and adjusted R2 must be near to
1.0 for a good relationship for the model which concerns both
the predicted and experimental values [45]. 0e regression
coefficients obtained from the regression model are helpful for
response surface plotting [46].

2.7. Optimization of the Significant Parameter Using
Box–Behnken Design. 0e Box–Behnken design was used to
optimize the decolorization of Direct Blue 71 dye in RSM. 0e
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process includes the combination of treatment at themidpoints
and center which are unbiased, rotatable, or almost rotatable
quadratic design [47]. Contrary to the other RSM models, this
design requires less experimental tests and a shorter period
[48]. 0erefore, it gives an extra economical approach. Next,
statistical analysis of the acquired outcomes was done by using
Design-Expert 6.0.10, Stat-Ease, Inc., Minneapolis, USA [49].
Dye concentration (A), yeast extract (B), and pH (C) were the
independent variables, and the design generated 17 total ex-
periments in which the percentage of decolorization is the
response. An ideal model ought to have insignificant lack of fit
and a significant model.0e significant terms were determined
for every response. With respect to three parameters (n� 3), as
shown in Table 1, and limits which were an upper limit and a
lower limit, the total number of the test was 17. 0e response
was determined as the percentage of dye decolorization. In
order tominimize the variability which was uncontrollable, as a
result from the observed responses, the experiment was done in
a randomized method [50]. 0e model was evaluated from
statistical significance obtained from analysis of variance
(ANOVA) and response surface plot, and regression equation
was analyzed to acquire the optimal values.

2.8. Optimization of Direct Blue 71 Decolorization Using
ArtificialNeuralNetwork (ANN). Several learning algorithms
were used to train the networks by using NeuralPower version
2.5. Only one hidden layer was applied to identify the optimal
network topology, and several networks were established by
constant identification of the transfer function and the
number of neurons in this layer. 0e network was trained

until the network root of mean square error (RMSE) was
lower than zero; the average determination coefficient (DC)
and average correlation coefficient (R) were 1. Training started
by random values, and over the training process, it was ad-
justed to reduce network error [51]. Table 2 shows two sets
which were unbold training dataset and bold testing dataset,
and the validating set was the experimental and predicted
values of ANN at optimum conditions.

2.9. ResidualAnalysis (ErrorAnalysis). Comparison between
predicted response from the RSM and ANN models was
done to assess the dependability of the estimation potential
of the applied methods [52]. A model’s accuracy cannot be
dependent only on R2 as calculated using equation (2).
0erefore, the implementation of AAD analysis was re-
quired as an immediate practice for explaining the devia-
tions by using equation (3). R2 and AAD were calculated,
respectively, by using the following equations:

R
2

� 1 −


n
i�1 model predictioni − experimental valuei( 

2


n
i�1 model predictioni − experimental valuei( 

2,

(2)

AAD �


p

i�1 yiexp − yical /yiexp 

p

⎧⎨

⎩

⎫⎬

⎭ × 100, (3)

where yiexp were the experimental responses and yical was the
measured responses, the number of experimental runs was
denoted by p, and the number of the experimental data was
denoted by n. Accuracy of the chosen model was confirmed

Table 1: Lower limit and upper limit of Box–Behnken Design.

Parameters Unit Lower limit Upper limit
Dye concentration ppm 50 150
Yeast extract g/L 0.5 3
pH 6 7.5

Table 2: Box–Behnken matrix for experimental design and predicted response using RSM and ANN.

Run A: dye conc (ppm) B: yeast extract (g/L) C: pH (g/L) Decolorization (%) Predicted RSM (%) Predicted ANN (%)
1 100 1.75 6.75 90.97 89.84 89.356
2 100 1.75 6.75 87.15 89.84 89.382
3 50 3 6.75 94.9 94.1 92.076
4 150 3 6.75 89.86 92.09 89.862
5 150 1.75 6 77.03 74.87 77.03
6 150 0.5 6.75 54.43 55.23 58.118
7 100 3 6 88.69 88.62 88.689
8 100 0.5 7.5 66.18 66.25 66.18
9 150 1.75 7.5 77.01 76.14 78.499
10 100 1.75 6.75 88.57 89.84 89.347
11 100 3 7.5 89.8 88.44 89.799
12 50 0.5 6.75 79.06 76.83 79.06
13 100 0.5 6 55.31 56.67 61.547
14 50 1.75 6 82.38 83.25 82.381
15 100 1.75 6.75 90.72 89.84 89.328
16 100 1.75 6.75 91.77 89.84 90.356
17 50 1.75 7.5 89.22 91.38 89.222
ANN training dataset—unbold numbers. ANN testing dataset—bold numbers.
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through R2 and AAD value analysis in which R2 is close to 1
and a small AAD value is obtained [53, 54]. 0is implies that
the actual behavior of the system was successfully described
by the model equation with the best values of R2 and AAD
values [53].

2.10. Determination of Optimum Point. Desirability function
method was used for identifying the predicted optimum state
by RSM and ANN. Each parameter requires desires and
priorities to be involved in this method to develop a process
for identifying desirability of the responses and the rela-
tionship between the percentage of dye decolorization on each
parameter [48]. Variables of dye concentration, yeast extract,
and pH were fixed at maximums at the trial level [55, 56].

