
Research Article
Improved Landmark Dynamic Prediction Model to Assess
Cardiovascular Disease Risk in On-Treatment Blood Pressure
Patients: A Simulation Study and Post Hoc Analysis on
SPRINT Data

Mehrab Sayadi ,1,2 Najaf Zare ,3 Armin Attar,4

and Seyyed Mohammad Taghi Ayatollahi 2

1Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
2Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
3Department of Biostatistics, Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
4Department of Cardiovascular Medicine, TAHA Clinical Trial Group, School of Medicine, Shiraz University of Medical Sciences,
Shiraz, Iran

Correspondence should be addressed to Seyyed Mohammad Taghi Ayatollahi; ayatolahim@sums.ac.ir

Received 16 November 2019; Revised 18 February 2020; Accepted 24 March 2020; Published 23 April 2020

Academic Editor: Momiao Xiong

Copyright © 2020 Mehrab Sayadi et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Landmark model (LM) is a dynamic prediction model that uses a longitudinal biomarker in time-to-event data to make prognosis
prediction. This study was designed to improve this model and to apply it to assess the cardiovascular risk in on-treatment blood
pressure patients. A frailty parameter was used in LM, landmark frailty model (LFM), to account the frailty of the patients and
measure the correlation between different landmarks. The proposed model was compared with LM in different scenarios
respecting data missing status, sample size (100, 200, and 400), landmarks (6, 12, 24, and 48), and failure percentage (30, 50,
and 100%). Bias of parameter estimation and mean square error as well as deviance statistic between models were compared.
Additionally, discrimination and calibration capability as the goodness of fit of the model were evaluated using dynamic
concordance index (DCI), dynamic prediction error (DPE), and dynamic relative prediction error (DRPE). The proposed model
was performed on blood pressure data, obtained from systolic blood pressure intervention trial (SPRINT), in order to calculate the
cardiovascular risk. Dynpred, coxme, and coxphw packages in the R.3.4.3 software were used. It was proved that our proposed
model, LFM, had a better performance than LM. Parameter estimation in LFM was closer to true values in comparison to that in
LM. Deviance statistic showed that there was a statistically significant difference between the two models. In the landmark numbers
6, 12, and 24, the LFM had a higher DCI over time and the three landmarks showed better performance in discrimination. Both
DPE and DRPE in LFM were lower in comparison to those in LM over time. It was indicated that LFM had better calibration in
comparison to its peer. Moreover, real data showed that the structure of prognostic process was predicted better in LFM than in
LM. Accordingly, it is recommended to use the LFM model for assessing cardiovascular risk due to its better performance.

1. Introduction

The risk prediction models (RPMs) are used as a diagnostic
model to estimate the probability of an event occurrence in
a disease or as a prognostic model to estimate probable con-
sequences of a disease. Accurate prediction of a risk is essen-
tial in clinical research, and it is the patient’s right to be

informed about their disease progress [1]. Recently, RPMs
are being used to help clinicians to make the best decision
in diagnostic and therapeutic approaches, based on patient’s
demographics, test results, or disease characteristics [2].
Diagnostic models are usually used for risk classification in
patients while prognostic models use time to assess disease
progress [3, 4]. Nowadays, more prediction models have been
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used in cardiovascular diseases, such as diagnostic models for
assessing the risk factors [3]. However, the cardiovascular risk
assessment tools are static prediction models that use baseline
predictors, but they still have some shortcomings, such as poor
prediction [5], for instance, the inability to determine long-term
survival of a heart attack patient with previous successful treat-
ment or the inability to decrease the risk of cardiovascular event
in a treated hypertensive patient. During the intervention, bio-
markers are measured that are potentially informative in order
to determine the treatment efficacy [6–9]. In this respect, the
risk prediction using longitudinal biomarker is referred to as
the dynamic prediction model (DPM), which was introduced
by some researchers [10–13]. One DPM model is joint model-
ing (JM) [14–16], which requires correct determination of bio-
marker process distribution and event time, but this biomarker
distribution is usually unclear. Moreover, its generalization to
more than onemarker leads to the production of ample compu-
tational complexity [17]. The landmark model (LM), another
DPM, is used as an appropriate alternative to JM [9, 17–19].
The main advantage of LM is its simplicity, since it requires
fewer assumptions compared to JM andmight havemuchmore
power. In LM, the time is divided into different landmarks and
then the simple Cox proportional hazards (PH) model is
applied to each landmark for individuals who are still alive until
time t [20, 21]. On the other hand, the biomarker value in each
landmark time is considered as a fixed variable; hence, the pre-
diction of risks becomes feasible. A landmark window should be
considered to predict survival until time sl +w, which is called t
horizon (thor).w is the length of time to predict patient survival
as the prediction window.

