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Background. Esophageal cancer is one of the most deadly malignant tumors. Among the common malignant tumors in the world,
esophageal cancer is ranked seventh, which has a high mortality rate. Long noncoding RNAs (lncRNAs) play an important role in
the occurrence and development of various tumors. lncRNAs can competitively bind microRNAs (miRNAs) with mRNA, which
can regulate the expression level of the encoded gene at the posttranscriptional level. This regulatory mechanism is called the
competitive endogenous RNA (ceRNA) hypothesis, and ceRNA has important research value in tumor-related research.
However, the regulation of lncRNAs is less studied in the study of esophageal cancer. Methods. The Cancer Genome Atlas
(TCGA) database was used to download transcriptome profiling data of esophageal cancer. Gene expression quantification data
contains 160 cancer samples and 11 normal samples. These data were used to identify differentially expressed lncRNAs and
mRNAs. miRNA expression data includes 185 cancer samples and 13 normal samples. The differentially expressed RNAs were
identified using the edgeR package in R software. Then, the miRcode database was used to predict miRNAs that bind to lncRNAs.
MiRTarBase, miRDB, and TargetScan databases were used to predict the target genes of miRNAs. Cytoscape software was used to
draw ceRNA network. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed
using DAVID 6.8. Finally, multifactor cox regression was used to screen lncRNAs related to prognosis. Results. We have screened
1331 DElncRNAs, 3193 DEmRNAs, and 162 DEmiRNAs. Among them, the ceRNA network contains 111 lncRNAs, 11 miRNAs,
and 63 DEmRNAs. Finally, we established a prediction model containing three lncRNAs through multifactor Cox regression
analysis. Conclusions. Our research screened out three independent prognostic lncRNAs from the ceRNA network and constructed
a risk assessment model. This is helpful to understand the regulatory role of lncRNAs in esophageal cancer.

1. Introduction

Esophageal cancer (EC) is one of the most deadly malignant
tumors. Among the common malignant tumors in the world,
EC is ranked seventh, which has a high mortality rate [1].
There are two main subtypes of esophageal cancer: esopha-
geal squamous cell carcinoma (ESCC) is mainly distributed
in Asia, Africa, and South America; esophageal adenocarci-
noma (EAC) is mainly distributed in North America and
Europe [2, 3]. Nowadays, surgical resection can improve
the quality of life of patients with EC and prolong the survival
time of patients, but the risk of surgical treatment is high. In

addition, the use of surgical aids such as chemotherapy or
chemoradiation to treat esophageal cancer has improved
the prognosis of patients with advanced cancer, but the
five-year survival rate of esophageal cancer is only 15%-
25% [4–6]. Therefore, there is an urgent need to find molec-
ular biomarkers for EC, which can help improve the progno-
sis and treatment of patients with EC.

Long noncoding RNA (lncRNA) is defined as RNA tran-
scripts with more than 200nt and no coding ability [7]. There
is increasing evidence that lncRNAs can regulate tumor gen-
esis, including tumor cell proliferation, metastasis, differenti-
ation, apoptosis, and metabolism [8–10]. Among them,
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MALAT1, AFAP1-AS1, HOTAIR, TUG1, and MEG3 have
been shown to be dysregulated in EC and they can regulate
the occurrence and development of EC [11–16]. In addition,
related studies have shown that lncRNAs may become
prognostic markers for EC [17].

lncRNAs can regulate tumor genesis in many ways.
When located in the nucleus, they are mainly involved in
the process of transcription and epigenetics. When located
in the cytoplasm, they participate in posttranscriptional reg-
ulation mainly by forming specific protein complexes or as
ceRNA [18]. In 2011, Salmena et al. proposed the hypothesis
of competitive endogenous RNA [19]. With the deepening of
research related to lncRNA, the research of competitive
endogenous RNA hypothesis is also increasing, which has
become a hotspot in disease research.