3. Results and Discussion

3.1. Isolation, Screening, and Identification of Mix Culture
Using Metagenomics Analysis. 0is study was conducted to
isolate and screen a potent Direct Blue 71 dye decolorizing
mix culture from Malaysian soil samples. All thirty samples
that were collected were tested with three different media
supplemented with DB71 dye in which the carbon source
came from the glucose while the nitrogen source came from
the ammonium sulfate before being put under static and
shaking conditions. Mix culture from the soil from Tasik Sri
Serdang (N� 3°00′15.8″, E� 101°42′48.9″) has been selected
as the most promising culture that is able to degrade Direct
Blue 71 dye because of its constant decolorization even after
seven times subculturing and can degrade higher concen-
tration of dye compared to the other samples. Furthermore,
this chosen mix culture shows an excellent ability to survive
without both carbon and nitrogen sources in static condi-
tions, leaving yeast extract in MSM as the sole organic ni-
trogen source for the mixed culture. Numerous azo dye
decolorization research studies were achieved in the exis-
tence of supplemental carbon and nitrogen sources. Nev-
ertheless, the added carbon source was chosen by the cell
over the dye compound which made the decolorization by
supplementing carbon source turn out to be much less ef-
fective [57]. Ultimately, this study successfully isolated mix
bacterial culture that effectively uses the dye as a carbon
source and decolorizes the dye efficiently without external
carbon and nitrogen sources.

0e receiver of reduced electron carriers between oxygen
and azo compounds in aerobic conditions caused compe-
tition between those two compounds, and it might be the
factor for successful decolorization in static conditions. 0is
reaction was the same as Handayani et al. [58], who pub-
lished the decolorization by Enterococcus faecalis for Re-
active Red 2 and Acid Red 27 in a batch system. Disruption
in the complex form of enzyme molecules from mechanical
shake was so much that deactivation arises. Mechanical
frailty’s trait of enzymes in shaken condition causes the
increment in oxygen transfer rates and substrate mass
transfer [59]. Hence, dye decolorization in the anaerobic
condition is a serendipitous process as the electron acceptor
would be the dye [60].

0e mixed culture was adapted to high dye concentra-
tions as they were collected from contaminated sites near the
lake at Taman Tasik Sri Serdang. Similarly, Chen et al. [38]
reported the isolation and screening of microorganisms
from sludge samples that are able to decolorize several azo
dyes. 0e samples were obtained from a wastewater treat-
ment plant and lake mud. Microbial decolorization of toxic
dyes relies upon the adaptability as well as the reaction of the
chosenmicroorganisms towards dyes [28]. Oxygen curbs the
azoreductase enzyme responsible for microbial decoloriza-
tion of dye because of the match between electron acceptor
for the oxidation of NADH which are the oxygen and azo
groups [61]. Just a small quantity of oxygen is transferred,
most likely on the broth surface in static incubation leading
to decolorization in anaerobic conditions being carried out
by the cells deposited towards the bottom of the flasks [62].

Metagenomics analysis of themixed bacterial culture shows
Acinetobacter was the dominant bacterial group, followed by
Comamonas, Aeromonadaceae, Pseudomonas, Flavobacterium,
Porphyromonadaceae, and Enterobacteriaceae, as represented
in Figure 1, respectively, 30%, 11%, 10%, 10%, 8%, 6%, and 4%.
0e most abundant phylum was Proteobacteria (78.61%), fol-
lowed by Bacteroidetes (14.48%) and Firmicutes (3.08%). A
study by Ghodake et al. [63] reveals that Acinetobacter was
identified to decolorize 20 diverse textile dyes of various classes.
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4%

4%
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Figure 1: Microbial community found in the mixed bacterial
culture.
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Some Acinetobacter strains as a biocatalyst has been applied to
remediate several environmental pollutants along with bio-
technological uses reported by Abdel-El-Haleem [64]. 0e ef-
fluent-adapted strain of Acinetobacter has the potentiality for
color removal, and strains of Acinetobacter and Pseudomonas
exhibit chemical oxygen which demands removal actions
[64, 65]. Besides that, the Comamonas strain retains amazing
reusability and endurance traits in continuous decolorization
processes [66]. Additionally, the genus of Pseudomonas in-
cluding Pseudomonas putida and Pseudomonas alcaligenes has a
lot of metabolic diversity, many of which were capable of
metabolizing different chemical contaminants [67]. Also, it is
reported that Proteobacteria was a dominant part of the mixed
bacterial culture in anaerobic-baffled reactors useful to deal with
industrial dye wastewater [68].

3.2. Optimization of Direct Blue 71 Dye Decolorization Using
RSM. In this study, response surface methodology (RSM) was
used to optimize the decolorization of DB71 dye. 0e response
surface equation fromDesign-Expert® can be optimized for the
best result considering a range of process variables. 0e effect
between the two parameters was shown on response plots, and
the relationships were shown on contour by maintaining other
parameters specified at their best optimal conditions [69]. From
these contour plots, the relationship of one variable to the next
could be seen. Lastly, the humpon the contour plots determined
the optimum condition for every variable [70].

Optimization of anaerobic mixed bacterial culture
degrading DB71 dye with the absence of carbon and nitrogen
source using RSM is a novel approach. Bacteria are seldom
able to decolorize azo compounds inMSM lacking in nitrogen
source as stated by You and Teng [71]. A lacto bacterium
degradation performance is very slow when MSM-lacked
nitrogen source is used compared to the rapid degradation of
Reactive Black 5 obtained only in one day within a medium
with external nitrogen addition [71]. However, in comparison
with a previous study, the chosen mix culture for this study is
extra applicable for in situ application as it does not need
ammonium sulfate that acts as the nitrogen source for an
efficient DB71 dye decolorization.

