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Background.Helicobacter pylori (Hp) infection is the strongest risk factor for gastric cancer (GC). However, the mechanisms ofHp-
associated GC remain to be explored. Methods. The gene expression profiling (GSE111762) data were downloaded from the GEO
database. Differentially expressed genes (DEGs) between normal samples (NO) andHp-atrophic gastritis (GA) orHp-GA andHp-
GC were identified by GEO2R. Gene Ontology and pathway enrichment analysis were performed using the DAVID database.
lncRNA-TF-mRNA and ceRNA regulation networks were constructed using Cytoscape. The cross-networks were obtained by
overlapping molecules of the above two networks. GSE27411 and GSE116312 datasets were employed for validation. Results.
DEGs between NO and Hp-GA are linked to the activity of inward rectifying potassium channels, digestion, etc. DEGs between
Hp-GA and Hp-GC were associated with digestion, positive regulation of cell proliferation, etc. According to the lncRNA-TF-
mRNA network, 63 lncRNAs, 12 TFs, and 209 mRNAs were involved in Hp-GA while 16 lncRNAs, 11 TFs, and 92 mRNAs
were contained in the Hp-GC network. In terms of the ceRNA network, 120 mRNAs, 18 miRNAs, and 27 lncRNAs were shown
in Hp-GA while 72 mRNAs, 8 miRNAs, and 1 lncRNA were included in the Hp-GC network. In the cross-network, we found
that immune regulation and differentiation regulation were important in the process of NO-GA. Neuroendocrine regulation was
mainly related to the process of GA-GC. In the end, we verified that CDX2 plays an important role in the pathological process
of NO to Hp-GA. Comparing Hp-GA with Hp-GC, DEGs (FPR1, TFF2, GAST, SST, FUT9, and SHH), TF, and GATA5 were of
great significance. Conclusions. We identified the DEGs, and their lncRNA regulatory network of Hp-associated diseases might
provide insights into the mechanism between Hp infection and GC. Furthermore, in-depth studies of the molecules might be
useful to explore the multistep process of gastric diseases.

1. Introduction

The current study assumed that the Helicobacter pylori (Hp)
infection was closely associated with gastric cancer (GC).
Nonatrophic gastritis, atrophic gastritis (GA), intestinal
metaplasia (IM), and dysplasia were included in the patho-
logical process which led to the GC ultimately [1, 2]. In the

process above, the risk of Hp-positive GA patients to develop
GC is 6.4-11.8 times as high as the noninfected ones [3].
Therefore, searching for the GA and GC molecular markers
associated with Hp infection is of great significance to the
early diagnosis and reversal of GC.

After setting on the epithelium and glands of the gastric
mucosa,Hp arouses inflammation through a variety of adhesives
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and virulence factors, leading to the changes of signaling path-
ways in the host [4]. Also,Hp infection increases oxidative stress
by inducing apoptosis and then disrupts cellular integrity and
produces inflammation-related tumors [5]. However, the previ-
ous studies on themechanism ofHp infection-related gastric dis-
eases were limited to a single molecule or a signal pathway. Gene
expression and the multistage pathological process ofHp-related
gastric diseases were not displayed enough formerly. Thus, to
reveal the development of gastric diseases, a systematic under-
standing of Hp-related gastric precancerous diseases and gene
expression alternations in GC is in urgent need.

Regulation of gene expression includes transcription level
and posttranscriptional levels. Transcription factor (TF) is
the main regulator in the transcriptional level, which can bind
to the DNA region of the enhancers, or promoters adjacent to
the target gene [6, 7]. Noncoding RNAs (ncRNAs) are proven
to be important epigenetic regulators in the posttranscrip-
tional level [8, 9]. MicroRNA (miRNA) belongs to small
ncRNAs, inducing gene degradation or inhibiting translation
by binding to mRNA. lncRNAs are endogenous cellular
RNA transcripts longer than 200 nucleotides in length [10],
becoming cancer essential regulators with tissue-specific pat-
terns and cell-specific patterns [10–13]. Abnormally expressed

miRNAs and lncRNAs have been regarded as promising diag-
nostic and prognostic biomarkers, existing not only in GC but
also in other tumors [14, 15]. lncRNAs can inhibit miRNA in
the cytoplasm as a competitive endogenous RNA (ceRNA).
lncRNAs can regulate the activity of TF in the nucleus as well
[16]. Studies have reported that the differentially expressed
lncRNAs, identified in Hp-infected tissue of GC, could be
involved in the development of Hp-related gastric diseases
[17]. However, the research on Hp-related transcription and
noncoding regulation is still in its infancy.