By analyzing LM, the less frail patients are probably main-
tained dynamically during the landmark times. On the other
hand, the estimated parameters in LM can be affected, if some
patients do not follow the specific clinical visit schedule. Also,
not considering the correlation between landmarks might affect
the risk prediction. Bias in LM probably originates from these
neglected issues. In order to improve LM, the frailty parameter
was used to present a new model called the landmark frailty
model (LFM). Finally, LFM was used to assess the cardiovascu-
lar risk in the on-treatment hypertensive patients. To reach this
goal, a study with simulation data was designed, and the real
blood pressure data which was obtained from systolic blood
pressure intervention trial (SPRINT) was analyzed [22, 23].

The rest of this article is organized as follows. Section 2
provides a brief description of the landmark approach as well
as the proposed approach. Also, the setting of simulation
studies, goodness of fit indices, and real data description are
shown in Section 2. We conducted simulation studies to
compare LFM with LM in Sections 3. In Section 4, we exhib-
ited our approach with the SPRINT data followed by Section
5, which concludes and discusses simulation and real data.

2. Materials and Methods

2.1. Landmark Approach. Assuming that T i and Ci are sur-
vival time (failure time) and censoring time, then T∗

i = min
ðT i, CiÞ make the observed time. X ð:Þ represents the vector
of covariates, which can be measured once at the beginning
of the study. For example, age and gender are measured only

at baseline and they are considered as fixed variables. Y ð:Þ
represents the longitudinal biomarker like systolic or dia-
stolic blood pressure which can be measured for several time
intervals. For risk assessment, the Cox (PH) model as the
most famous model is defined as

h tð Þ = h0 tð Þ exp Xβð Þ, ð1Þ

where hðtÞ and h0ðtÞ are hazard function at time t and
baseline hazard, respectively. In LM, the time is divided
into several landmark times including s1, s2,⋯, sl. At land-
mark l (l = 1, 2,⋯, K), subjects who are still at risk are con-
sidered for analysis and the remaining individuals will be
omitted [9]. At each landmark, longitudinal biomarker
value YðsÞ is considered as a fixed variable. Then, a time
period, a landmark window is considered to predict sur-
vival until time sl +w which is called t horizon (thor). w
is the length of time to predict patient survival as prediction
window, which is the so-called 3 or 5 years. The Cox PH
model in equation (1) is reformulated and the conditional
hazard function is estimated by

h t ∣ s, Y Sð Þ, X,wð Þ
= hl,0 tjs,wð Þ exp Y slð Þαl + Xβlð Þ, s ≤ t ≤ s +w:

ð2Þ

The model presented in equation (2) is defined as the
simple or basic LM. It is used to fit a model to each land-
mark, and it estimates the specific landmark effect of a bio-
marker for predicting survival between sl and tthor where
hl,0 is a different baseline hazard in each landmark. We
assumed that a longitudinal biomarker, YiðtijÞ, for subject
i at the time of j was obtained from the mixed-effect model
via the following formula:

Yi tij
� �

= Zi tij
� �

bgi + Xi tij
� �

β + εi, ð3Þ

where Zi and Xi denote the design vector for random and
fixed effect and subscript g is 0 or 1.