In our study, the expression data of lncRNAs, miRNAs,
and mRNAs related to EC samples and normal samples came
from TCGA database. The differentially expressed RNAs
were selected. Subsequently, Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses were
used to reveal the potential biological mechanisms of differ-
entially expressed mRNAs. Then, we successfully constructed
an lncRNA-related ceRNA network in EC after differential
expression analysis and database comparison. Finally, uni-
variate and multivariate COX regressions were used to find
lncRNAs related to prognosis. Our research has found

lncRNAs related to the prognosis of EC. These lncRNAs
may become markers of EC prognosis.

2. Materials and Methods

2.1. Data Collection and Preprocessing. RNA-seq data, micro-
RNA data, and the clinical data of EC were downloaded from
The Cancer Genome Atlas (TCGA) database (https://
cancergenome.nih.gov/). RNA-seq data contains 160 cancer
samples and 11 normal samples. These data were used to
identify differentially expressed lncRNAs and mRNAs.
MicroRNA data includes 185 cancer samples and 13 normal
samples. Perl (version 5.28.1; https://www.perl.org/) was
used for data processing. Ensemble database (Ensemble
release 99; http://asia.ensembl.org/index.html) was used for
gene annotations and identification of lncRNAs and mRNAs.
RNAs that have not been annotated by the database were
excluded. Our research was conducted in accordance with
TCGA publication guidelines. Therefore, the approval from
the local ethics committee was not required.

2.2. Identification of Differentially Expressed RNAs. RNAs
with no expression or average count ≤ 1 will be filtered. The
differentially expressed RNAs were identified using the
edgeR package in R (version3.5.1) [20]. ∣log2 fold change
ðFCÞ ∣ >1 and false discovery rate ðFDRÞ < 0:05 were the
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Figure 1: ceRNA network construction flowchart.
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screening condition for differential RNAs. In addition, the
heat maps and volcano maps of differentially expressed
RNAs were drawn by the gplots and heat map packages in
the R software.

2.3. Gene Ontology and KEGG Enrichment Analysis. DAVID
6.8 (https://david.ncifcrf.gov) was used for Gene Ontology
(GO) enrichment analysis and Kyoto Gene and Genome
Encyclopedia (KEGG) signal pathway analysis based on
DEmRNAs. GO enrichment analysis can classify and anno-
tate genes through three aspects: biological path (BP), cellular
component (CC), and molecular function (MF). The KEGG
signaling pathway was used to find important signaling
pathways.

2.4. Construction of ceRNA Network. The miRcode database
(http://www.mircode.org/) was used to predict miRNAs
that bind to lncRNAs. MiRTarBase (http://mirtarbase.cuhk
.edu.cn/), miRDB (http://www.mirdb.org/), and TargetScan
(http://www.targetscan.org/) databases were used to predict
the target genes of miRNAs [21–23]. The mRNAs obtained
from the overlapping parts of the three data sets and inter-
sected with DEmRNAs were considered to be mRNAs
bound to miRNAs. Then, we constructed a coexpression
network of differently expressed RNAs based on the
DElncRNA-DEmiRNA and DEmiRNA-DEmRNA interac-
tions. Cytoscape (version 3.7.1) was used for network visu-
alization. The flow chart of ceRNA network construction
was displayed (see Figure 1).
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Figure 2: Heat maps of differential expression of lncRNAs, miRNAs, and mRNAs: (a) heat map of differential expression of lncRNAs; (b)
heat map of differential expression of miRNAs; (c) heat map of differential expression of mRNAs.
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2.5. Construction of PPI Network and Selection of Hub Gene.
The STRING (search tool for the retrieval of interacting
genes) (https://string-db.org) database was used to construct
a protein interaction network for differential genes in the
ceRNA network, and the medium credibility (interaction
score > 0:4) was the screening criterion [24]. Cytoscape (ver-
sion 3.7.1) was used for PPI network visualization. The max-
imal clique centrality (MCC) method from the cytoHubba
app in Cytoscape was used to screen for genes with higher
scores, which were considered key genes [25, 26].

