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In this paper, we sought to explore the relationship between apolipoprotein AV (APOAV) overexpression and insulin resistance in
hepatocytes. *e insulin-resistant HepG2 cell model was constructed, and then, APOAV-overexpressed HepG2 cells (B-M) were
induced by infecting with a recombinant adenovirus vector. Microarray data were developed from B-M samples compared with
negative controls (A-con), and themicroarray data were analyzed by bioinformatic methods.APOAV-overexpression induced 313
upregulated genes and 563 downregulated ones in B-M sample. *e differentially expressed genes (DEGs) were significantly
classified in fat digestion and absorption pathway. Protein-protein interaction network was constructed, and AGTR1 (angiotensin
II receptor type 1) and P2RY2 (purinergic receptor P2Y, G-protein coupled 2) were found to be the significant nodes closely
related with G-protein related signaling. Additionally, overexpression ofAPOAV could change the expression of Glut4 and release
the insulin resistance of hepatic cells. *us, APOAV overexpression may prevent the insulin resistance in liver cells by mediating
the genes such as AGTR1 and P2RY2.

1. Introduction

Insulin resistance has become an increasingly common
metabolic syndrome in people around the word. *e main
understanding of the mechanism for insulin resistance is the
glycometabolism disorder in liver [1]. Insulin resistance
results in excessive glucose consumption in liver, which
contributes to the development of hyperglycemia [2]. In
addition, hyperglycemia is frequently associated with met-
abolic syndromes such as hypertension, coronary heart
disease, and diabetes [3, 4]. Type 2 diabetes (T2D) is a
common metabolic disorder that characterizes high blood
sugar, insulin deficiency, and insulin resistance. T2D (non-
insulin-dependent) is the risk for cardiovascular disease that
is the main cause for death of diabetes patients [5].

Recently, apolipoprotein AV (APOAV), also served as
the APOA5, has been found to be a novel apolipoprotein and
to play a key role in the processes of insulin resistance and

lipid metabolism [6, 7]. APOAV is mainly expressed in liver
and closely associated with high-density lipoprotein [8].
Moreover, APOAV is also found to participate in the
metabolism of triglycerides by stimulating hydrolysis of
triglycerides, reducing the lipoprotein production rate, and
facilitating clearance of triglyceride-rich lipoprotein [9]. A
previous study suggests that APOAV is downregulated in
insulin-treated mice and the expression of APOAV a con-
tributor for hypertriglyceridemia [10]. *e decreased ex-
pression APOAV is involved in insulin resistance-related
hypertriglyceridemia [6]. APOAV seems to be closely related
with insulin resistance in diabetics, but whether the over-
expression of APOAV could prevent insulin resistance needs
to be further determined.

Microarray technology has been widely used to generate
the gene expression data on a genomic scale [11]. In this
paper, we performed the microarray analysis for the human
hepatoma (HepG2) cells to discover the differentially
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expressed genes (DEGs) induced byAPOAV overexpression.
HepG2 cells, which are characterized by the common
physiological function in glucose metabolism with normal
hepatic cells [12], were used in this study. *erefore, in the
present study, we sought to explore the potential mechanism
of relationship between APOAV expression and insulin
resistance in hepatocytes.

2. Materials and Methods

2.1. Insulin-Resistant HepG2 Cell Model Construction.
HepG2 cell lines (Cell Culture Center of Peking Union
Medical Science, Beijing, China) were cultured at 37°C in
Dulbecco’s modified eagle medium (DMEM) supplemented
with 10% (v/v) FBS (fetal bovine serum) and 100 IU peni-
cillin/streptomycin/amphotericin in a humidified 5% CO2
atmosphere. When entering the logarithmic phase, the cells
were washed by PBS, and then digested with trypsin enzyme.
After the cells turned round, cell suspension was put into
15ml centrifuge tube and centrifuged at 1000 rpm for 3min
and inoculated in 96-well plates at the density of 5×103 cells/
cm2.

