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Objectives. To investigate the predictors of telomerase reverse transcriptase (TERT) promoter mutations in adults suffered from
high-grade glioma (HGG) through radiomics analysis, develop a noninvasive approach to evaluate TERT promoter mutations.
Methods. 126 adult patients with HGG (88 in the training cohort and 38 in the validation cohort) were retrospectively enrolled.
Totally 5064 radiomics features were, respectively, extracted from three VOIs (necrosis, enhanced, and edema) in MRI. Firstly,
an optimal radiomics signature (Radscore) was established based on LASSO regression. Secondly, univariate and multivariate
logistic regression analyses were performed to investigate important potential variables as predictors of TERT promoter
mutations. Besides, multiparameter models were established and evaluated. Eventually, an optimal model was visualized as
radiomics nomogram for clinical evaluations. Results. 6 radiomics features were selected to build Radscore signature through
LASSO regression. Among them, 5 were from necrotic VOIs and 1 was from enhanced ones. With univariate and multivariate
analysis, necrotic volume percentages of core (CNV), Age, Cho/Cr, Lac, and Radscore were significantly higher in TERTm than
in TERTw (p < 0:05). 4 models were built in our study. Compared with Model B (Age, Cho/Cr, Lac, and Radscore), Model A
(Age, Cho/Cr, Lac, Radscore, and CNV) has a larger AUC in both training (0.955 vs. 0.917, p = 0:049) and validation (0.889 vs.
0.868, p = 0:039) cohorts. It also has higher performances in net reclassification improvement (NRI), integrated discrimination
improvement (IDI), and decision curve analysis (DCA) evaluation. Conclusively, Model A was visualized as a radiomics
nomogram. Calibration curve shows a good agreement between estimated and actual probabilities. Conclusions. Age, Cho/Cr,
Lac, CNV, and Radscore are important indicators for TERT promoter mutation predictions in HGG. Tumor necrosis seems to
be closely related to TERT promoter mutations. Radiomics nomogram based on multiparameter MRI and CNV has higher
prediction accuracies.

1. Introduction

As the most common primary brain tumor in adults, glioma
can be classified as low-grade (LGG, WHO I-II) and high-
grade (HGG, WHO III-IV) according to the classification
criteria of the World Health Organization (WHO) [1]. Com-
pared with LGG, HGG is characterized by more vigorous cell
growth, more tumor angiogenesis, higher heterogeneity, and
worse prognosis, especially glioblastoma (GBM), with a
median survival of 12-14 months for the patients receiving
standard treatments [2, 3]. As indicated in previous studies,
hyperproliferativeness provides a significant biological basis

for the occurrence, migration, diffusion, invasion, postopera-
tive recurrence, and drug resistance of HGG, where the sta-
bility and nonshrinkage of telomeres play a crucial role [4].

Telomeres, controlling the limited division of normal
cells, are shortened with each division of normal cells,
whereas they could be continuously elongated by telomerase
in cancer cells [5]. Telomerase consisted of the RNA subunit
and reverse transcriptase (TERT), maintaining the length of
telomere by adding hexamer repeats at the end of chromo-
somes [6]. Therefore, TERT plays a crucial role in the cancer-
ization. Recently, the recurrent mutations at two hotspots
termed as C228T and C250T in the TERT promoter have
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been identified in gliomas [7]. Besides, the mutations have
been considered as one of the major mechanisms of telome-
rase activation in gliomas [8]. Up to now, a large number of
researches have explored the role and value of TERT in gli-
oma, which demonstrated that 80% of the TERT promoters
in the primary GBM have mutated [9]. The TERT genotype
is not only a vital prognostic and predictive biomarker for gli-
oma, especially for HGG [10, 11], but also a promising indi-
cator for the sensitivity of GBM to radiotherapy and
temozolomide [12]. Currently, the TERT genotype has been
prevailingly determined by sequencing tumor samples,
which can only be obtained postoperatively. Accurate assess-
ment of the TERT genotype before surgery can direct the
exploitation of therapeutic strategies. Therefore, the estab-
lishment of noninvasive technology to identify the TERT
genotype of tumors is urgently needed.