2.6. Survival Analysis and Prognostic Model. The “survival”
package in R software was used for survival analysis of
DElncRNAs in the ceRNA network. The Kaplan-Meier
method was used to draw survival curves, and the log-rank
test was used to compare the differences between the two
groups. p < 0:05 was considered statistically significant. Sub-
sequently, univariate COX regression was used to evaluate
the association between DElncRNAs in the ceRNA network
and the overall survival rate of EC, and p < 0:05 was consid-

ered to be significant. Then, DElncRNAs from univariate cox
regression and LR analysis were used to construct a multivar-
iate Cox proportional hazards regression model. The multi-
variate Cox regression model was used to construct a
prognostic model of DElncRNAs in the ceRNA network.
The stepwise regression method was used to include and
exclude variables. This method is based on Akaike Informa-
tion Criterion (AIC). AIC is a standard used to measure the
goodness of a statistical model. It is generally considered that
the model with the smaller AIC value is the optimal model.
The model expression formula is as follows:

Risk score = CoencRNA1 ∗ ExplncRNA1
+ CoenlncRNA2 ∗ ExplncRNA2
+⋯CoencRNAn ∗ ExplncRNAn:

ð1Þ

“Coe” represents the regression coefficient of the multiple
COX regression model, and “Exp” represents the expression
level of lncRNAs.
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Figure 3: Volcano maps of differential expression of lncRNAs, miRNAs, and mRNAs: (a) volcano map of differential expression of lncRNAs;
(b) volcano map of differential expression of miRNAs; (c) volcano map of differential expression of mRNAs. Red represents upregulated
RNAs, and green represents downregulated RNAs.
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According to the median value of risk score, EC patients
were divided into high- and low-risk groups. Kaplan-Meier
analysis was used to compare the overall survival rates of

the two groups. The “timeROC” package was used to plot
the time-dependent receiver operating characteristic (ROC)
curve, which can evaluate the value of the model prediction.
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Figure 4: The gene ontology (GO) enrichment analysis of DEmRNAs and the bubble chart and bar chart of the Kyoto Encyclopedia of Gene
and Genome (KEGG) signaling pathway analysis: (a) GO enrichment analysis of upregulated DEmRNAs; (b) analysis of the KEGG signaling
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downregulated DEmRNAs.
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3. Results

3.1. Identification of the DElncRNAs, DEmiRNAs, and
DEmRNAs. The differentially expressed RNAs were identi-
fied by using the edgeR package in R software. ∣log2 fold

change ðFCÞ ∣ >1 and false discovery rate ðFDRÞ < 0:05 were
the screening condition for differential RNAs. 1331 DElncR-
NAs (648 downregulated and 683 upregulated) and 3193
DEmRNAs (1753 downregulated and 1440 upregulated)
were screened out of 160 EC samples and 11 normal samples.

Table 1: DElncRNAs, DEmiRNAs, and DEmRNAs included in the ceRNA network.

Category Changes Gene symbol

lncRNAs

Downregulated

TTTY14, C9orf106, LINC00304, WDFY3-AS2, SPATA8, C5orf60, AL162511.1, AC005082.1, LINC00269,
AP000897.1, AC079467.1, SNHG14, POU6F2-AS1, LINC00365, THRB-IT1, LINC00457, LINC00113, PCA3,

PRICKLE2-AS3, DNMBP-AS1, PCDH9-AS2, TTTY10, ZRANB2-AS2, C9orf147, DIRC3, F10-AS1,
MIR497HG, CYP1B1-AS1, TTLL7-IT1, LINC00472, ENOX1-AS1, JAZF1-AS1, MAGI2-AS3, ZRANB2-AS1,
SRGAP3-AS4, MACROD2-AS1, DAPK1-IT1,CADM2-AS1, ZBTB20-AS3, MAGI1-AS1, ADAMTS9-AS1,