In order obtain the insulin-resistant HepG2 cell model,
the cells were treated with insulin at a series of concentration
gradients. *e insulin-resistant HepG2 cell model was in-
duced as described previously [13]. Briefly, HepG2 cells were
subjected to 24h-culture of 5×10−5, 5×10−6, 5×10−7, and
5×10−8mol/L bovine insulin, followed by incubating in
10−9mol/L insulin for 24 h. And to determine whether the
insulin model was successfully constructed, glucose uptake
rate and liver glycogen synthesis were measured. For glucose
uptake rate measurement, the supernatant was absorbed into
a 15mL centrifuge tube at 1500 rpm/6min, and transferred
to a 1.5ml EP tube. After the supernatant was diluted 6 times
with distilled water, and the glucose uptake rate was de-
termined by the urine glucose assay kit-oxidase assay
according to the manufacturer’s instructions. Glucose up-
take rate� (preinduced glucose concentration-postinduced
glucose concentration)/preinduced glucose concentration.
For glycogen synthesis measurement, (1) the cells were
digested with trypsin, centrifuged (3000 g, 5min) and
weighed; (2) hydrolysis: sample weight (mg): lye volume
(μL)� 1 : 3, boiled in boiling water for 20min; (3) liver
glycogen detection solution (1%); (4) the standard glucose
solution: the standard glucose solution was prepared into 25,
12.5, 6.25, 3.125, and 1.5625 g/ml with distilled water; (5)
OD620 nm value of each tube was measured; and (6)
standard curve was drawn for calculating the liver glycogen
concentration.

2.2.Western Blot Analysis. To determine the native APOAV
expression in the induced model cells and insulin-resistant
HepG2 cells infected by recombinant adenovirus, western
blot analysis was performed. Briefly, the cells were lysed in a
radioimmunoprecipitation assay (RIPA) buffer supple-
mented with for proteins extraction, and total protein was
quantified with the bicinchoninic acid (BCA) assay. Total
proteins (30 µg/lane) were separated via 12% SDS-PAGE and

then transferred to a polyvinylidene difluoride (PVDF)
membrane. After blocked with 5% skimmed milk for 1 h, the
membrane was incubated with primary antibodies
(APOAV5, 1 :1000; beta actin, 1 :1000) at 4°C overnight.
Following washing with TBST for 3 times, the membrane
was incubated with secondary antibody (antirabbit IgG-
HRP, 1 : 5000; antimouse IgG-HRP, 1 : 5000) for 2 h at room
temperature. Finally, the proteins were visualized using the
ECL chemiluminescence reagent.

2.3. Recombinant PlasmidVector with APOAV. *e APOAV
gene was amplified by PCRwith the primers, such as 5′-ACA
CGGATCCATGGCAAGCATGGCTGCCGT-3′ (forward)
and 5′-ACACGAATTCTCAGGGGTCCCCCAGATG-3′
(reverse). After the plasmid pHBAd-MCMV-GFP was
digested with BamH1 and EcoR1, the recombinant plasmid
vector was constructed by connecting with APOAV at 4°C
overnight. *e positive recombinant clone was named as
pHBAd-MCMV-APOAV-GFP. *e expressions of APOAV
and GFP were regulated by cytomegalovirus (CMV)
promoter.

2.4. Insulin-Resistant HepG2 Cells Infection by Recombinant
Adenovirus. HEK293 was the common cell for packing the
recombinant adenoviruses because of its E1 genes. To
generate recombinant adenovirus vectors with APOAV
expression, the pHBAd-MCMV-APOAV-GFP and adeno-
virus skeleton plasmid vector of pHBAd-BHG were coin-
fected into HEK293 cells with the lipofectamine 2000 kit
following the manufacturer’s instruction. After 6 h trans-
formation, the recombinant adenoviruses were harvested.
*en, the insulin-resistant HepG2 cells were cultured and
infected with the recombinant adenovirus vector for 48 h.
*e successful infection by recombinant adenovirus was
determined, when the expression of GFP was observed by
fluorescence microscopy.

2.5. RNA Isolation. Total RNA of insulin-resistant HepG2
cells with APOAV overexpression (B-M) and negative
controls (A-con) was isolated using TRIzol reagent (Invi-
trogen, Carlsbad, CA) according to the manufacturer’s
protocol. *e expected quality of RNA was determined by
measuring the absorbance ratios (A260/A280) between 1.8
and 2.0 under the spectrophotometer.