According to equation (2), to consider the frailty of
patients and the correlation between sequential measure-
ments, LFM is defined as follows:

h t ∣ s, Y sð Þ, X, u,wð Þ
= hl,0 t ∣ s,wð Þ exp Y slð Þαl + Xβl + uið Þ, s ≤ t ≤ s +w,

ð4Þ

where ui indicates the frailty of patient i, which follows the
multivariate normal distribution with mean 0 and covariance
matrix ΣðθÞ. The survival prediction model is related to
cumulative hazard function by

S t +w ∣ s, Y sð Þ, X, u,wð Þ
= exp −H t ∣ s, Y sðð Þ, X, u,wð Þ, s ≤ t ≤ s +w:

ð5Þ

To estimate the parameters, Cox partial likelihood is mod-
ified via the following integrated (over landmarks) partial
log-likelihood (IPL) [24].
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IPL α, β, uð Þ = 〠
n

i=1
di〠

l

ln exp Yi slð Þαl + Xiβl + uið Þ
∑ jϵR slð Þexp Y j slð Þαl + Xjβl + uj

� � !
:

ð6Þ

In this formula, di indicates the risk set, di = 1 if subject i
remains until time s at landmark l. Otherwise, di is assumed
0. RðslÞ denotes the risk set at time s at landmark l. We used
the integrated partial likelihood (IPL∗) by integrating the
random effects [25].

IPL∗ α, β, θð Þ =
ð
IPL α, β, uð Þ f uð Þdu: ð7Þ

By maximizing the IPL∗, maximum likelihood estimators
(MLE) for the parameters are provided. In addition, the
coxme function in coxme package can only provide an ML
estimate. With respect to the complexity of IPL∗ calculation,
the coxme package uses the Laplace approximation tech-
nique. More details are described elsewhere [25, 26].

We can also perform a model for all landmarks by stack-
ing data set defined as super LFM, which considers parame-
ters as if they depended on the time in a smooth fashion. It
is formulated as

h t ∣ s, Y sð Þ, X, u,wð Þ = h0 t ∣ s,wð Þ exp Y sð Þα sð Þ + Xβs + uið Þ,
ð8Þ

where

α sð Þ = 〠
mb

j=1
γj f j sð Þ: ð9Þ

Dynpred, coxme, and coxphw packages in the R.3.4.3
software were used for data analysis.

2.2. Simulation Study Setting. To assess the application of the
models in different aspects, we set up several scenarios with
different specificities in terms of sample size (n = 100, 200,
and 400), number of landmarks (6, 12, 24, and 48), failure
rate (30, 50, and 100%), and complete/missing data. In
order to perform these models, a dichotomous variable with
binomial distribution like treatment effect and continuous
covariate with normal distribution like age (X1 and X2,
respectively) were considered. The regression coefficient,
β1 and β2, was set at 0.5 and 1.5 as true values, respectively,
for X1 and X2. In equation (3), we assume that bg has a
bivariate normal distribution for random intercept and
slope with a mean of 0 and covariance matrix of δ11 = 2,
δ12 = 0:2, δ22 = 1. We also assumed that the individual error
term (εi) follows a normal distribution with a mean of 0
and variance of 1. Moreover, it is assumed that continuous
variable Y was measured for 10 times for each individual
sequentially. The time T was generated from Weibull distri-
bution [27] as shown in the following:

T = 1
k
ln 1 + 1 + λð Þ −ln νð Þð Þ

γ exp Xβð Þφλ
� �� �1/ 1+λð Þ

: ð10Þ

In this equation, k = 1:1, γ = 0:4, λ = 0:01, φ = 0:75, and v
has a uniform (0, 1) distribution. Moreover, we performed
the simple Cox model that just included the baseline data
in three different sample sizes and three different failure
percentages.