ADAMTS9-AS2, AL353803.1, AC114810.1, AC021755.3, AC018926.1, AP001094.1, AC007389.1, FOXP1-AS1,
AL391807.1, AP005717.1, AC012181.1, LIFR-AS1, ALDH1L1-AS2, FAM13A-AS1, DNAH10OS, C8orf49,

AC110619.1, RMST, AC135776.1, PWRN1, LINC00261

Upregulated

PVT1, DLEU2, SNHG1, LINC00460, GK-IT1, ALMS1-IT1, LINC00337, SNHG15, ZEB1-AS1, SNHG3,
POU6F2-AS2, AL391152.1, AC007611.1, C17orf82, LINC00184, HOTAIR, LINC00392, C15orf54, AP002478.1,
C8orf31, TM4SF19-AS1, HCP5, AC009093.1, AL513123.1, DLX6-AS1, FNDC1-IT1, LINC00393, AC131254.1,

LINC00355, AL118508.1, AC131157.1, CASK-AS1, LMO7-AS1, AC093515.1, AC019294.2, HOTAIRM1,
AC004917.1, NAALADL2-AS2, AC123768.1, MYO16-AS1, LINC00299, LINC00491, LINC00114, DSCR8,

LSAMP-AS1, LINC00237, E2F3-IT1, LGALS8-AS1, KTN1-AS1

miRNAs
Downregulated

hsa-miR-139-5p, hsa-miR-338-3p, hsa-miR-125a-5p, hsa-miR-125b-5p, hsa-miR-129-5p, hsa-miR-490-3p,
hsa-miR-363-3p, hsa-miR-135a-5p

Upregulated hsa-miR-17-5p, hsa-miR-301b-3p, hsa-miR-508-3p

mRNAs

Downregulated
NR3C2, VLDLR, TXNIP, CADM2, ADAMTSL3, KAT2B,RBM47, RBPMS2, GRM7, DBT, SCRG1, PTF1A,
NFIC, CNTN4, DCLK2, ZNF385B, GLUL, LPP, SATB1, TTC28, THRB, NTN4, RGMB, CRY2, STARD13,

GAB2, LIFR, FAM174B, LIN28A, BTG2, GATA6, NOVA1, PDE4D

Upregulated
MMP11, EZH2, CBFB, BCL2L12, E2F3, DUSP10, HAUS8, CENPQ, COL1A1, ZNF367, ADAM17, CEP19,
RUNX2, TNFAIP3, HOXD10, SEMA7A, ASPN, FJX1, DUSP6, HMGA2, COL5A1, ARID3A, CAMK2N2,

EIF4EBP1, MSN, STON2, EGR2, HOXA10, ETV1, NEUROD2
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Figure 5: the ceRNA network of lncRNA-miRNA-mRNA in EC. Rectangles represent lncRNAs, V represents miRNAs, and ellipses represent
mRNAs. The red nodes are upregulated RNAs, and the green nodes are downregulated RNAs.)
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162 DEmiRNAs (64 downregulated and 98 upregulated)
were screened out of 185 cancer samples and 13 normal sam-
ples. The heat map of differential RNAs is displayed (see
Figure 2). The volcano diagram of differential RNAs is dis-
played (see Figure 3). The results indicated that these differ-
ential RNAs might play a role in the development of EC.