2.6. Microarray Analysis. *e RNA library was constructed
by using the NEBNext ultra directional RNA library prep kit
for illumina (New England Biolabs, Ipswich, MA, USA)
following the manufacturer’s instruction. After the library
quality was assessed by Aglient 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA), the next-generation se-
quencing was performed based on the Illumina HiSeq4000
platform (Illumina Inc., San Diego, CA). Read counts were
normalized by TMM (trimmed mean of M values) in the
edgeR package [14]. *en, the read count data were
transformed to log2-counts per million (logCPM) for gene
expression by the limma-voom package [15].*e differential

2 BioMed Research International



gene expression analysis between B-M and A-con cells was
carried out by the limma package in R [16, 17]. Genes with
P< 0.05 and log2|fold change|≥ 1 were considered to be
significantly different. Cluster analysis for DEGs was per-
formed by gplots in R [18].

2.7. Function Analysis. *e functionally associated genes
were classified with the aim to explore the altered function
and pathways in B-M cells. *e GO (Gene Ontology)
functions and KEGG (Kyoto Encyclopedia of Genes and
Genomes) pathways were analyzed following the protocol of
DAVID (version: 6.8) [19]. *e count ≥2 and P value< 0.05
were set as the cutoff value.

2.8. Protein-Protein Interaction Network Analysis. STRING
(Search Tool for the Retrieval of Interacting Genes/Proteins)
database is a collection of protein interaction pairs, in-
cluding physical and functional interactions [20]. *e gene
interactions analysis was performed based on protein in-
teractions by STRING version: 10.0 [21].*e protein-protein
interaction (PPI) network was constructed by protein in-
teractions with PPI score≥ 0.4 and visualized by Cytoscape
(version: 3.2.1) [22]. *en, the node degrees were calculated
for screening the hub nodes.

2.9. Module Analysis. Cytoscape plugin ClusterONE [23]
provided network cluster analysis for screening significant
modules. Modules with P< 1.0E − 4 were considered to be
significant. *e GO functions and KEGG pathways signif-
icantly enriched by module genes were further analyzed by
DAVID (version: 6.8) software. Subsequently, the module
genes with high node degrees were screened out as feature
genes.

2.10. Disease-Associated Gene Analysis. *e Comparative
Toxicogenomics Database (CTD, http://ctdbase.org/) [24]
provides the gene-disease relationships recorded in the
previous studies. All of the marker genes associated with
T2D were retrieved from the CTD database.

3. Verification Experiments

3.1. AML12 Cells with APOAV Overexpression. Mouse liver
cells of AML12, purchased from the Chinese Academy of
Sciences, Shanghai, China, were divided into the blank
group, normal control group (empty vector), and APOAV
group (APOAV overexpression). *e recombinant plasmid
vectors with APOAV overexpression were constructed
according to the method mentioned above. *en, the
recombinant plasmid vectors were transfected into AML12
cells. *e AML12 cells successfully infected with the
recombinant adenovirus vector were collected under fluo-
rescence microscopy.

3.2. RT-qPCR. Total RNA from AML12 cell lines was
extracted according to themethodmentioned above, and the
expression level of APOAV was determined according to the

qRT-PCR with the following amplification conditions:
predegeneration at 95°C for 3min, followed by 40 cycles at
95°C for 30 sec, 30 sec at 60°C. GAPDH was used as the
internal control, and the primer sequences were as follows:
APOAV: forward, 5′-TCCTCGCAGTGTTCGCAAG-3′,
and reverse, 5′- GAAGCTGCCTTTCAGGTTCTC-3′; GAP
DH: forward, 5′ -GGTGAAGGTCGGTGTGAACG-3′, and
reverse, 5′-CTCGCTCCTGGAAGATGGTG-3′. All re-
actions were performed in triplicate, and relative expressions
of APOAV in cell lines were calculated by the 2−ΔΔct method.

3.3. Enzyme-Linked Immunosorbent Assay (ELISA). After
infected with recombinant adenovirus vectors, the cells were
adjusted to 5×104 cells/cm2 and then maintained at 37°C
overnight. When the cells grew up to 50%, the cells were
treated with 5×10−7mol/L insulin for 48 h. *e level of
glucose was evaluated by the ELISA kit (Beijing Pulilai gene
co. LTD, Beijing, China) following the manufacturer’s
protocol.