2.3. Goodness of Fit (GOF) and Prediction Ability Indices.
There are several indices to assess the goodness of fit (GOF)
and prediction ability in DPM. We used the standard error,
bias of parameter estimation, and the mean square error
(MSE), which were obtained from 300 simulation data. To
compare LFM with LM, log-likelihood as well as deviance
statistic was used. The latter is compared with mixture chi-
square value (1.92) that was obtained from ð1/2Þðχ2

0 + χ2
1Þ.

Akaike information criterion (AIC) was used as if smaller
AIC implies a better fit. Moreover, the dynamic concordance
index (DCI), dynamic prediction error (DPE), and dynamic
relative prediction error (DRPE) were used to measure the
discrimination and calibration ability. DPE was obtained
from the Brier error score formula:

Brier error = 1
n
〠
n

i=1
di tð Þ − bSi tð Þ2� 	

: ð11Þ

In fact, the Brier score measures the average discrepan-
cies between true event status and predictive values of sur-
vival at time t. Low Brier score of a model indicates the
better predictive performance of that model. In this formula,
di as the actual observation for subject i at time t is an event
status, which could be either 1 or 0 (the occurrence or nonoc-
currence of an event, respectively).

The predicted survival ðbSi Þ is estimated by model LM or
LFM [28]. DRPE was calculated from

Relative Prediction Error = 1 − nullmodel error
curentmodel error

� �
:

ð12Þ

In equation (12), errors are obtained from equation (11)
and the null model is a model without any covariates, such
as Kaplan-Meier estimate, and the current model is LM or
LFM.

2.4. Real Data. We used a part of the systolic blood pressure
intervention trial (SPRINT) study [29] (National Heart, Lung,
and Blood Institute (NHLBI), funded by the National Insti-
tutes of Health; ClinicalTrials.gov number NCT01206062)
upon a request ID of 4612. In the main study of SPRINT,
methods were reported in detail [30]. In summary, in that
randomized controlled trial study, 9361 nondiabetic partici-
pants with systolic blood pressure (SBP) of equal or more
than130 mmHg were allocated to an intensive treatment
(target SBP < 120mmHg) and standard treatment (target SBP
< 140mmHg) groups. Baseline data, lab data, and repeated
measurement of SBP for 21 times in 5 years were collected.
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Heart failure, stroke, myocardial infarction, other acute cor-
onary syndromes, and death from cardiovascular causes
were regarded as cardiovascular events. Hence, we designed
a case-cohort study from this data, which included Framing-
ham risk factors of age, gender, total cholesterol (TCH) level,
high-density lipoprotein cholesterol (HDL) level, and SBP.
In our model, treatment effect was added to the abovemen-
tioned data. We considered 10 measurements of SBP (base-
line, 6, 12, 18, 24, 30, 36, 42, 48, and 54 months). The aim
was to determine the dynamic effect of blood pressure on
cardiovascular disease risk by comparing LFM with LM.
On the other hand, these two models were compared with
the simple Cox model by considering only baseline blood
pressure data. To compare LFM with LM, we used AIC
and deviance criteria. And the deviance criteria were tested
using mixture chi-square.

3. Results of Simulation

Simple Cox model results are summarized in Table 1, and
results of LM and LFM are summarized in Tables 2–4

3.1. Landmark Models vs. Simple Cox Model. Both LFM and
LM had a better relative performance in comparison to the
simple Cox model. As can be seen in all scenarios, bias and
MSE of bias were lower in LMs; however, this difference
decreased as the sample size increased from 100 to 200-400.
Nevertheless, bias did not have basic changes in failure rate.

3.2. Comparing LFM vs. LM. The performance of the models
was evaluated based on their ability to estimate the true value
of the parameters and their ability to classify and predict the
actual survival.