0e combined effect of significant parameters that in-
cludes dye concentration (A), yeast extract (B), and pH (C) for
decolorization of DB71 dye was studied, and these parameters
were optimized to acquire the highest decolorization per-
centage using a Box–Behnken design with 17 experimental
runs. Table 2 shows the experimental and predicted responses
by using RSM and, later, the responses were analyzed using
Design-Expert 6.0, Stat-Ease Inc., Minneapolis, USA. Table 2
shows that dye decolorization by mixed bacterial culture
ranged from 54.43% to 94.9% at run 6 and run 3, respectively.
0emaximumdye decolorization (94.9%) was obtained at dye
concentration (A, 50 ppm), yeast extract (B, 3 g/L), and pH (C,
6.75) in run 3. 0e minimum dye decolorization (54.43%)
obtained at dye concentration (A, 150 ppm), yeast extract (B,
0.5 g/L), and pH (C, 6.75) was observed in run 6.

3.3. Final Equation in terms of Coded Factors. Analysis of
variance (ANOVA) for the predicted RSM model is shown
in Table 3 for DB71 dye decolorization. 0e equation for the
regression model was as follows:

decolorization � +89.84− 5.90∗A + 13.53∗B + 2.35∗C

+ 4.89∗AB − 1.72∗AC − 2.44∗BC

− 1.930∗A2
− 8.340∗B2

− 6.49∗C2
.

(4)

Table 3 shows a significant model for optimizing DB71
dye decolorization with low probability value (F < 0.0001)
and F value of 47.15. Only 0.01% chance of error due to
noise could occur to this F value. Model terms were sig-
nificant when p> F values were less than 0.05, and model
terms were not significant when values were higher than
0.10 [72]. 0erefore, in this study, A, B, C, AB, BC, B2, and
C2 were significant model terms. Adequate precision
shows an adequate signal for the model, which was 21.101.
PRESS shows the goodness of the model to predict the
responses in new experimentation which was 435.07
for this model. 0e model fits the data as the value of 2.35
for lack-of-fit F test was statistically not significant.

Table 3: Analysis of variance (ANOVA) for the fitted quadratic polynomial model for optimization of Direct Blue 71 dye decolorization.

Source Sum of squares df Mean square F value p value prob> F
Model 2448.23 9 272.03 47.15 <0.0001 Significant
A: dye conc 278.83 1 278.83 48.33 0.0002
B: yeast extract 1465.3 1 1465.3 253.96 <0.0001
C: pH 44.18 1 44.18 7.66 0.0278
AB 95.94 1 95.94 16.63 0.0047
AC 11.76 1 11.76 2.04 0.1964
BC 23.81 1 23.81 4.13 0.0817
A2 15.67 1 15.67 2.72 0.1433
B2 293.16 1 293.16 50.81 0.0002
C2 177.72 1 177.72 30.8 0.0009
Residual 40.39 7 5.77
Lack of fit 25.76 3 8.59 2.35 0.2138 Not significant
Pure error 14.63 4 3.66
Cor total 2488.62 16

R 2 0.9838
Adjusted R2 0.9629
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Determination coefficient (R2) was used to validate
themodel’s goodness of fit which was 0.983 for this study, and
reasonable agreement with the predicted R2 (0.8252) indi-
cated an adequate prediction for DB71 dye decolorization. A

good prediction of amodel was implied by the closeness of the
R2 value to 1.0 [73]. Unreliable outcomes in the prediction
analysis could be prevented by having a fit model in an
optimization study.
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Figure 2: Diagnostic plots showing (a) the studentized residuals plotted against the normal probability, (b) the studentized residuals versus
predicted, (c) the studentized residuals versus run, and (d) the predicted response values plotted against the actual responses.
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A straight line of the studentized residuals plotted versus
the normal probability from Figure 2(a) shows that the
experimental data displayed a normal distribution. No data
error was found in the estimation of the model as all values
lie within the interval ±3.00, as shown in Figures 2(b) and
2(c). Correlation coefficients (R2 and R2 adj) of 0.98 and 0.96,
correspondingly, for decolorization of DB71 dye fit one
another as is displayed through a plot of actual versus
predicted response values as shown in Figure 2(d). As a
result, the established model was appropriate for predicting
the performance of dye decolorization within investigated
conditions.

3.4. Optimization Using Artificial Neural Network. A crucial
selection of neural network topology was required for an
effective treatment. 0erefore, prediction of DB71 dye de-
colorization requires the analysis of different neural network
topologies. 0e best four ANN models were outlined based
on Table 4. One model from the list of models was chosen to
lower the cost criterion of training a neural network model.
0e best option for the learning algorithm was batch
backpropagation (BBP) for the prediction of DB71 dye
decolorization (Table 4). Furthermore, the neural network’s
learning rate was influenced by the type of transfer function
used and the top model chosen acquired Tanh function at
transfer function hidden and sigmoid for the transfer
function output.

0e finest topology for the prediction of DB71 dye de-
colorization consisted of 3-26-1 topology (Figure 3), and
Table 4 shows that the best ANN model work was network

number 1 containing 26 nodes of optimization and Tanh
transfer function, and required a multilayer normal feed-
forward (MNFF) batch backpropagation (BBP) network.
Both training and testing datasets possessed R2 of 0.999,
which presented reduced error as opposed to other
networks.