Radiomics has attracted increased attention in recent
years due to the representation of medical images containing
information on the pathophysiology and prognosis of dis-
eases [13]. A variety of quantitative radiological features
could be extracted from medical images to reveal the infor-
mation on tumors [14]. Radiomics feature has been applied
as the noninvasive alternative to identify the genomic and
proteomic changes in tumors, which also broadly utilized in
tumor diagnosis, prognosis prediction, treatment selection,
gene prediction, and so on [15–18]. However, the use of
radiomics analysis to predict the mutant status of the TERT
promoter has not been widely reported. This study aimed
to investigate the predictors of TERT promoter mutations
in HGG through radiomics analysis and develop a noninva-
sive approach to evaluate of TERT promoter mutations.

2. Materials and Methods

The institutional review board has approved this retrospec-
tive study, and the requirements for patient informed con-
sent were waived for the anonymity of data.

2.1. Patients. Based on the inclusion and exclusion criteria as
shown in Figure 1, 126 patients were finally enrolled in our
study. All the subjects were randomly divided into the train-
ing and the validation cohorts by computer sampling at a
ratio of 7 : 3. The TERT promoter mutations were deter-
mined by capillary electrophoresis. Clinical and pathological
data were obtained via reviewing electronic medical records.

2.2. Data Acquisition of MRI. All preoperative MRI was
performed on 3.0T MR scanners (Magneto Trio, Siemens,
Germany) with an eight-channel head coil. Contrast-
enhanced T1-weighted (CE-T1w), T2-weighted imaging
fluid-attenuated inversion recovery (T2flair), T1-weighted
(T1w), T2-weighted (T2w), and magnetic resonance spec-
troscopy (MRS) sequences were applied for the following
analyses. The acquisition parameters were summarized in
Supplementary S1.

2.3. Preprocessing, Segmentation, and Feature Extraction of
Images. The schemes of image preprocessing consisted of
coregistration, reslice, and normalization. Firstly, the T2flair,
T2w, and T1w images were coregistered to the corresponding

CE-T1w images on the basis of affine transformation through
the Linear Image Registration Tool (FLIRT) of Functional
MRI of the Brain (FMRIB) Software Library (FSL) of the
Oxford Center. Subsequently, the resolution of each modality
was uniformly resampled to 1mm × 1mm × 1mm. Finally,
the intensity of the images of each modality was normalized
according to the Collewet normalization algorithm
(mean ± 3 sigmas) to correct the effects of different acquisi-
tion protocols [19]. The success of coregistration and nor-
malization was visually verified by two authors (T.H.A. and
W.H., with 10 and 3 years of experience in brain MRI
research, respectively).

Tumor segmentation was conducted on 3D slicer (ver-
sion 4.10.1). As illustrated in Figures 2 and 3 heterogeneous
regions (the enhanced lesion inclusive of necrosis (tumor
core), enhanced, and necrosis) were plotted by the semiauto-
matic segment editor module. Detailed procedures and

Patients diagnosed with brain glioma
(2016.3-2018.12)

N = 418 patients 

LGG (Grade I-II) by WHO 2016
N=186 

Age < 18 years 

No existing pathology report 

No brain MRI images

HGG (Grade III-IV) N=232 

N=126 patients included

Not all sequences available 
before surgery (N=43) 
Required sequences:
• T1w
• CE-T1w
• T2w
• T2flair
• MRS

Spatial resolution too low (N=21) 
Maximum voxel size:
• CE-T1w: 1mm isotropic
• Other sequences: Slice

thickness ≤ 5mm 
• MRS: baseline stability

Lack of available TERT status
information (N=33)

Motion artifacts (N=9)

Figure 1: Flowchart of patient inclusion. LGG: low-grade glioma;
HGG: high-grade glioma; T1w: T1 weighted; CE: contrast-
enhanced; Flair: fluid-attenuated inversion recovery; MRS:
magnetic resonance spectroscopy.
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parameters for tumor separation were listed in Supplemen-
tary S2 to facilitate reproducibility. The volume of interest
(VOI) was taken charge by T.H.A., who was trained and
supervised by a board-certified radiologist specialized in neu-
rooncology (W.G.Y. with 25-year experience). All the VOIs
were eventually registered to the MNI152 standard space
for obtaining the location information by FSL-FLIRT.