As the availability of multilevel expression data, the inte-
gration of large datasets such as Gene Expression Omnibus
(GEO) offers new opportunities for the public to comprehen-
sively understand the cancer development [18–20]. The
research, therefore, is intended to construct mRNA-
lncRNA regulatory networks among normal, GA, and GC
with Hp infection. Our study may provide insights into the
mechanism between Hp infection and GC.

2. Materials and Methods

2.1. Data Acquisition of Differentially Expressed Genes
(DEGs). GSE111762, an lncRNA/mRNA analysis set,
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Figure 1: General workflow of the DEG screening and network construction.
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downloaded from the GEO database, included three normal
human gastric mucosal tissues (NO), six Hp-positive GA
patients (Hp-GA), and six Hp-positive GC patients (Hp-GC).
GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/) [21] was
used to screen DEGs between NO and Hp-GA or Hp-GA
and Hp-GC, respectively. The false discovery rates ðFDRÞ <
0:05 and ∣logFC ∣ >2 were considered statistically significant.

Human lncRNA and protein-coding gene annotations
were directly downloaded from GENECODE v22. All of the
categories in the “long non-coding RNA gene annotation”
GTF file were considered to be lncRNAs. Duplicate probes
were removed.

2.2. GO and KEGG Pathway Enrichment Analysis. Gene
Ontology (GO) analysis is the primary bioinformatics tool
to unify the characterization of genes and gene products
[22]. GO contains three categories of terms, including cellu-
lar component, molecular function, and biological process.
KEGG is a set of databases containing information about
genomes, biological pathways, diseases, and chemicals [23].
DAVID (https://david.ncifcrf.gov/) is a bioinformatics data
resource with an integrative bioinformation database and
analysis tools and benefits to discover the biological meaning
behind genes [24]. DEGs were enriched and analyzed by
DAVID for GO and KEGG pathways, respectively. P < 0:05
was considered statistically significant.

2.3. Construction of the lncRNA-TF-mRNA Regulatory
Network. The correlation coefficient and significance thresh-

olds were set at 0.95 and 0.001 in the comparison between
NO and Hp-GA while 0.85 and 0.001 were set between Hp-
GA and Hp-GC. The protein-protein interaction (PPI) net-
work was constructed using the STRING online database
[25]. TFs were annotated using the TF checkpoint [26]. The
regulatory relationships among mRNAs, TFs, and lncRNAs
were visualized using the Cytoscape software (version 3.4.0).
The CentiScaPe app was used to analyze the computing net-
work’s topological property [27]. lncRNAs, TFs, and mRNAs
were ranked to obtain the key genes based on the degree size.

2.4. Construction of the ceRNA Regulatory Network. miR-
Walk is a database to predict miRNA target genes [28]. It inte-
grates miRDB, miRTarbase, and TargetScans. Considering the
inverse correlations, miRWalk was applied to observe the
interaction between miRNAs and mRNAs. The overlapping
miRNAs were further analyzed. DIANA is a database that pre-
dicts the association betweenmiRNAs and lncRNAs. miRNA-
targeted lncRNAs were similarly predicted via DIANA. Fur-
thermore, the predicted lncRNAs were intersected with the
lncRNAs with different expression in the GSE111762 dataset.
Besides, the Cytoscape software took advantage of building the
ceRNA network. The number of each interaction was calcu-
lated to identify key genes in the network as well.