Furthermore, the levels of Glut4 in the three groups were
measured with the ELISA kit (Shanghai Enzyme-linked
Biotechnology Co., Ltd, Shanghai, China) according to the
manufacturer’s protocol.

3.4. Statistical Analysis. All the data were expressed as
mean± SD (standard deviation). Statistical analyses were
performed with Graphpad prism 5 (Graphpad Software, San
Diego, CA). *e comparison among groups was performed
by one-way ANOVA (one-way analysis of variance). Dif-
ferences between groups were compared by LSD (least
significant difference test) method. P< 0.05 was considered
significant.

4. Results

4.1. �e Construction of Insulin-Resistant HepG2 Cell Model.
As illustrated in Figures 1(a) and 1(b), compared with
normal control, the insulin groups with 5×10−8, 5×10−7,
and 5×10−8 could significantly decrease the glucose uptake
rate and liver glycogen synthesis of HepG2 cells. Specially,
the insulin concentration of 5×10−7 was the most significant
effect, which was selected for the following experiment.
Furthermore, the glucose uptake rate and liver glycogen
synthesis were used as the criteria for insulin-resistant cell
model construction. Moreover, the results of western blot
analysis showed that APOAV 5 levels in insulin-resistant
HepG2 cells were decreased in comparison to normal
controls (Figure 1(c)).

4.2. Insulin-Resistant HepG2 Cells Infected with Recombinant
Adenoviral Vectors. HEK239 were independently infected
with APOAV overexpressed recombinant adenoviruses
and GFP control. As shown in Figure 2(a), the cells
changed to round and plaques appeared obviously, which
illustrated that the recombinant vectors were constructed
successfully. After adenovirus vectors transfection, the
GFP-positive cells were detected with the green
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Figure 1: Insulin-resistant HepG2 cell model construction. (a) Glucose uptake rate and (b) liver glycogen synthesis after HepG2 cells treated
with 5×10−5, 5×10−6, 5×10−7, and 5×10–8mol/L bovine insulin. (c) APOAV protein expression in insulin-resistant HepG2 cells.
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Figure 2: Continued.
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fluorescence (Figure 2(b)). Moreover, compared with the
controls, the expression of APOAV 5 protein in insulin-
resistant HepG2 cells infected by recombinant adenovirus
was upregulated (Figure 2(c)). In comparison to the in-
sulin-resistant HepG2 cells, the glucose uptake rate and

liver glycogen synthesis in cells infected by recombinant
adenovirus were significantly increased (both, P< 0.05;
Figures 2(d) and 2(e)), respectively. All these suggested
that insulin-resistant HepG2 cells were successfully in-
fected by recombinant adenovirus.
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Figure 2: Successful construction of the insulin-resistant HepG2 cells with APOAV overexpression. (a) Recombinant adenoviruses packing
HEK293 cells were infected with recombinant adenoviruses with APOAV overexpression. (b) *e fluorescence images of insulin-resistant
HepG2 cells with APOAV overexpression. B-M: insulin-resistant HepG2 cells with APOAV overexpression; A-con: negative controls. (c)
Western blot analysis for APOAV 5 expression in control and insulin-resistant HepG2 cells with APOAV overexpression. (d) Glucose
uptake rate and (e) liver glycogen synthesis in normal control, insulin-resistant HepG2 cells, and insulin-resistant HepG2 cells with APOAV
overexpression.
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4.3. Identification of DEGs. *e gene expression difference
between B-M and A-con cells was assessed by microarray
array analysis. *e comparison of the gene expression
pattern for B-M and A-con cells showed 876 genes differ-
entially expressed (P< 0.05 and log2|fold change|≥ 1), of
which 313 were upregulated and 563 were downregulated.
*e hierarchical clustering were performed in two di-
mensions such as samples and genes (Figure 3), suggesting
the clear differentiation was observed between B-M and
A-con samples.