The radiomics features were extracted by PyRadiomics
(version 2.1.2), a flexible open-source platform capable of
obtaining a large panel of engineered features from medical
images [20]. The extracted features included the “first-order
statistics (First-order), Gray Level Cooccurrence Matrix
(GLCM), Gray Level Dependence Matrix (GLDM), Gray
Level Run Length Matrix (GLRLM), Gray Level Size Zone
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Figure 2: Flowchart of the radiomics analysis. (a) Image data acquisition included CE-T1w, T2flair, T2w, and T1w sequences. And then, data
preprocessing: coregistration, reslice, and normalization. (b) The volume of interests (VOIs) of the tumor lesion and peritumoral edema
regions were drawn by semiautomatic segmentation. (c) Radiomics features were extracted, including first-order feature, shape-based
feature, texture feature, and wavelet feature. (d) Discriminative features were selected by the LASSO regression analysis. (e) The model
was trained by radiomics features, clinical features, MRS features, and the percentage of necrotic volume. (f) Radiomics nomogram was
established for predicting TERT promoter mutations in adults with high-grade gliomas. The ROC, calibration, and DCA curves were
performed for further statistical analyses.
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Figure 3: Radiomics feature selection using LASSO. (a) Selection of the optimal value of lambda (λ). Tuning log(λ) selection in the LASSO
model used to perform 5-fold cross-validation via the minimum criteria. (b) The LASSO coefficient profiles included 1230 features. The
vertical line was drawn at the selected log(λ) above, and 6 features with nonzero coefficients were finally identified.
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Matrix (GLSZM), Neighbouring Gray Tone Difference
Matrix (NGTDM), Shap3D and Shap2D.” All the above
features were displayed in the Supplementary S3 to facili-
tate the application of our findings. Only the features of
T2flair and CE-T1w sequences were acquired, which were
considered as the best series of HGG studies in various
former studies [21]. Therefore, we obtained the features of
necrosis, enhanced, and edema VOIs on the above two
sequences, respectively.

2.4. Intraobserver and Interobserver Agreement. Interob-
server and intraobserver agreement of VOI-based radiomics
feature in 30 randomly chosen patients were evaluated in
our study. Interobserver agreement of feature extraction by
two authors (T.H.A. andW.H.) was initially analyzed. Mean-
while, to assess the intraobserver agreement, one of the
researchers (T.H.A.) repeated the extraction twice in two
weeks following the equivalent protocol. These radiomics
features extracted from the VOIs were evaluated by the intra-
class correlation coefficient (ICC). The score of ICC greater
than 0.85 was considered a satisfactory agreement.

2.5. Dimensionality Reduction and Radiomics Features
Selection. To reduce the dimension and decrease the redun-
dant information, two steps were scheduled to select the fea-
tures. Firstly, all features were analyzed by the independent
samples t test or Mann-Whiney U test in the training cohort,
and variables with p < 0:05 were chosen as the potentially
important parameters. Additionally, the least absolute
shrinkage and selection operator (LASSO) feature selection
algorithm was subsequently conducted for dimensionality
reduction and feature selection. Nonzero coefficients chosen
by LASSO as the optimal features were utilized to establish
the Radscore formula, applying to calculate the Radscore
for each patient to predict the TERT promoter mutations.

2.6. The Selection of Clinical and Radiological Characteristics.
The clinical characteristics of age, gender, and tumor grade
were identified. The radiological features were assessed by
T.H.A., containing tumor location, the volume of the
necrotic or cystic part of the tumor (NeV), the volume of
the solid portion of the tumor (EnV), the volume of edema
around tumor (EdV), the percentage of necrotic volume in
core volume of the tumor (CNV, %) and that in overall
(ONV, %), and MRS features based on enhanced region.
CNV was represented as NeV/(NeV+EnV), and ONV was
represented as NeV/(NeV+EnV+EdV), whose definition
can be more intuitively shown in Figures 2(d) and 2(e). Uni-
variate and multivariate logistic regression analyses were per-
formed to determine potential important variables. The
features with p < 0:05 were selected as the elements for the
establishment of the model.