2.5. Construction of the Cross-Network. The overlapping
genes of the above lncRNA-TF-mRNA network and ceRNA
network were synthesized. Meanwhile, a crossover network
was constructed using the Cytoscape software.
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Figure 2: Volcano plot of the DEGs in the gene expression dataset GSE111762. (a) Red color is indicative of upregulated genes and green
color of downregulated genes in normal vs. Hp-GA. (b) Red color is indicative of upregulated genes and green color of downregulated
genes in Hp-GA vs. Hp-GC. Gray color indicates genes that are not differentially expressed in a statistically significant manner (the cutoff
values of FDR < 0:05 and ∣logFC ∣ >2).
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2.6. GEO Dataset Analysis for the Validation. The GSE27411
dataset included six Hp-negative normal gastric tissue sam-
ples and six Hp-positive GA samples. Three Hp-positive
GA samples and three Hp-positive GC samples were
included in the GSE116312 dataset. In this study, the
GSE27411 dataset was used to analyze the selected DEGs
and TFs between NO and Hp-GA. Besides, we selected the
GSE116312 dataset to analyze the key DEGs and TFs
screened by the results above. The entire workflow is shown
in Figure 1.

2.7. Statistical Analyses. Coexpression relationships between
the lncRNAs and mRNAs were estimated by Spearman’s cor-
relation test. FDR was also calculated to correct the P value
for multiple testing. Unless otherwise stated, statistical signif-
icance was considered P < 0:05.

3. Results

3.1. Screening of Hp-GA- and Hp-GC-Related DEGs

3.1.1. Screening of Hp-GA-Related DEGs.A total of 389 DEGs
were obtained between NO and Hp-GA, which showed 88
upexpressed and 301 downexpressed genes in GA

(Figure 2(a)). By removing 18 duplicate probes, 81 upex-
pressed and 290 downexpressed genes were finally left
(Table S1). Among them, there were 7 highly expressed
lncRNAs, 67 downexpressed lncRNAs, 74 high-level
mRNAs, and 223 low-level mRNAs. The top 5 of DEG
names are shown in Tables 1(a) and 2(a), respectively.

3.1.2. Screening of Hp-GC-Related DEGs. In the comparison
between Hp-GA and Hp-GC, a total of 187 DEGs showed
88 upexpressed genes and 99 downexpressed genes in GC
(Figure 2(b)). By removing 14 duplicate probes, 84 highly
expressed genes and 89 low-expression genes were finally left
(Table S2). Among them, there were 11 high-level lncRNAs,
9 low-level lncRNAs, 73 high-level mRNAs, and 80 low-level
mRNAs. The top 5 of DEG names are shown in Tables 1(b)
and 2(b), respectively.

3.2. Enrichment Analysis of GO and KEGG Pathways of DEGs

3.2.1. Functional Enrichment Analysis of Hp-GA-Related
DEGs. As shown in Figure 3(a), Hp-GA-related DEGs were
mainly correlated with the activity of inward rectifying potas-
sium channels, positive regulation of cell proliferation, cell
mitosis, digestion, etc. By using KEGG tools, DEGs were

Table 1

(a) The five most significantly down- and upregulated lncRNAs in
normal vs. Hp-GA