3.5.DeterminationofOptimumPointbyUsingRSMandANN.
0e optimum level of various parameters obtained from
RSM optimization was DB71 dye concentration of 150 ppm,
yeast extract of 3 g/L, and pH of 6.645 with an overall de-
colorization of 92.2% as measured at 587 nm (Table 5). To
validate this, the experiments were performed based on the
predicted optimum condition to compare the experimental
outcomes with the predicted outcomes. 0e average tripli-
cate’s experimental value of decolorization was 86.13%
compared to the predicted value of 92.2% decolorization
with 6.58% deviation. A previous study on DB71 dye de-
colorization by solar degradation shows that greater dye
concentration inhibits the dye decolorization and only about
70% decolorization was obtained at 100 ppm [74] and only
71% of DB71 color removal by P. fluorescens D41 was ob-
tained in the presence of glucose [75]. In comparison, the
mix bacterial culture was able to decolorize DB71 dye better
than the conventional method and single bacterial isolate
due to the catabolic agreement between the microorganisms.

0e optimum level of various parameters obtained from
ANN optimization was DB71 dye concentration of 150 ppm,
yeast extract of 3 g/L, and pH of 6.645 with an overall de-
colorization of 89.9%. For validation of optimum points
using ANN, the average triplicate’s experimental value of
decolorization was 86.5% as compared to the predicted value
of 89.9% of decolorization with a deviation smaller than
RSM at around 3.78%. 0e ANN model could accurately fit
with the experimental data as the experimental value and
ANN predicted value show a close relationship. Incredibly
good nonlinear fitting effects were obtained because the
model predicted values were very close to the actual values
(Figure 4). R2 was close to 1.0 at 0.9859 and this shows that
ANN gave a good prediction.

3.6. =ree-Dimensional Analysis. By keeping the value of
another variable constant, the impact of two variables at
once was evaluated via RSM 3D surface plot. 0e contours
depicted the optimal value of the variable that reveals the
utmost DB71 dye decolorization (response). 0e effect of
yeast extract and pH on the percent of decolorization
(Figure 5(a)) was highlighted through the 3D response

Table 4: 0e effect of different neural network architecture and topologies on R2 and AAD in the estimation of DB71 dye decolorization
obtained in the training and testing of neural networks.

Network Model Learning
algorithm

Connection
type

Transfer function
output

Transfer function
hidden

Training set
R2 DC Testing set

R2 DC

1 4.26.1 BBP MNFF Sigmoid Tanh 0.999 0.980 0.999 0.950
2 4.26.1 BBP MNFF Tanh Tanh 0.990 0.980 0.980 0.870
3 4.26.1 BBP MNFF Tanh Sigmoid 0.991 0.982 0.900 0.790
4 4.26.1 BBP MNFF Sigmoid Linear 0.98 0.97 0.99 0.900

Input Output

Bias

Figure 3: Neural network topology. 0e topology of multilayer
normal feedforward neural network for the estimation of DB71 dye
decolorization.
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Table 5: Predicted and experimental value for the responses at optimum condition using response surface methodology (RSM) and an
artificial neural network (ANN).

Model A: dye conc (ppm) B: yeast extract (g/L) C: pH RSM/ANN predicted (decolorization) Experimental validation Deviation
RSM 150 3.0 6.645 92.2 86.13 6.58
ANN 150 2.90 6.7 89.90 86.50 3.78

R2 = 0.9859
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Figure 4: ANN predicted versus actual experimental data values for DB71 dye decolorization.
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surface. 0e result displayed that as the yeast extract in-
creased, the decolorization of dye also increased. 0e pH
showed that decolorization increased as pH increased until
the optimum condition was obtained. Both surface plots
demonstrated the optimum concentration of yeast extract
and pH were obtained at 3 g/L and pH 6.645, respectively.
Yeast extract was identified as an effective enhancer for
promoting higher decolorization performance. 0e regen-
eration of NADH during the reduction of azo dyes using
microorganisms releases the electron donors and yeast,
which is regarded as the organic nitrogen sources being a

vital media supplement in the process [76]. As shown in
Table 3, factor B (yeast extract) was a significant parameter
since its p value was about 0.0001, which was much lower
than 0.05.

0e correlated effect of dye concentration and pH to dye
decolorization signified that as the dye concentration in-
creased, decolorization percent was likewise increased, and
as pH increased, the decolorization increased as well before
it reached the optimum point (Figure 5(b)). Both surface
plots showed that the optimum concentrations of pH oc-
curred at 6.645 with the dye concentration of 150 ppm. Any
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Figure 5: 0ree-dimensional plots showing the effect of (a) pH and yeast extract, (b)yeast extract and dye concentration, and (c)pH and dye
concentration and their mutual effect on the decolorization of Direct Blue 71 dye. Other variables are constant: pH (6.645), yeast extract (3 g/L),
and dye concentration (150 ppm).
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adjustments in medium pH greatly affected some biological
functions, including enzymatic processes, element transport
over the membrane, and the signaling pathways [77].
Neutral initial pH was favored by the majority of bacteria for
the greatest growth, and KMK48 bacterium can degrade
sulfonated azo dyes after only 36 hours in neutral pH [78].
Maximum decolorization process at higher pH has also been
reported by halophilic bacteria out of genusHalomonas [79],
and in contrast, Georgiou et al. [80] reported a slightly acidic
pH of 6.6 for dye decolorization using acetate-consuming
bacteria. Accordingly, bacterial cell metabolism and nutri-
ents intakes were greatly affected by the surrounding me-
dium pH.

0e effect of dye concentration and yeast extract towards
DB71 dye decolorization was displayed on a three-dimensional
plot, in which as the dye concentration and yeast extract in-
creased, the decolorization was also increased (Figure 5(c)).
Both surface plots indicated that the optimum concentrations
of dye concentration and yeast extract were gained at 150ppm
and 3g/L, respectively. 0e elliptical plot obtained showed that
there is a relationship concerning these two parameters. 0e
increased initial dye concentration caused a steady rise in
decolorization capacity. Dubin and Wright (1975) reported a
lack of any effect on decolorization rate due to different dye
concentrations. 0is observation was agreeable with a non-
enzymatic decolorization process that was regulated by pro-
cesses which were independent of the dye concentration [81].