3.2.1. Ability to Estimate the True Value of the Parameters.
Mean of parameter estimation and its SE, bias, and MSE for
failure rate (30%) are shown in Table 2. In total, bias and
MSE were lower in LFM in comparison with LM. According

to deviance and AIC indices, using 12 landmarks and sample
size of 100, there was no statistically significant difference
between LFM and LM in both data sets. Deviance was 1.76
in complete data and 1.11 in incomplete data. Deviance index
showed that there was a statistically significant difference
between the two models at the sample size of 200 and 400
in the complete data. At the sample size of 200, AICs were
1515 and 3636 in LFM and LM, respectively, while at the
sample of 400 they were 1521 and 3648.

In these cases, bias and MSE of bias for the two parame-
ters were slightly lower in LFM. In the incomplete data,
according to deviance index, there was no significant differ-
ence between the two models in all sample sizes, while in
the complete data (200-400) statistically significant difference
was observed (in both cases, deviance was greater than mix-
ture chi-square and AICs were lower in LFM). In all scenar-
ios with 24 and 40 landmarks, based on deviance and AIC
indices, LFM fitted better in comparison to LM. In these
cases, the mean estimation of two parameters in the LFM
was closer to the true value. This result was more pronounced
in the continuous variable. According to the results of failure
rate of 50% and 100% summarized in Tables 3 and 4, the
superiority of LFM over LM was higher, especially in the
model with 12 landmarks.

3.2.2. Ability to Classify and Predict the Actual Survival. We
used CDI to assess the discrimination ability of the two
models that were run with fixed sample size and failure rate
in 3 different landmarks (6, 12, and 24), where CDI value is
greater than 0.5, indicating that the model had discrimina-
tion ability. As illustrated in Figure 1, LFM had better perfor-
mance. This advantage was more evident by increasing the
number of landmarks from 6 to 12-24. On the other hand,
the more area under the curve indicated the more accurate
model. DPE and DRPE for calibration ability were plotted
in Figures 2 and 3. The error rates and relative error rates
in LFM were much lower than those in LM, and this became
more prominent by increasing landmark numbers.

Table 1: Simple Cox model results in different simulations.

n Estimate
Failure = 30% Failure = 50% Failure = 100%

β1 = 0:5 β2 = 1:5 β1 = 0:5 β2 = 1:5 β1 = 0:5 β2 = 1:5

100

Mean 0.384 1.290 0.384 1.286 0.401 1.103

SE 0.513 0.368 0.543 0.392 0.318 0.226

Bias -0.116 -0.210 -0.115 -0.213 -0.099 -0.397

MSE 0.677 0.464 0.377 0.304 0.158 0.128

200

Mean 0.402 1.327 0.417 1.298 0.420 1.285

SE 0.750 0.549 0.246 0.174 0.252 0.180

Bias -0.098 -0.173 -0.082 -0.202 -0.08 -0.215

MSE 0.720 0.692 0.065 0.084 0.080 0.097

400

Mean 0.405 1.287 0.438 1.308 0.431 1.300

SE 0.320 0.226 0.252 0.180 0.175 0.123

Bias -0.095 -0.213 -0.062 -0.191 -0.069 -0.200

MSE 0.106 0.326 0.368 0.125 0.036 0.059
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4. Results of Real Data

Results of real data are summarized in Table 5 and Figure 4.
The adjusted hazard ratio of variables and its confidence
interval (CI) are provided. Furthermore, AIC and deviance
index were extracted to assess the models. While in both
LFM and LM the SBP was highly significant, it had no signif-
icant impact on cardiovascular events in simple Cox (p value =
0.258). However, LFM fitted better since it had an AIC equal
to 5437 while it was 6385 in LM. Also, the deviance between
two models was 559.7 (p < 0:001). After adjusting the treat-
ment effect as well as baseline risk factor effect (Figure 4), it
was shown that while SBP was decreasing over time, the haz-
ard ratio (HR) was decreasing in line with SBP in both
models. However, it is noteworthy that this reduction was
more in the LFM. On the contrary, HR was constant over
time in the Cox model. As the blood pressure decreases, the
3-year survival prediction increases. LFM predicts higher
survival than LM and the simple Cox model (Figure 5).