Gene symbol Regulation Log2FC FDR

lnc-DENND1A-1 Down 5.51 2.77E-04

lincRNA-SLC34A2 Down 4.50 6.44E-04

RP11-310E22.4 Down 4.45 1.19E-03

lincRNA-DHX35 Down 4.42 1.33E-04

RPL34-AS1 Down 4.34 1.90E-03

LINC01586 Up 2.10 1.14E-04

RP11-4O3.2 Up 2.19 2.22E-04

HOXA-AS2 Up 2.23 4.32E-03

lnc-C1QTNF8-1 Up 2.40 5.46E-03

AC009014.3 Up 3.54 3.07E-04

(b) The five most significantly down- and upregulated lncRNAs in
Hp-GA vs. Hp-GC

Gene symbol Regulation Log2FC FDR

UNC5B-AS1 Down 3.51 3.38E-06

lnc-PSAPL1-1 Down 3.17 2.06E-02

SOX21-AS1 Down 2.77 1.37E-03

lnc-C20orf187-2 Down 2.53 1.51E-05

LINC01133 Down 2.45 8.52E-05

HAGLROS Up 2.35 1.24E-02

LINC01289 Up 2.38 1.92E-03

LL22NC03102D1.18 Up 2.43 6.03E-03

nc-HOXC10-120 Up 2.48 3.22E-02

LINC00659 Up 2.94 9.29E-04

Table 2

(a) The five most significantly down- and upregulated DEGs in
normal vs. Hp-GA

Gene symbol Regulation Log2FC FDR

PGA3 Down 7.00 3.05E-03

NONHSAT006763 Down 6.14 5.24E-04

C5orf38 Down 5.94 6.26E-07

AC005062.2 Down 5.58 1.45E-04

NM_022658 Down 5.33 1.99E-04

PDX1 Up 3.65 2.74E-05

NMU Up 3.80 2.66E-06

C11orf86 Up 4.37 1.71E-08

GP2 Up 5.68 3.00E-04

GAST Up 6.02 1.60E-05

(b) The five most significantly down- and upregulated DEGs in Hp-
GA vs. Hp-GC

Gene symbol Regulation Log2FC FDR

GAST Down 6.48 8.53E-09

SST Down 5.72 1.08E-03

SYT16 Down 5.08 2.22E-08

UPK1B Down 4.34 6.89E-05

C11orf86 Down 4.21 4.97E-05

MSR1 Up 3.83 1.54E-05

C5orf38 Up 3.89 6.91E-04

FOXD1 Up 3.93 1.33E-04

NM_022658 Up 4.13 2.96E-04

S100A8 Up 4.96 2.01E-03
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Figure 3: Continued.
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Figure 3: Bubble plot for GO enrichment of DEGs in (a) normal vs. Hp-GA and (b) Hp-GA vs. Hp-GC. The gene ratio is assigned to the x
-axis and the description of pathway to the y-axis. The area of the displayed graphic is proportional to the number of genes assigned to the
term, and the color corresponds to the adjusted P value.
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mainly enriched in gastric acid secretion and cancer path-
ways (Table 3(a)).

3.2.2. Functional Enrichment Analysis of Hp-GC-Related
DEGs. In Figure 3(b), Hp-GC-related DEGs were principally
associated with digestion, positive regulation of cell prolifer-
ation, positive regulation of cell division, and calcium ion
binding. By KEGG analysis, DEGs were prevailingly enriched
in salivary secretion, neuroactive ligand-receptor interac-
tions, and gastric acid secretion (Table 3(b)).

3.3. Construction of the lncRNA-TF-mRNA
Regulatory Network

3.3.1. lncRNA-TF-mRNA Regulatory Network of Hp-GA-
Related DEGs. The lncRNA-TF-mRNA regulatory network
of Hp-GA contained 63 lncRNAs, 12 TFs, and 209 mRNAs
(Figure 4(a)). After sorting by degree, the core of the network
was obtained including the top 5 lncRNAs, the top 3 TFs, and
the top 10 mRNAs. They were lincRNA-BCOR-8, lincRNA-
MGAT5-3, lincRNA-SLC34A2, lincRNA-DHX35, lincRNA-
APOBEC3A, CDX2, ETV2, MYOD1, RXFP4, AKT1, PLCB2,
BAALC, SAA3P, AC005062.2, DNALI1, MED18, RP11-
570H19.2, and SYNDIG1.

3.3.2. lncRNA-TF-mRNA Regulatory Network of Hp-GC-
Related DEGs. As shown below, the lncRNA-TF-mRNA regu-
latory network of GC was built including 16 lncRNAs, 11 TFs,
and 92mRNAs (Figure 4(b)). After sorting by degree, the cen-
tral network was acquired, making up the top 5 lncRNAs, the
top 3 TFs, and the top 10 mRNAs. They were UNC5B-AS1,
lnc-C20orf187-2, LINC01559, LINC00365, lnc-PSAPL1-1,
IRX2, FOXD1, HOXC6, GAST, SSTR, NMUR2, SST, RXFP4,
FPR1, CXCL1, PLCB2, KRT20, and CHRM1.