0e way that the factors of dye concentration, yeast
extract, and pH corresponded with the DB71 dye decolor-
ization was presented on 3D response surface plots by ANN
(Figures 6(a)–6(c)).0e effect of dye concentration and yeast
extract on the decolorization of dye is displayed in
Figure 6(a). Gradual increase of decolorization % was ob-
served as the dye concentration increased and yeast extract
(g/L) increased until it reached the optimal point. 0e study
by Chang and Lin [82] also signified that an adequate supply
of yeast extract is critical for the Pseudomonas luteola strain
to achieve stability in the fed-batch decolorization processes.
0e 3D plot from Figure 6(b) shows the effect of pH and
concentration of dye on dye decolorization. Based on the
result, given that dye concentration and pH increased, the
decolorization percent increased as well until it achieved the
optimum point. Higher pH causes the decrement in de-
colorization and maximum decolorization was observed at
pH 6.7. A similar result has been reported before by Kapdan
[83] that used mixed bacterial consortium to decolorize
textile dye and higher dye concentration inhibits the mi-
crobial decolorization. Next, Figure 6(c) shows that the
decolorization % increased as yeast extract increased and pH
increased until it reached the optimum point for the highest
dye decolorization. Yu et al. [84] reported a significant effect
of pH on dye decolorization because of the highest activity of
Pseudomonas sp. 0e strain was observed at a pH range of
7–8, and 50% decrement in activity was observed when the
pH was varied.

3.7. Residual Analysis (Error Analysis). 0e dependability
and accuracy of RSM and ANN models were evaluated
through a relative study [85] by using R2 to analyze the
model’s precision ability [54]. A good model ought to have
R2 close to 1.0. Table 6 shows that ANN displayed a larger

Table 6: Absolute deviation, R2, adjusted R2, and AAD of RSM and
ANN models.

Residual analysis RSM ANN
R 2 0.980 0.990
Adjusted R2 0.978 0.989
Absolute average deviation (AAD) 0.045 0.040
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Figure 6: AAN response surface for (a) dye concentration versus yeast extract, (b) dye concentration versus pH, and (c) yeast extract versus
pH with dye decolorization as a response.
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value of R2 (0.990) compared to RSM (0.980), but the ef-
ficiency of the regression model does not only depend on R2

because additional evaluation factors such as AAD were
highly recommended to validate several models [86]. A small
value of AAD, which is close to zero, shows a less chance of
error in prediction and was displayed as a good model. ANN
model (0.04) possesses a smaller value of AAD compared to
the RSM model (0.045) as shown in Table 6. 0us, the
critically higher predictive and accuracy potential of the
ANN model compared to the RSM model was obtained
based on the relative R2 and AAD values.

4. Conclusions

0e mixed bacterial culture shows an amazing ability to
decolorize Direct Blue 71 dye’s triazo bond without the
presence of carbon and nitrogen sources in anaerobic
condition, rendering it more applicable for in situ appli-
cation. A successful optimization was shown by using RSM
and ANN techniques. 86.13% and 86.5% of validated de-
colorization were obtained in optimized condition predicted
by RSM and ANN subsequently at a concentration of
150 ppm. Furthermore, a relative study on RSM and ANN
could cover several cons of each technique as well as em-
phasize the error in the experimental data. Hence, a higher
value of R2 (0.99) and a lower value of AAD (0.04) show that
the ANNmodel holds a better prediction for optimization of
the dye decolorization compared to the RSM model.

Nomenclature

Abbreviations
DB71: Direct Blue 71
RSM: Response surface methodology
ANN: Artificial neural network
AAD: Absolute average deviation
PDW: Printing and dyeing wastewater
MSM: Minimal salt medium
DNA: Deoxyribonucleic acid
ANOVA: Analysis of variance
GPS: Global positioning system
MNFF: Multilayer normal feedforward
BBP: Batch backpropagation
RMSE: Root mean square error

Symbols
3D: 0ree-dimensional
NADH: Electron carrier
R 2: Coefficient of determination
rpm: Revolutions per minute
yi exp: Experimental responses
yi cal: Measured responses
p: Number of experimental runs
n: Number of the experimental data
% w/v: Percentage weight per volume
p value: Probability value
Tanh: Hyperbolic tangent.
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[24] L. M. Álvarez, A. L. Balbo, W. P. Mac Cormack, and
L. A. M. Ruberto, “Bioremediation of a petroleum hydro-
carbon-contaminated Antarctic soil: optimization of a bio-
stimulation strategy using response-surface methodology
(RSM),” Cold Regions Science and Technology, vol. 119,
pp. 61–67, 2015.

[25] D. R. Dudhagara, R. K. Rajpara, J. K. Bhatt, H. B. Gosai, and
B. P. Dave, “Bioengineering for polycyclic aromatic hydro-
carbon degradation by Mycobacterium litorale: statistical and
artificial neural network (ANN) approach,” Chemometrics and
Intelligent Laboratory Systems, vol. 159, pp. 155–163, 2016.

[26] F. Geyikçi, E. Kılıç, S. Çoruh, and S. Elevli, “Modelling of lead
adsorption from industrial sludge leachate on red mud by
using RSM and ANN,”Chemical Engineering Journal, vol. 183,
pp. 53–59, 2012.