4.4. Characterization of Altered Function and Pathways.
In order to analyze the potential biological function that was
interfered by genes differentially expressed, the DEGs were
annotated based on GO and KEGG databases. Results
showed that the significantly different genes were classified
in different GO categories (BP: biological process, CC: cellar
component, andMF: molecular function) and pathways.*e
upregulated genes were closely related with intrinsic apo-
ptotic signaling pathway by p53 class mediator-related BP,
synaptic vesicle membrane-related CC, and calcium-de-
pendent phospholipid binding-related MF. *e down-
regulated genes were enriched in cell-cell signaling-related
BP, extracellular region-related CC, and lipid transporter
activity-related MF. In addition, the cancer-associated
pathways were significantly associated with upregulated
genes, such as small cell lung cancer and prostate cancer.*e
downregulated genes showed close association with systemic
lupus erythematosus, ABC transporters, and legionellosis
pathways (Table 1). And all these data reveal the potential
processes and pathways that DEGs might be involved.

4.5. PPI Network and Hub Nodes Construction. Total 547
protein interaction pairs with PPI score ≥0.4 were identified
in the PPI network. As shown in Figure 4, the PPI network
was constructed, which was comprised of 317 nodes and 547
edges. *e hub nodes with degree ≥10 in network were
screened out (Table 2), such as H2AFX (H2A histone family
member X, degree� 19), HDAC9 (histone deacetylase 9,
degree� 18), ESR1 (estrogen receptor 1, degree� 18), BMP2
(bone morphogenetic protein 2, degree� 17), and CDC6
(cell division cycle 6, degree� 15), which could be selected as
the key genes.

4.6. Significant Modules in PPI Network. With the applica-
tion of ClusterONE software, two modules were found to be
significant. As shown in Figure 5(a), there were 9 nodes in
module 1 and 13 nodes in module 2. Most of the module
genes showed high node degrees in PPI network (Table 3). In
addition, hierarchical clustering revealed the existence of 2
group samples (B-M and A-Con cells) were separated clearly
by module genes (Figure 5(b)). All these results determined
that the DEGs in modules were the feature genes for B-M
and A-Con cells.

DAVID tool summarized the biological importance of
the group of functionally related genes with an enrichment
score. Function classification for genes in module 1 revealed

a series of items, such as alteration of phospholipase
C-activating G-protein coupled receptor signaling pathway
(GO:0007200), integral component of plasma membrane
(GO:0005887), G-protein-coupled purinergic nucleotide
receptor activity (GO:0045028), and neuroactive ligand-
receptor interaction pathway (hsa04080). Similarly, the
module 2 genes were sorted into function classifications,
including the nucleosome assembly (GO:0006334), nucle-
osome (GO:0000786), protein heterodimerization activity
(GO:0046982), and systemic lupus erythematosus
(hsa05322) pathway (Table 4).

4.7. Verification Experiments

4.7.1. APOAV Expression Promoted the Glucose Absorption
and Glut4 Levels of AML12 Cell. As shown in Figure 6(a),
compared with NC group, the APOAV expression was
significantly upregulated (P< 0.01), suggesting the trans-
fection efficiency of APOAV overexpression lentivirus was
satisfactory. After 6 h of starvation, the glucose consumption
of each group was measured by ELISA. *e results showed
that glucose consumption in group with APOAV over-
expression was significantly lower than that in the NC group
(P< 0.05; Figure 6(b)). Additionally, according to
Figure 6(c), Glut4 protein level in APOAV overexpression
group was observably increased in comparison to that in NC
group with the empty vector (P< 0.01), which indicated that
the overexpression of APOAV could release the insulin
resistance of AML12 cells.

5. Discussion

In the present study, we performed the microarray profiling
of insulin-resistant HepG2 cells with APOAV over-
expression to investigate the differential gene expression
pattern induced by APOAV overexpression in comparison
to the negative controls. Previous evidence shows that in-
sulin resistance is not only the important pathogenesis of
T2D but also the root cause of various complications [25].
APOAV is a component of several lipoprotein fractions and
has been reported to be negatively correlated with insulin
resistance [26]. However, there have been no studies con-
cerning the expression level of genes induced by APOAV
overexpression in insulin-resistant hepatocytes. Conse-
quently, we focused on the differential expression profiling
relevant to APOAV overexpression in insulin-resistant liver
cells.