3.4. Construction of the ceRNA Regulatory Network

3.4.1. ceRNA Regulatory Network of Hp-GA-Related DEGs.
After screening and matching in the miRWalk dataset and
DIANA-tools, an integrated lncRNA-miRNA-mRNA net-
work of Hp-GA was obtained, including 120 mRNAs, 18
miRNAs, and 27 lncRNAs (Figure 5(a)). By calculating the
number of interactions for each RNA, we obtained the top
2 lncRNAs, top 3 miRNAs, and top 10 mRNAs in the net-
work, which were HOXA-AS2, RP11-64C1.1, hsa-miR-497-
5p, hsa-miR-665, hsa-miR-145-5p, AKT1, CDK2, SST,
CDC20, BIRC5, SMAD3, CCR7, CCNB2, GAST, and
CDX2. They were the central lncRNAs, miRNAs, and
mRNAs of the network.

3.4.2. ceRNA Regulatory Network of Hp-GC-Related DEGs.
Using the same method above, the lncRNA-miRNA-
mRNA network of Hp-GC including 72 mRNAs, 8 miR-
NAs, and 1 lncRNA was gained (Figure 5(b)). The top 3
gained miRNAs were hsa-miR-125a-5p, hsa-let-7d-5p,
and hsa-let-7f-5p. The top 10 gained mRNAs were FPR1,
SST, GAST, NMUR2, CXCL1, SSTR1, CXCL2, CHRM1,
RXFP4, and KRT20. LL22NC03-102D1.18 was chosen as
the only lncRNA. The above genes were the central mole-
cules of the network.

3.5. Integration of the Cross-Network

3.5.1. Cross-Network of Hp-GA-Related DEGs. Intersecting
the above two networks was able to gain a cross-network. 1
DEG, 3 TFs, 12 lncRNAs, and 5 miRNAs were included,
which were CDK2, CDX2, SMAD3, MYOD1, RP11-4O3.2,
AC009014.3, HOXA-AS2, lnc-GJA1-1, RPL34-AS1, RP11-
64C1.1, RP11-310E22.4, CTC-246B18.8, LINC00710, CTD-
2228K2.7, CTD-2619J13.19, RP11-274H2.5, hsa-miR-6838-
5p, hsa-miR-195-5p, hsa-miR-145-5p, hsa-miR-18a-5p, and
hsa-miR-150-5p (Figure 6(a)).

3.5.2. Cross-Network of Hp-GC-Related DEGs. To obtain a
cross-work of Hp-GC-related DEGs, regulatory networks
were intersected including 7 DEGs, 3 TFs, 5 lncRNAs, and
1 miRNA. They were FABP1, FPR1, TFF2, GAST, SST,
FUT9, SHH, FOXD1, GATA5, INSM1, lnc-C20orf187-2,
lnc-PSAPL1-1, UNC5B-AS1, LINC01559, LINC00365, and
hsa-miR-4465 (Figure 6(b)). Although no mRNA was found
to be coregulated in both lncRNA-TF-mRNA and ceRNA,
some regulatory pathways were found to be meaningful.

3.6. Validation of DEGs and TFs. To confirm the analysis
results, the GSE27411 dataset was used to verify the above 4
DEGs and TFs related to Hp-GA. In consequence, the differ-
entially expressed CDX2 in NO vs. Hp-GA was statistically
significant while the expression trend was consistent with
the screening results (Figure 7(a)). However, CDK2, SMAD3,
and MYOD1 were not verified in the GSE27411 dataset.
Besides, 10 DEGs and TFs related to Hp-GC were confirmed
by the GSE116312 dataset. The results revealed that the
expression trends of 6 DEGs and GATA5 were the same as
in the screening results. FABP1 expressed differences among
groups while the trend was the opposite (Figures 7(b)–7(i)).