3.2. Functional Analysis of DEmRNAs. DAVID 6.8 (https://
david.ncifcrf.gov) was used for Gene Ontology (GO) enrich-
ment analysis and Kyoto Gene and Genome Encyclopedia
(KEGG) signal pathway analysis based on DEmRNAs. GO
enrichment analysis can classify and annotate genes through
three aspects: biological path (BP), cellular component (CC),
and molecular function (MF). Upregulated mRNAs were
classified as 47 biological process (BP) terms, 20 cellular com-
ponent (CC) terms, and 8 molecular function (MF) terms
using GO enrichment analysis. Downregulated mRNAs were
classified as 10 biological process (BP) terms, 12 cellular com-
ponent (CC) terms, and 5 molecular function (MF) terms
using GO enrichment analysis. The results of partial GO
enrichment are displayed (see Figures 4(a) and 4(c)). Subse-
quently, KEGG signaling pathway analysis showed that
upregulated mRNAs were significantly enriched in 9 signal-
ing pathways, and downregulated mRNAs were significantly
enriched in 12 signaling pathways (see Figures 4(b) and
4(d)). The upregulated mRNAs were mainly involved in cell
cycle, DNA replication, cytokine-cytokine receptor interac-
tion, and ECM-receptor interaction. Downregulated mRNAs
were mainly involved in neuroactive ligand-receptor interac-
tion, gastric acid secretion, calcium signaling pathway, and
pancreatic secretion. These results can help us understand
the key signaling pathways and biological processes in the
development of EC.

3.3. Construction of ceRNA Network. Bioinformatics tools
were used to predict the interaction between DElncRNAs,
DEmiRNAs, and DEmRNAs. The miRcode database
(http://www.mircode.org/) was used to predict miRNAs that
bind to lncRNAs. The Perl language was used to extract
DElncRNAs and miRNAs combined with DElncRNAs in
the miRcode database. Then, the DEmiRNAs and the miR-
NAs extracted from the miRcode database were intersected
to obtain the miRNAs in the ceRNA network. The lncRNAs
targeted by these miRNAs were the lncRNAs in the ceRNA.
MiRTarBase, miRDB, and TargetScan databases were used
to predict the target genes of miRNAs in the ceRNA net-
work. After these target genes intersect with DEmRNAs,
they were the mRNAs in the ceRNA network. In the end,
111 lncRNAs (62 downregulated and 49 upregulated), 11
miRNAs (8 downregulated and 3 upregulated), and 63
mRNAs (33 downregulated and 30 upregulated) were
included in the ceRNA network. The lncRNAs, miRNAs,
and mRNAs in the ceRNA network are displayed (see
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Figure 6: Identification of hub genes from the PPI network with the MCC method. (a) There are 32 genes in the PPI network. The red nodes
are upregulated genes, and the green nodes are downregulated genes. (b) Top ten key genes screened by the MCCmethod; red was the higher
score calculated by the MCC method, followed by orange.

Table 2: MCCmethod to calculate the key genes and their scores in
the PPI network.

Rank Gene symbol Score

1 KAT2B 14

2 EZH2 12

3 RUNX2 9

4 COL1A1 4

5 E2F3 4

6 CBFB 4

7 EGR2 4

8 GATA6 4
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Table 1). Cytoscape was used for network visualization. EC-
related ceRNA network is displayed (see Figure 5).

3.4. Construction of PPI Network and Selection of Hub Gene.
The STRING (search tool for the retrieval of interacting
genes) database (https://string-db.org) was used to construct
a protein interaction network of differential genes. Medium
credibility (interaction score > 0:4) was used as the screening
criterion, loose links and outliers were removed, and the
PPI network was drawn. Cytoscape was used for PPI net-
work visualization. The PPI network is displayed (see
Figure 6(a)). The maximal clique centrality (MCC) method
from the cytoHubba app in Cytoscape was used to screen for
genes with higher scores, which were considered key genes.
The key genes are displayed (see Figure 6(b), Table 2). Our
results indicated that KAT2B, EZH2, RUNX2, COL1A1,
E2F3, CBFB, EGR2, GATA6, NFIC, and HMGA2 had

important roles in the ceRNA network. These genes might
be key genes in the development of EC.