[27] A. Tripathi et al., Bioremediation of Hazardous Azo Dye
Methyl Red by a Newly Isolated Bacillus Megaterium
ITBHU01: Process Improvement through ANN-GA Based
Synergistic Approach, NISCAIR-CSIR, New Delhi, India,
2016.

[28] W. M. Abd El–Rahim, H. Moawad, and M. Khalafallah,
“Microflora involved in textile dye waste removal,” Journal of
Basic Microbiology: An International Journal on Biochemistry,
Physiology, Genetics, Morphology, and Ecology of Microor-
ganisms, vol. 43, no. 3, pp. 167–174, 2003.

[29] G. Astray, B. Gullón, J. Labidi, and P. Gullón, “Comparison
between developed models using response surface method-
ology (RSM) and artificial neural networks (ANNs) with the
purpose to optimize oligosaccharide mixtures production
from sugar beet pulp,” Industrial Crops and Products, vol. 92,
pp. 290–299, 2016.

[30] M. S. Bhatti et al., “RSM and ANN modeling for electro-
coagulation of copper from simulated wastewater: multi
objective optimization using genetic algorithm approach,”
Desalination, vol. 274, no. 1-3, pp. 74–80, 2011.

[31] B.-Y. Chen, S.-Y. Chen, M.-Y. Lin, and J.-S. Chang, “Ex-
ploring bioaugmentation strategies for azo-dye decolorization
using a mixed consortium of Pseudomonas luteola and
Escherichia coli,” Process Biochemistry, vol. 41, no. 7,
pp. 1574–1581, 2006.

[32] P. Kundu, V. Paul, V. Kumar, and I. M. Mishra, “Formulation
development, modeling and optimization of emulsification
process using evolving RSM coupled hybrid ANN-GA
framework,” Chemical Engineering Research and Design,
vol. 104, pp. 773–790, 2015.

[33] F. Kuznik, J. Brau, and G. Rusaouen, “A RSM model for the
prediction of heat and mass transfer in a ventilated room,” in
Proceedings of the Building Simulation, pp. 919–926, Beijing,
China, September 2007.

[34] M. M. Nourouzi, T. G. Chuah, and T. S. Y. Choong, “Op-
timisation of reactive dye removal by sequential electro-
coagulation–flocculation method: comparing ANN and RSM
prediction,” Water Science and Technology, vol. 63, no. 5,
pp. 984–994, 2011.

[35] R. Ramakrishnan and R. Arumugam, “Optimization of op-
erating parameters and performance evaluation of forced
draft cooling tower using response surface methodology
(RSM) and artificial neural network (ANN),” Journal of
Mechanical Science and Technology, vol. 26, no. 5, pp. 1643–
1650, 2012.

[36] R. Ravikumar, “Response surface methodology and artificial
neural network for modeling and optimization of distillery
spent wash treatment using phormidium valderianum BDU
140441,” Polish Journal of Environmental Studies, vol. 22,
no. 4, 2013.

[37] S. Sen, S. Nandi, and S. Dutta, “Application of RSM and ANN
for optimization and modeling of biosorption of chromium
(VI) using cyanobacterial biomass,” Applied Water Science,
vol. 8, no. 5, p. 148, 2018.

[38] K.-C. Chen, J.-Y. Wu, D.-J. Liou, and S.-C. J. Hwang, “De-
colorization of the textile dyes by newly isolated bacterial
strains,” Journal of Biotechnology, vol. 101, no. 1, pp. 57–68,
2003.

[39] G. Neelakanta and H. Sultana, “0e use of metagenomic
approaches to analyze changes in microbial communities,”
Microbiology Insights, vol. 6, 2013.

[40] T. 0omas, J. Gilbert, and F. Meyer, “Metagenomics-a guide
from sampling to data analysis,” Microbial Informatics and
Experimentation, vol. 2, no. 1, p. 3, 2012.

14 BioMed Research International



[41] N. Aslan, “Application of response surface methodology and
central composite rotatable design for modeling and opti-
mization of a multi-gravity separator for chromite concen-
tration,” Powder Technology, vol. 185, no. 1, pp. 80–86, 2008.

[42] J.-S. Kwak, “Application of Taguchi and response surface
methodologies for geometric error in surface grinding pro-
cess,” International Journal of Machine Tools and Manufac-
ture, vol. 45, no. 3, pp. 327–334, 2005.

[43] S. Chamoli, “ANN and RSM approach for modeling and
optimization of designing parameters for a V down perforated
baffle roughened rectangular channel,” Alexandria Engi-
neering Journal, vol. 54, no. 3, pp. 429–446, 2015.

[44] Y. Zheng and A. Wang, “Removal of heavy metals using
polyvinyl alcohol semi-IPN poly (acrylic acid)/tourmaline
composite optimized with response surface methodology,”
Chemical Engineering Journal, vol. 162, no. 1, pp. 186–193,
2010.

[45] M. H. Muhamad, S. R. Sheikh Abdullah, A. B. Mohamad,
R. Abdul Rahman, and A. A. Hasan Kadhum, “Application of
response surface methodology (RSM) for optimisation of
COD, NH3-N and 2,4-DCP removal from recycled paper
wastewater in a pilot-scale granular activated carbon se-
quencing batch biofilm reactor (GAC-SBBR),” Journal of
Environmental Management, vol. 121, pp. 179–190, 2013.

[46] Y. Sun, J. Liu, and J. F. Kennedy, “Application of response
surface methodology for optimization of polysaccharides
production parameters from the roots of Codonopsis pilosula
by a central composite design,” Carbohydrate Polymers,
vol. 80, no. 3, pp. 949–953, 2010.