Table 3

(a) KEGG enrichment analysis for the DEG-related Hp-GA

ID Description Ratio P value Count

hsa04971 Gastric acid secretion 5/105 0.66E-02 5

hsa04940 Type I diabetes mellitus 4/105 0.91E-02 4

hsa05200 Pathways in cancer 10/105 1.90E-02 10

hsa04725 Cholinergic synapse 5/105 2.73E-02 5

hsa04110 Cell cycle 5/105 3.87E-02 5

hsa05143 African trypanosomiasis 3/105 4.52E-02 3

(b) KEGG enrichment analysis for the DEG-related Hp-GC

ID Description Ratio
P

value
Count

hsa04970 Salivary secretion 4/64
1.43E
-02

4

hsa04080
Neuroactive ligand-receptor

interaction
6/64

2.34E
-02

6

hsa04971 Gastric acid secretion 3/64
6.99E
-02

3
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However, FOXD1 and INSM1 were not validated in the
GSE116312 dataset.

4. Discussions

Exploring DEGs with Hp-diseases including GA/GC and
their noncoding regulation is of great significance for the
early diagnosis and prevention of Hp-related gastric diseases.
In this research, we constructed lncRNA-TF-mRNA and
ceRNA regulatory networks and furthermore comprehen-
sively analyzed the interaction among the networkmolecules.
Our study will help to clear the molecular basis of Hp-

infected gastric diseases as well as to inform the diagnosis
and prevention of Hp-infected GC.

Functional analysis of DEGs showed positive regulation
of cell proliferation, cell mitosis, and digestion, all related to
Hp-GA and Hp-GC. DEGs of Hp-GA were also correlated
with inward rectifying potassium channel activity. Besides,
calcium ion binding and other functions were linked to Hp-
GC. Simultaneously, KEGG enrichment analysis showed that
Hp-GA-related DEGs were mainly associated with gastric
acid secretion and cancer pathways, while Hp-GC ones were
mainly involved in salivary secretion, neuroactive ligand-
receptor interactions, and gastric acid secretion. Studies have
mentioned that acid secretion had the most significant effect
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on the development of gastric disorders [29]. Our research
displayed that the changes in acid secretion accompanied
the process from GA to GC. Thus, the genes involved in this
regulation may be closely correlated with the development of
gastric diseases.

lncRNAs serve as signals, bait, guide, or scaffold mole-
cules [10]. Among them, by directing TF to the promoter
region, lncRNAs play a vital role in gene regulation [30].
Based on this, we constructed lncRNA-TF-mRNA networks.
In the Hp-GA network, CDX2 has been reported to be a core
TF [31], which played a key role in IM and cancer [32]. ETV2
and MYOD1 were key TFs involved in vascular endothelial
differentiation, angiogenesis, and myogenic differentiation
of bone marrow mesenchymal progenitor cells [33, 34].
However, those five lncRNAs, including lincRNA-BCOR-8,
lincRNA-MGAT5-3, lincRNA-SLC34A2, lincRNA-DHX35,

and lincRNA-APOBEC3A, have not been reported yet. In
the Hp-GC network, IRX2, FOXD1, and HOXC6 affected
the promotion of proliferation and invasion through tran-
scriptional regulation [35–37]. Some reports showed that
UNC5B-AS1 promoted thyroid papillary cancer [38].
LINC01559 hindered YAP phosphorylation and accelerated
the pancreatic cancer development [39]. LINC00365 was
involved in colorectal cancer by mediating the Wnt/β-
catenin signaling pathway [40]. There has been no research
about lnc-C20orf187-2 and lnc-PSAPL1-1. The relationship
between lncRNA and TF found in this study has not been
reported. Also, we found that there were two overlapping
mRNAs in the Hp-GA and Hp-GC networks named RXFP4
and PLCB2. Studies have reported that RXFP4 was involved
in the regulation of human neuroendocrine tumors [41,
42]. Low expression of PLCB2 can change the
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Figure 5: ceRNA regulatory networks of (a) Hp-GA and (b) Hp-GC. Pink squares indicate lncRNAs, green hexagons indicate miRNAs,
orange circles indicate target genes, and size increases with the degree.
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RAS/Raf/MAPK signaling pathway, reduce cell viability, pro-
mote apoptosis, and inhibit tumorigenesis [43]. However,
what role has these two molecules played in the process of
NO-GA-GC remains poorly understood.