5. Discussion

5.1. Discussion of Simulation Data. DPM includes time-
dependent marker information during follow-up in order
to improve personal survival prediction probabilities. At
any follow-up, time-updated marker value can be used to
generate a dynamic prediction [10–12]. These models are

essential to identify high-risk individuals and timely clinical
decision-making. Recently, LM as DPM was extensively
investigated by researchers [9, 24]. Some of them used LM
in different aspects of survival data such as competing risk
and cure data [14, 20]. However, they paid little attention
to individuals’ frailty and regularity of visits as well as corre-
lation between different landmarks. On the other hand, LM
can be affected by the way how landmarks are selected and
number of landmarks. Ignoring these issues might lead to
an estimation error. Hence, we proposed a modified LM
which used the frail parameter as LFM. Indeed, in LM, indi-
viduals who experienced the intended event or being cen-
sored at a defined landmark time are considered in data
analysis. Frailty plays a critical role in those who are retained
and repeated dynamically in sequential landmarks due to
their low frailty. However, in our proposed model, consider-
ing the frailty of patients was included in the analysis; hence,
we were able to overcome the abovementioned problems.
Simulations showed that both LFM and LM had a relative
advantage over the simple Cox model. This was confirmed
by various criteria such as bias and MSE. Bias and MSE in
dichotomous and continuous variables were higher in the sim-
ple Cox model, which is in line with other studies [20, 31]. In
the simple Cox model, as the sample size increased, the esti-
mation error slightly decreased and the estimates were closer
to the true values. But the simple Cox model was still behind
the LMs. LFM and LM were compared regarding different
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Figure 1: Simulated C dynamic index for landmark model (LM) and landmark frailty model (LFM): landmarks = 6, 12, and 24; sample
size = 200; and failure rate = 50%. The higher values of C index indicate more discrimination ability.
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sample sizes, different number of landmarks, different failure
rate, and diverse data structure. Generally, the superiority of
the LFM over LM was confirmed in the present study. This
conformation was very clear in a large sample size and higher
landmark number in both complete and incomplete data.

To the best of our knowledge, this is the first study to
investigate the effect of number of landmarks on accuracy
of the results. Wright et al. [31] performed LM with 20 land-
marks, and others have empirically found that 20 to 100
landmarks are appropriate [24]. However, in the case of large
sample size, data become too large, and it took too much time
to run the programs. There was no significant difference
between LM and LFM in small sample size and low number
of landmarks, which was the result of checking the deviance
and AIC indices between the two models. Both models per-
formed better by increasing failure rate. Although no statisti-
cal comparison was made, in each case, LFM was more
appropriately fitted with fewer estimation errors. In most
times, the discrimination ability of LFM was more than LM
since DCI was more than 70% in LFM while this index was
lower in LM. The difference between DCIs increased by the
implementation of increased number of landmarks. Also,
evaluation of collaboration ability (DPE and DRPE) showed
that LMF had a better performance than LM.