5.1. Insulin-Resistant Cell Model Construction with HepG2
Cell. Because of the limitation of human trials, most of the
fundamental research relevant to insulin resistance has
applied cellular models of animals [27, 28]. HepG2 is derived
from human liver embryoma cells, which show many bi-
ological properties of hepatocellular [29]. *ereby, HepG2
cell line was reliable for our research. In this paper, the
insulin-resistant HepG2 cell model was firstly constructed
and infected with APOAV overexpressed recombinant ad-
enoviruses. *e green fluorescence imaging illustrated that
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Figure 3: Hierarchical clustering analysis for differentially expressed genes. *e color scale at the top illustrates the relative expression level
of an mRNA. Red represents a high relative expression and blue represents a low relative expression.

Table 1: *e biological function and pathways significantly related with differentially expressed genes.

Category Term Count P value

Up

BP

GO:0072332∼intrinsic apoptotic signaling pathway
by p53 class mediator 4 3.37E− 03

GO:0008283∼cell proliferation 10 1.77E− 02
GO:0000278∼mitotic cell cycle 11 1.85E− 02

CC
GO:0030672∼synaptic vesicle membrane 5 3.26E− 03

GO:0008021∼synaptic vesicle 6 3.65E− 03
GO:0031225∼anchored component of membrane 6 7.74E− 03

MF

GO:0005544∼calcium-dependent phospholipid
binding 5 3.06E− 03

GO:0030276∼clathrin binding 4 1.65E− 02
GO:0042802∼identical protein binding 13 2.68E− 02

Pathway
hsa04110:cell cycle 6 6.48E− 03

hsa05222:small cell lung cancer 4 4.75E− 02
hsa05215:prostate cancer 4 4.89E− 02
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Table 1: Continued.

Category Term Count P value

Down

BP
GO:0007267∼cell-cell signaling 1.60E+ 01 8.96E− 05
GO:0007155∼cell adhesion 1.90E+ 01 9.76E− 04

GO:0070370∼cellular heat acclimation 3.00E+ 00 2.07E− 03

CC

GO:0005576∼extracellular region 65 6.66E− 11
GO:0005887∼integral component of plasma

membrane 51 8.76E− 07

GO:0016324∼apical plasma membrane 19 6.89E− 06

MF
GO:0005319∼lipid transporter activity 4 3.08E− 03
GO:0008083∼growth factor activity 10 3.32E− 03

GO:0046982∼protein heterodimerization activity 19 3.90E− 03

Pathway

hsa05322:systemic lupus erythematosus 9 5.29E− 03
hsa02010:ABC transporters 5 1.12E− 02

hsa05134:legionellosis 5 2.25E− 02
hsa04080:neuroactive ligand-receptor interaction 12 2.27E− 02

hsa05034:alcoholism 9 2.53E− 02
hsa04975:fat digestion and absorption 4 4.25E− 02

Up, upregulated genes; down, downregulated genes; BP, biological process; CC, cellar component; MF, molecular function.
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Figure 4: Protein-protein interaction (PPI) network construction for differentially expressed genes. A total of 317 nodes and 547 edges were
identified. Red, upregulated genes; green, downregulated genes.
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insulin-resistant HepG2 cell model was successfully infected
by recombinant adenovirus, suggesting that APOAV-
overexpressed HepG2 cell model was built successfully.

5.2. DEGs Screening and Functional Analysis. Microarray
technology has been a suitable method for investigating the
global gene expression in human disease, which shows an
altered gene expression profiling in disease group compared
with normal controls [30, 31]. Moreover, there have been
studies that used microarray data for investigating gene ex-
pression levels about insulin resistance induced by mito-
chondrial dysfunction, reduced mitochondrial density, and
increased IRS-1 serine phosphorylation [32, 33]. Besides, the
DAVID gene functional classification tool can be used to
condense functionally related gene list to a significant GO or
pathway terms with an enrichment score. PPI network was
critical to screen the significant gene nodes and understand
the functions of predicted genes. Based on microarray ex-
periments, 313 overexpressed genes and 563 low-expressed
genes were identified in APOAV overexpressed cells. Hier-
archical clustering analysis revealed that the B-M samples and
A-Con group were clearly separated based on the differential
gene expression profiles, suggesting that the differential genes
identified in our paper were significant.