By constructing the ceRNA network, we screened
lncRNAs, miRNAs, and mRNAs involved in the gastric dis-
eases. In the Hp-GA network, hsa-miR-497-5p is shown to
be lowly expressed in colorectal cancer [15]. It regulated the
TGF-β signaling pathway, which can lead to cell cycle arrest
by regulating SMAD3 [44]. hsa-miR-665, downregulated in
gastric signet-ring cell carcinoma and upregulated in gastric
adenocarcinoma, may be associated with the invasion and
metastasis in signet-ring cell carcinoma [45]. hsa-miR-145-
5p was reduced in Hp-negative GC patients [46] and could
downexpress SOX2, a gastric-type differentiation factor
[47]. The relationships between the lncRNAs and the above
three miRNAs have not been investigated yet. In addition,
HOXA-AS2 was demonstrated in promoting cell prolifera-
tion, inducing epithelial-mesenchymal transition in hepato-
cellular carcinoma via the miR-520c-3p/gPC3 axis [48].

RP11-64C1.1 might be valuable for future investigation.
Besides, in the Hp-GC-related network, hsa-miR-125a-5p
was described to upregulate CCR7 and promote the develop-
ment of squamous carcinoma in the head or neck [49]. The
relationship between hsa-let-7d-5p and tumor has not been
specifically reported, while some scholars found it to be
closely related to cell senescence [50]. The only lncRNA in
the network, LL22NC03-102D1.18, remains to be explored.
Also, we found two overlapping mRNAs in two ceRNA net-
works named SST and GAST. Pieces of research showed the
SST affected tumor growth by inhibiting cell proliferation
and secretion and inducing apoptosis [51]. It was linked to
the invasion andmetastasis of the tumor [52]. GAST not only
increases the size of gastrointestinal tumors but also inhibits
goblet cell differentiation and tumor cell apoptosis [53, 54].
However, how they are regulated by ncRNA was still
unknown.

And then, we integrated the lncRNA-TF-mRNA and
ceRNA regulatory networks into a cross-network. In the
Hp-GA-related cross-network, the core mRNAs were
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CDK2, CDX2, MYOD1, and SMAD3, regulated by different
miRNAs and lncRNAs, respectively. CDK2 is a negative reg-
ulator of T cells. TGF-β-SMAD3 can inhibit CDK2 to pro-
mote Treg differentiation [55], which indicates that the
immune microenvironment may play an essential role in
the gastric diseases. CDX2, MYOD1, and SMAD3 have been
demonstrated to participate in the transcription of gastric
differentiation. The above results showed that the regulatory
network composed of immune and differentiation genes,
together with miRNA and lncRNA, played a vital role in
the development of Hp-GA. An in-depth study of these mol-
ecules may reveal the mechanism of Hp-GA. In the Hp-GC-
related cross-network, the core molecules were SST, SHH,
and GAST, which contacted with the regulation of neuroen-
docrine hormones. SHH was described to target INSM1 and
promote the progress of lung cancer [56]. The SHH signaling
pathway is also activated by the FOXD1, an essential role in
the development of the disease [57]. According to this, we
could find that immune regulation and differentiation were
important in the process of NO-GA, while neuroendocrine
regulation was mainly related to the process of GA-GC.
Therefore, an in-depth exploration of these molecules will
enable us to understand the multistep process of gastric dis-
eases. Using GSE27411 and GSE116312 datasets for further
validation, we discovered that in differential genes between
NO and Hp-GA, CDX2 played an unignorable role. Its func-
tion in Hp-GA is worthy of further discussion. In the identi-
fication of differential genes between Hp-GA and Hp-GC,
FPR1, TFF2, GAST, SST, FUT9, SHH, and GATA5 were
assumed significant. Expression differences of FABP1 were
shown in the validation datasets while the expression trend
above was the opposite. How does FABP1 play in the pro-
gression of gastric diseases? It needs to be further studied.

5. Conclusion

In summary, in this study, we screened differentially
expressed mRNAs and their long noncoding RNA regulatory
network with Hp-associated diseases including GA and GC.
We constructed lncRNA-TF-mRNA, ceRNA, and cross-
networks involved in these diseases. Our study might deepen

the understanding of Hp-related gastric diseases, extend the
perception of noncoding regulatory mechanisms, and
improve the early diagnosis and prevention of GC.
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