3.5. Survival Analysis and Prognostic Model Construction.
More and more evidences have shown that lncRNAs can pre-
dict the overall survival rate of cancer patients. We identified
lncRNAs related to prognosis from related DElncRNAs in
the ceRNA network. The Kaplan-Meier method was used
to draw survival curves, and log-rank test was used to com-
pare the differences between the two groups. Seven lncRNAs
were considered to be related to the overall survival rate of
EC (see Figure 7). AC079467.1 and DIRC3 were considered
to be positively correlated with overall survival. DNAH10OS,
DSCR8, GK-IT1, HOTAIR, and LINC00365 were considered
to be negatively correlated with overall survival. Then, uni-
variate cox regression analysis was used for further analysis.
Our results showed that only three lncRNA univariate cox
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Figure 7: Kaplan-Meier survival curves of seven DElncRNAs associated with overall survival in EC.
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regression results were statistically significant in seven
lncRNAs. Multivariate cox regression was used to construct
a prognostic model related to lncRNAs. All three lncRNAs
were included in the model. Among them, DIRC3 might be
a protective factor for the prognosis of OS (HR < 1, see
Figure 8(a)). DNAH10OS and GK-IT1 might be risk factors
for the prognosis of OS (HR > 1, see Figure 8(a)). The model
expression formula is as follows:

Risk score = −0:20910 ∗ ExpDIRC3 + 0:37509
∗ ExpDNAH10OS + 0:27170 ∗ ExpGK‐IT1:

ð2Þ

According to the median value of risk score, EC patients
were divided into high- and low-risk groups. The heat map of
the expression profiles of the three lncRNAs in EC patients is
displayed (see Figure 8(b)).

Among them, there were 79 samples of EC patients in the
high-risk group and the low-risk group respectively. In order

to reflect the predictive performance of the model, K-M anal-
ysis was used to compare the overall survival rate of the high-
risk group and the low-risk group. The results showed that
the overall survival rate between the two groups was statisti-
cally different (see Figure 9(c), p < 0:05). The calibration
curve was used to test the consistency between the model’s
predicted mortality rate and the actual mortality rate. The
calibration curves of the 3-year overall survival rate (see
Figure 9(a)) showed that there was good agreement between
the predicted mortality rate and the actual mortality rate. In
addition, our model was used to predict the 3-year survival
rate and 5-year survival rate of patients with EC. The time-
dependent receiver operating characteristic (ROC) curves
are displayed (see Figure 9(b)). The area under the curve
for 3-year survival rate was 0.639, and the area under the
curve for 5-year survival rate was 0.685. These results indi-
cated that the PI of lncRNAs showed a good prognostic abil-
ity, which suggested that the prognostic model constructed
by the three lncRNAs may be a prognostic factor for EC.
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Figure 8: The prognostic model containing 3 lncRNAs was constructed by multiple Cox regression. (a) The prognostic model contains a
forest plot of hazard ratios of three lncRNAs. (b) Heat map of the expression levels of the three lncRNAs included in the model in the
high- and low-risk groups.
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4. Discussion

Esophageal cancer (EC) is one of the most deadly malignant
tumors. The five-year survival rate of EC is only 15%-25%
[4–6]. Therefore, there is an urgent need to find molecular
biomarkers for EC, which can help improve the prognosis
and treatment of patients with EC. Long noncoding RNA
has been confirmed to be associated with poor prognosis in
lung cancer [27, 28], gastric cancer [29, 30], liver cancer
[31], and other cancers [32].

lncRNAs can regulate the occurrence of diseases in a
variety of ways. Existing studies have shown that lncRNAs
can interact with epigenetics to regulate disease processes
in the nucleus; these interactions include the interaction
between lncRNAs and DNA methylation [33]. lncRNAs
can also interact with transcription factors to play an impor-
tant role at the transcription level [34]. lncRNAs can directly
bind to mRNA to increase its stability or make it degrade,
inhibit, or promote its translation in the cytoplasm [18].
However, more research has focused on lncRNAs as a mem-
ber of the ceRNA network to play its regulatory role, which
has even become the research focus of lncRNAs in disease-
related roles.