[47] Y. Zou, X. Chen, W. Yang, and S. Liu, “Response surface
methodology for optimization of the ultrasonic extraction of
polysaccharides from Codonopsis pilosulaNannf. var.modesta
L.T. Shen,”Carbohydrate Polymers, vol. 84, no. 1, pp. 503–508,
2011.

[48] M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, and
L. A. Escaleira, “Response surface methodology (RSM) as a
tool for optimization in analytical chemistry,” Talanta, vol. 76,
no. 5, pp. 965–977, 2008.

[49] H. A. Hasan, “Response surface methodology for optimiza-
tion of simultaneous COD, NH4+–N and Mn2+ removal
from drinking water by biological aerated filter,”Desalination,
vol. 275, no. 1–3, pp. 50–61, 2011.

[50] D. Montgomery, Design and Analysis of Experiments, John
Wiley & Sons, New York, NY, USA, 5th edition, 2001.

[51] T. P. Shah and P. J. Shah, “Connectionist Expert system for
medical diagnosis using ANN–A case study of skin disease
scabies,” International Journal, vol. 3, no. 8, 2013.

[52] K. M. Desai, S. A. Survase, P. S. Saudagar, S. S. Lele, and
R. S. Singhal, “Comparison of artificial neural network (ANN)
and response surface methodology (RSM) in fermentation
media optimization: case study of fermentative production of
scleroglucan,” Biochemical Engineering Journal, vol. 41, no. 3,
pp. 266–273, 2008.

[53] D. Bas and I. H. Boyaci, “Modeling and optimization II:
comparison of estimation capabilities of response surface
methodology with artificial neural networks in a biochemical
reaction,” Journal of Food Engineering, vol. 78, no. 3,
pp. 846–854, 2007.

[54] A. Ebrahimpour, R. Rahman, D. Ean Ch’ng, M. Basri, and
A. Salleh, “A modeling study by response surface method-
ology and artificial neural network on culture parameters
optimization for thermostable lipase production from a newly
isolated thermophilic Geobacillus sp. strain ARM,” BMC
Biotechnology, vol. 8, no. 1, p. 96, 2008.

[55] I. A. W. Al-Baldawi, S. R. Sheikh Abdullah, H. Abu Hasan,
F. Suja, N. Anuar, and I. Mushrifah, “Optimized conditions
for phytoremediation of diesel by Scirpus grossus in horizontal
subsurface flow constructed wetlands (HSFCWs) using re-
sponse surface methodology,” Journal of Environmental
Management, vol. 140, pp. 152–159, 2014.

[56] I. F. Purwanti, “Artificial aeration for the enhancement of total
petroleum hydrocarbon (TPH) degradation in phytor-
emediation of diesel-contaminated sand,” in From Sources to
Solution, pp. 301–306, Springer, Berlin, Germany, 2014.

[57] R. Saratale, “Decolorization and biodegradation of textile dye
Navy blue HER by Trichosporon beigeliiNCIM-3326,” Journal
of Hazardous Materials, vol. 166, no. 2-3, pp. 1421–1428, 2009.

[58] W. Handayani, V. I. Meitiniarti, and K. H. Timotius, “De-
colorization of acid red 27 and reactive red 2 by Enterococcus
faecalis under a batch system,”World Journal of Microbiology
and Biotechnology, vol. 23, no. 9, pp. 1239–1244, 2007.

[59] S. M. Hossain and N. Anantharaman, “Activity enhancement
of ligninolytic enzymes of Trametes versicolor with bagasse
powder,” African Journal of Biotechnology, vol. 5, no. 2,
pp. 189–194, 2006.

[60] A. Pandey, P. Singh, and L. Iyengar, “Bacterial decolorization
and degradation of azo dyes,” International Biodeterioration
& Biodegradation, vol. 59, no. 2, pp. 73–84, 2007.

[61] K.-T. Chung and S. E. Stevens, “Degradation azo dyes by en-
vironmental microorganisms and helminths,” Environmental
Toxicology and Chemistry, vol. 12, no. 11, pp. 2121–2132, 1993.

[62] S. Mathew and D. Madamwar, “Decolorization of ranocid fast
blue dye by bacterial consortium SV5,” Applied Biochemistry
and Biotechnology, vol. 118, no. 1–3, pp. 371–381, 2004.

[63] G. Ghodake, U. Jadhav, D. Tamboli, A. Kagalkar, and
S. Govindwar, “Decolorization of textile dyes and degradation
of mono-azo dye amaranth by Acinetobacter calcoaceticus
NCIM 2890,” Indian Journal of Microbiology, vol. 51, no. 4,
pp. 501–508, 2011.

[64] D. Abdel-El-Haleem, “Acinetobacter: environmental and
biotechnological applications,” African Journal of Biotech-
nology, vol. 2, no. 4, pp. 71–74, 2003.

[65] N. Jain, S. Shrivastava, and A. Shrivastava, “Treatment of pulp
mill wastewater by bacterial strain Acinetobacter calcoaceti-
cus,” Indian Journal of Experimental Biology, vol. 35, no. 2,
pp. 139–143, 1997.

[66] U. U. Jadhav, “Effect of metals on decolorization of reactive
blue HERD by Comamonas sp. UVS,” Water, Air, & Soil
Pollution, vol. 216, no. 1–4, pp. 621–631, 2011.