Furthermore, the function analysis showed that the
downregulated genes were closely related with fat digestion
and absorption pathway. T2D and obesity have been re-
ported to be the metabolic diseases that are characterized by
impaired insulin action and insulin resistance induced by
low-grade inflammatory [34]. Recent evidence shows that
nutritional fatty acids induce inflammatory response in
adipocytes and macrophages [35]. Lipopolysaccharides
(LPS) are another key inducer for inflammatory response
during insulin resistance, which has a coreceptor for fatty
acids. *e plasma LPS level and LPS absorption are sig-
nificantly increased during fat digestion [36]. In our study,
the pathway of fat digestion and absorption were signifi-
cantly related with downregulated genes in HepG2 cells
induced by APOAV overexpression. *erefore, APOAV
overexpression may inhibit the fat digestion and absorption
triggered inflammation, and then declined the risk for in-
sulin resistance development.

5.3. PPI Network and Key Genes. *e PPI network is critical
for understanding the functional modules for genes of

interest. In this paper, two functional modules were screened
out in the PPI network. Specially, genes of AGTR1 and
P2RY2 in module 1 were found to be significantly enriched
in G-protein-related signaling functions such as phospho-
lipase C-activating G-protein-coupled receptor signaling
pathway (GO:0007200), G-protein-coupled purinergic nu-
cleotide receptor activity (GO:0045028), and G-protein-
coupled receptor activity (GO:0004930). *e G-protein
signaling plays a key role in cell proliferation, cell wall
changes, and transcriptional regulation. Besides, more than
50% drugs are developed by targeting G-protein-coupled
receptors (GPCRs), revealing the critical role of G-protein
signaling in various human diseases [37]. Moreover, a
previous study has revealed that the insulin action is im-
paired by the deficiency of G-protein subunit Giɑ2 [38].
*erefore, the alteration in G-protein signaling may con-
tribute to the progression of insulin resistance. However, the
role of G-protein function has been not elucidated clearly.

AGTR1 (degree� 11) and P2RY2 (degree� 10) were
found to be significant nodes in PPI network. P2RY2 is one
of P2Y genes and its protein production (purinergic receptor
P2Y, G-protein coupled 2) is a member of GPCRs. Based on
the description above, the differential expression of P2RY2
in liver cells may contribute to the insulin resistance. AGTR1
is the angiotensin II receptor related gene. *e poly-
morphism of AGTR1 is proposed to affect the insulin re-
sistance by altering the response to angiotensin II signaling
[39]. As we all know, hypertension cases are insulin-re-
sistant; AGTR1 polymorphism is also found to be associated
with early inflammatory and metabolic changes in pre-
hypertensive cases [40]. Besides, it is reported that the re-
ceptor of AGTR1 is activated on liver cells in initiation of
insulin resistance, which further enlarges the activation of
hepatocellular NF-κB signaling [41] and NF-κB signaling is
responsible for negative crosstalk with insulin. Although
there is no evidence for the relationship betweenAGTR1 and
G-protein signaling, the alteration in AGTR1 expression
significantly related with insulin resistance.

It is known that glucose transporters (Gluts) play an
important role in glucose regulation [42, 43]. As an insulin-
regulated Glut, Glut4 mediates the glucose uptake in
skeletal muscle cells. An increasing number of researches
show that intracellular compartmentalization of GLUT4 is
altered in models of insulin resistance [44, 45]. In this
paper, cell verification experiments showed that after
transfected with the APOAV overexpression vector, the
expression of Glut4 in AML12 cell was significantly ele-
vated, which indicated that the overexpression of APOAV
could release the insulin resistance of AML12 cells.
Moreover, APOAV overexpression could promote the
absorption of glucose in AML12 cells. Taken together, all
these evidence validated the role of APOAV expression in
altering insulin resistance.

Furthermore, TNFRSF1B was a documented marker
gene associated with T2D and was downregulated in liver
cells induced by APOAV overexpression. TNF receptor 2
(TNFR2) encoded by TNFRSF1B plays a key role in insulin
resistance-related metabolic disorders by mediating the
metabolic effect of TNF ɑ. *e variable genomic TNFRSF1B

Table 2: *e hub nodes with highest degrees in PPI network.