5.2. Discussion of SPRINT Data. Hypertension is not only
recognized as a major cardiovascular risk factor but also

has a significant impact on the occurrence of events followed
by therapeutic interventions [32]. In this study, we showed
that considering hypertension as a dynamic risk factor had
a basic role for obtaining real estimation of successful treat-
ment in cardiovascular diseases. Hence, it should be consid-
ered dynamically during the course of treatment and not
only at the time of admission as a primary measure that it
was emphasized by other similar studies [9, 33]. SPRINT data
confirmed the simulation results, which contained repeated
measurements of SBP as a single longitudinal biomarker.
As mentioned in the previous section, more than one bio-
marker could be used in LMs. By only using the baseline
blood pressure data (simple Cox model), the role of SBP
was hindered due to dominancy of treatment effect; hence,
it was not recognized as a cardiovascular risk factor. This
result is in line with the results of our previous study [22]
and the same result was obtained from the study carried
out by Group S.R. [29]. In both landmark models, as SBP
decreased after treatment, the risky effect of SBP was also
reduced. While HR in the simple Cox model is close to 1
and constant over time, HR in the two landmark models
was close to 3 at the beginning of the study and then it rela-
tively decreased by decreasing blood pressure over time,
although the intensity of the significant reduction was higher
in our proposed model. On the other hand, in the simple Cox
model, the effect of intensive treatment was 38% (1-1/0.720)
in comparison with standard treatment, while in LFM and
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LM it was 110% and 107%, respectively. This means that the
protective effect of intensive treatment is highly exhibited in
our model in comparison with simple Cox and LM. Thereby,
predictability of the 3-year dynamic survival is higher in
LFM. Other studies that worked on blood pressure have con-
sidered landmarks separately while we used a model that
landmarks were considered continuously [21, 33, 34]. This
study showed that landmark models can be used to help cli-
nicians to make better decision for diagnosis and treatment.

Landmark models, especially our proposed model, are useful
for risk assessment, when the data is not complete or regular,
similar to our data.

6. Conclusion

In this study, we provided a modified LM, which considered
the frailty of the patients as well as the correlation between
the landmarks. Our approach can be fitted better in the sense

Table 5: Static and dynamic effect of SBP on cardiovascular event.

Variables
Simple Cox LM LFM

HR p value HR p value HR p value

Age at enrolment day, yr 1.051 <0.001 1.018 <0.001 1.022 <0.001
Gender (female) 0.691 <0.001 1.019 0.164 0.843 0.291

TCH (mmol/L) 1.001 <0.001 1.001 0.163 1.000 0.582

HDL-C (mmol/L) 0.986 <0.001 0.991 0.001 0.987 0.023

Current smoker 1.820 <0.001 1.178 0.040 1.271 0.045

Treatment, intensive 0.720 <0.001 0.482 <0.001 0.475 <0.001
SBP (mmHg) 1.001 0.258 1.083 <0.001 1.109 <0.001
SBP∗time — — 0.996 <0.001 0.839 <0.001
SBP∗time2 — — 0.966 <0.001 0.895 <0.001
LM= landmark model; LFM= landmark frailty model; HR = hazard ratio; TCH= total cholesterol; HDL-C = high-density lipoprotein; SBP = systolic blood
pressure.
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that it has a better GOF, improved real data analysis, and
more optimized cardiovascular risk assessment.

Data Availability

The data used to support the findings of this study were
supplied by [National Heart, Lung, and Blood Institute
(NHLBI),] under license and so cannot be made freely avail-
able. Requests for access to these data should be made to
{National Heart, Lung, and Blood Institute (NHLBI), Funded
by the National Institutes of Health; ClinicalTrials.gov num-
ber, NCT01206062}. We have a request ID of 4612.

Conflicts of Interest

The authors declare that they have no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work was extracted from the Ph.D. dissertation of Mr.
M. Sayadi [35], and it was supported by Shiraz University
of Medical Sciences, Shiraz, Iran (Grant no. 97-16792). The
authors would like to thank Mr. I. Razeghian-Jahromi and
Ms. Z. Hadi for their valuable suggestions. The authors wish
to thank Mr. H. Argasi at the Research Consultation Center
(RCC) of Shiraz University of Medical Sciences for his
invaluable assistance in editing this manuscript.

LFM
LM
Simple Cox

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Years surviving

 D
yn

am
ic

 su
rv

iv
al

 p
ro

ba
bi

lit
y 

w
ith

in
 th

e n
ex

t 3
 y

ea
rs

 

Figure 5: Dynamic prediction of survival within window (w = 3) by
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