[67] X. Wu, S. Monchy, S. Taghavi, W. Zhu, J. Ramos, and
D. van der Lelie, “Comparative genomics and functional
analysis of niche-specific adaptation in Pseudomonas putida,”
FEMS Microbiology Reviews, vol. 35, no. 2, pp. 299–323, 2011.

[68] J. J. Plumb, J. Bell, and D. C. Stuckey, “Microbial populations
associated with treatment of an industrial dye effluent in an
anaerobic baffled reactor,” Applied and Environmental Mi-
crobiology, vol. 67, no. 7, pp. 3226–3235, 2001.

[69] S. Ezhumalai and V. 0angavelu, “Kinetic and optimization
studies on the bioconversion of lignocellulosic material into
ethanol,” Bioresources, vol. 5, no. 3, pp. 1879–1894, 2010.

[70] Q. Wang, H. Ma, W. Xu, L. Gong, W. Zhang, and D. Zou,
“Ethanol production from kitchen garbage using response
surface methodology,” Biochemical Engineering Journal,
vol. 39, no. 3, pp. 604–610, 2008.

[71] S.-J. You and J.-Y. Teng, “Anaerobic decolorization bacteria
for the treatment of azo dye in a sequential anaerobic and
aerobic membrane bioreactor,” Journal of the Taiwan Institute
of Chemical Engineers, vol. 40, no. 5, pp. 500–504, 2009.

BioMed Research International 15



[72] E. Kilickap, “Modeling and optimization of burr height in
drilling of Al-7075 using Taguchi method and response
surface methodology,” =e International Journal of Advanced
Manufacturing Technology, vol. 49, no. 9–12, pp. 911–923,
2010.

[73] H.-L. Liu and Y.-R. Chiou, “Optimal decolorization efficiency
of reactive red 239 by UV/TiO2 photocatalytic process cou-
pled with response surface methodology,” Chemical Engi-
neering Journal, vol. 112, no. 1–3, pp. 173–179, 2005.

[74] A. Maleki and B. Shahmoradi, “Solar degradation of direct
blue 71 using surface modified iron doped ZnO hybrid
nanomaterials,”Water Science and Technology, vol. 65, no. 11,
pp. 1923–1928, 2012.

[75] N. Puvaneswari, J. Muthukrishnan, and P. Gunasekaran,
“Biodegradation of benzidine based azodyes direct red and
direct blue by the immobilized cells of pseudomonas fluo-
rescens D41,” Indian Journal of Experimental Biology, vol. 40,
no. 10, pp. 1131–1136, 2002.

[76] M. Khehra, H. Saini, D. Sharma, B. Chadha, and S. Chimni,
“Decolorization of various azo dyes by bacterial consortium,”
Dyes and Pigments, vol. 67, no. 1, pp. 55–61, 2005.

[77] S.-H. Moon and S. J. Parulekar, “A parametric study ot
protease production in batch and fed-batch cultures of Ba-
cillus firmus,” Biotechnology and Bioengineering, vol. 37, no. 5,
pp. 467–483, 1991.

[78] K. M. Kodam, I. Soojhawon, P. D. Lokhande, and K. R. Gawai,
“Microbial decolorization of reactive azo dyes under aerobic
conditions,” World Journal of Microbiology and Biotechnol-
ogy, vol. 21, no. 3, pp. 367–370, 2005.

[79] S. Asad, M. A. Amoozegar, A. A. Pourbabaee,
M. N. Sarbolouki, and S. M. M. Dastgheib, “Decolorization of
textile azo dyes by newly isolated halophilic and halotolerant
bacteria,” Bioresource Technology, vol. 98, no. 11,
pp. 2082–2088, 2007.

[80] D. Georgiou, C. Metallinou, A. Aivasidis, E. Voudrias, and
K. Gimouhopoulos, “Decolorization of azo-reactive dyes and
cotton-textile wastewater using anaerobic digestion and ac-
etate-consuming bacteria,” Biochemical Engineering Journal,
vol. 19, no. 1, pp. 75–79, 2004.

[81] P. Dubin and K. L. Wright, “Reduction of azo food dyes in
cultures of Proteus vulgaris,” Xenobiotica, vol. 5, no. 9,
pp. 563–571, 1975.

[82] J.-S. Chang and Y.-C. Lin, “Fed-batch bioreactor strategies for
microbial decolorization of azo dye using a Pseudomonas
luteola strain,” Biotechnology Progress, vol. 16, no. 6,
pp. 979–985, 2000.

[83] I. K. Kapdan, F. Kargi, G. McMullan, and R. Marchant,
“Decolorization of textile dyestuffs by a mixed bacterial
consortium,” Biotechnology Letters, vol. 22, no. 14,
pp. 1179–1181, 2000.

[84] J. Yu, X. Wang, and P. L. Yue, “Optimal decolorization and
kinetic modeling of synthetic dyes by Pseudomonas strains,”
Water Research, vol. 35, no. 15, pp. 3579–3586, 2001.

[85] E. Betiku, O. R. Omilakin, S. O. Ajala, A. A. Okeleye,
A. E. Taiwo, and B. O. Solomon, “Mathematical modeling and
process parameters optimization studies by artificial neural
network and response surface methodology: a case of non-
edible neem (Azadirachta indica) seed oil biodiesel synthesis,”
Energy, vol. 72, pp. 266–273, 2014.

[86] M. Y. Noordin, V. C. Venkatesh, S. Sharif, S. Elting, and
A. Abdullah, “Application of response surface methodology in
describing the performance of coated carbide tools when
turning AISI 1045 steel,” Journal of Materials Processing
Technology, vol. 145, no. 1, pp. 46–58, 2004.

16 BioMed Research International