Degree Gene
19 H2AFX
18 HDAC9, ESR1
17 BMP2
15 CDC6
13 HIST2H3D, CFTR, PIK3CG
12 HIST1H4H, PDGFRB,APOE, HIST1H4I
11 AGTR1, MAPK10, HIST1H3E, HIST1H1C

10 MCM7, HMOX1, SLC2A4, POLR2A,
CCKBR,SNAI2, P2RY2, H1F0
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Figure 5: (a) Functional modules screened in PPI network. Red, upregulated genes; green, downregulated genes; PPI, protein-protein
interaction. (b) Hierarchical clustering analysis for module genes.*e samples of insulin-resistant HepG2 cells with APOAV overexpression
(B-M) and negative controls (A-con) were distinguished clearly by the expression profiles of differentially expressed genes.

10 BioMed Research International



affects the soluble TNFR2 level. *e level of soluble TNFR2
has been found to increase in obese patients, which is
correlated with insulin resistance. In this paper, TNFRSF1B
level was found to be downregulated mediated by APOAV
overexpression, suggesting that APOAV overexpression
inhibited TNFR2 involved inflammatory response.

In summary, APOAV overexpression may prevent the
development and progression of insulin resistance in HepG2
cells by triggering differential gene expression. APOAV may
play a key role in mediating insulin resistance by targeting
AGTR1 and P2RY2. Our work may provide a promising
option for treating insulin-resistant metabolic diseases.

Table 3: List of degrees for modular genes in PPI network.

Module 1 Module 2
Node Degree Node Degree
AGTR1 11 H2AFX 19
P2RY2 10 HIST2H3D 13
CCKBR 10 HIST1H4I 12
LPAR4 9 HIST1H4H 12
F2RL2 9 HIST1H1C 11
GRPR 9 HIST1H3E 11
GPR4 8 H1F0 10
ADRA1D 8 HIST2H2BE 9
P2RY6 8 HIST2H2AA4 9
— — HIST1H2BD 9
— — HIST1H2BC 8
— — HJURP 1
— — BTG2 1
PPI: protein-protein interaction.

Table 4: Altered GO function and pathways for genes in significant modules.

Category Term Count P value

Module 1

BP

GO:0007200∼phospholipase C-activating G-protein
coupled receptor signaling pathway 5 7.25E− 09

GO:0007204∼positive regulation of cytosolic calcium
ion concentration 4 2.29E− 05

GO:0007186∼G-protein coupled receptor signaling
pathway 5 4.98E− 04

CC

GO:0005887∼integral component of plasma
membrane 9 8.82E− 10

GO:0005886∼plasma membrane 9 5.52E− 06
GO:0016324∼apical plasma membrane 3 6.78E− 03

MF

GO:0045028∼G-protein coupled purinergic
nucleotide receptor activity 2 6.29E− 03

GO:0004435∼phosphatidylinositol phospholipase C
activity 2 1.35E− 02

GO:0004930∼G-protein coupled receptor activity 3 3.65E− 02

Pathway hsa04080:neuroactive ligand-receptor interaction 8 1.57E− 10
hsa04020:calcium signaling pathway 4 5.22E− 04

Module 2

BP
GO:0006334∼nucleosome assembly 11 6.08E− 20
GO:0006325∼chromatin organization 6 4.58E− 07

GO:0032776∼DNA methylation on cytosine 4 1.76E− 06

CC
GO:0000786∼nucleosome 10 2.64E− 19

GO:0000788∼nuclear nucleosome 4 2.69E− 06
GO:0005654∼nucleoplasm 10 3.98E− 06

MF
GO:0046982∼protein heterodimerization activity 9 1.97E− 10

GO:0042393∼histone binding 6 1.26E− 08
GO:0003677∼DNA binding 10 5.40E− 08

Pathway
hsa05322:systemic lupus erythematosus 9 1.47E− 13

Hsa05034:alcoholism 9 1.42E− 12
hsa05203:viral carcinogenesis 5 8.52E− 05

GO, gene ontology; BP, biological process; CC, cellar component; MF, molecular function.
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