More and more evidence has shown that lncRNAs partic-
ipate in the regulation of EC through the ceRNA network
mechanism. lncRNA MALAT1 can regulate miR-101 and
miR-207 to affect the proliferation, invasion, and metastasis

of ESCC cells [11]. SNHG16, which is upregulated in ESCC
tissues and cell lines, can bind miR-140-5p to regulate
the expression of ZEB1 [35]. The expression of lncRNA
HAND2-AS1 is downregulated in tumor tissue. The over-
expression of lncRNA HAND2-AS1 may inhibit the prolif-
eration, migration, and invasion of cancer cells in ESCC
by downregulating miRNA-21 [36]. These studies indi-
cated that lncRNAs can play a role through the ceRNA
network in EC, and lncRNAs are closely related to the
occurrence of tumors. Therefore, our study screened dif-
ferentially expressed lncRNAs, miRNAs, and mRNAs in
EC through TCGA database. Subsequently, we constructed
111 lncRNAs (62 downregulated and 49 upregulated), 11
miRNAs (8 downregulated and 3 upregulated), and 63
mRNAs (33 downregulated and 30 upregulated) were
included in the ceRNA network. Here, we are concerned
about the relative regulation of lncRNAs in the ceRNA net-
work. We have constructed the PPI network and found the
key genes in the network. Our results indicated that KAT2B,
EZH2, RUNX2, COL1A1, E2F3, CBFB, EGR2, GATA6,
NFIC, and HMGA2 had important roles in the ceRNA net-
work. These genes may play an important role in EC [37–
40]. Here, we identified lncRNAs related to prognosis from
related DElncRNAs in the ceRNA network. Seven lncRNAs
are considered to be related to the prognosis of EC. HOTAIR
has been confirmed to have higher expression levels in ESCC
tissues than in the corresponding noncancerous tissues in
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Figure 9: Evaluation of model prognostic ability. (a) The calibration curves of the 3-year overall survival rate; the abscissa was the predicted
mortality of the model, and the ordinate was the actual mortality. (b) The receiver operating characteristic (ROC) curve of the three-year
survival rate and the five-year survival rate predicted by the model. (c) Kaplan-Meier plots of overall survival for patients with a high- or
low-risk score of the EC patients.
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these seven lncRNAs. Increased HOTAIR expression is
related to poor prognosis. In the clinical cohort study, it
was also found that HOTAIR has corresponding prognostic
value in ESCC [13, 14]. DSCR8 has been shown to be
involved in the progression of cancer. DSCR8 can activate
the Wnt/β-catenin signaling pathway to promote HCC pro-
gression through the DSCR8/miR-485-5p/FZD7 axis [41].
Similarly, DSCR8 has been shown to be dysregulated in ovar-
ian cancer [42]. In our study, the upregulation of DSCR8
changes significantly, which means that it may play an
important role in the occurrence of EC. DIRC3 is upregu-
lated in melanoma and may be used as an inhibitor of mela-
noma. But DIRC3 has not been shown to be significantly
different in EC [43]. LINC00365 is upregulated in colorectal
cancer specimens, and it may be involved in the process of
CRC cells by mediating the Wnt/β-catenin pathway [44].
However, the expression of LINC00365 was downregulated
in our study, which may be caused by different cancer types.
The other three lncRNAs have not been reported; they may
be newly discovered lncRNAs.

Subsequently, we constructed a prognostic model of EC
through univariate and multivariate cox regression models.
Three lncRNAs were included in the model. The prognostic
model constructed by these three lncRNAs showed good pre-
dictive ability.

5. Conclusions

Our research is based on TCGA database to screen differen-
tially expressed lncRNAs, miRNAs, and mRNAs in esopha-
geal cancer. Then, the ceRNA network containing lncRNAs
was constructed, which was used to find seven lncRNAs that
related to the prognosis of esophageal cancer. Finally, a prog-
nostic model of esophageal cancer containing three lncRNAs
was constructed. These lncRNAs may be used as prognostic
markers of esophageal cancer. In conclusion, our research
will provide new insights into the regulation of lncRNAs in
esophageal cancer.
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