2.7. Development of Radiomics Model and Evaluation of the
Performance. Models were established based on the logistic
regression with forwarding stepwise selection. To determine
the best model, the performances of predictive models were
assessed in validation cohorts. The discrimination was evalu-
ated by the receiver operating characteristic (ROC) curve, net
reclassification improvement (NRI), and integrated discrim-

ination improvement (IDI), and the clinical availability was
appraised by decision curve analysis (DCA) [22–24]. To offer
an individualized and easy-to-operate tool for noninvasive
prediction of the TERT genotype, the optimal model was
visualized as radiomics nomogram.

2.8. Statistical Analysis. All statistical analyses were per-
formed according to the R (version 3.4.3). Data were pre-
sented as mean ± SD for continuous variables and as
frequency (%) for categorical variables. Detailed statistical
steps and R packages were listed in Supplementary S4.

3. Results

3.1. Clinical Characteristics of the Patients. 126 patients who
suffered from HGG were divided into the training cohort
(88, 70%) and the validation cohort (38, 30%). There was
no significant difference in terms of age (p = 0:986), gender
(p = 0:975), grade (p = 0:327), or location (p = 0:421)
between the training and validation cohorts (Table 1).

3.2. Feature Extraction and Dimensionality Reduction. Even-
tually, 1688 features were extracted from each VOI, and a
total of 5064 radiomics features were generated from every
patient. Totally, 1230 features (p < 0:05) were screened out
as the potentially crucial variables at the first step of dimen-
sionality reduction. Applying the optimal regulation weight
λ (log ðλÞ = −2:084698) for the LASSO algorithm, 6 nonzero
coefficient features were finally chosen (Figure 3). Among
them, 5 were from necrotic VOIs and 1 was from enhanced
ones. Three, two, and one radiomics features were selected
from CE-T1w, T2flair, and original shape class, respectively
(Table 2). In the end, the Radscore formula was established
according to the coefficients of the six features obtained pre-
viously (Supplementary S5).

3.3. Interobserver and Intraobserver Agreement. For the
intraobserver agreement, 209 features were unqualified
(ICC <0.85), accounting for 4.13% of all variables
(209/5064) (Figure 4(a)). For the interobserver agreement,
299 features were unqualified, occupying 5.91% of the vari-
ables (299/5064) (Figure 4(b)). Furthermore, none of the
unqualified features consisted of the six features selected by
LASSO regression (ICC were all higher than 0.85, Table 2).

3.4. Radiomics Model Construction and Validation. As indi-
cated in Table 3, Radscore, Age, CNV, Cho/Cr, and Lac were
significantly higher in TERTm than in TERTw (p < 0:05) in
the training cohort by univariate and multivariate analysis.

4 models were built in this study, Age, Cho/Cr, Lac, and
Radscore were taken into consideration in Model B, while
Model A further added the feature of CNV based on Model
B. Model C was composed of a single Radscore feature, while
Model D consisted of a single CNV feature. (In fact, we had
built a total of 15 models using the above 5 features (Supple-
mentary S6)). As described in Table 4, Model A and Model B
performed better, and in order to compare the differences
between the two, we conducted a further evaluation. The dif-
ference of AUCs in the two models was statistically signifi-
cant analyzed by the DeLong test (p < 0:05) (Figures 5(a)
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Table 1: Characteristics of patients in the training and validation cohorts.

Training cohort Validation cohort
p value

TERTw TERTm p value TERTw TERTm p value

N 51 37 22 16 0.995

Age (year)† 53 (18-78) 58 (30-81) 0.033 52 (26-78) 60 (42-80) 0.031 0.986

Gender 0.571 0.120 0.975

Female 19 (37.25%) 16 (43.24%) 11 (50.00%) 4 (25.00%)

Male 32 (62.75%) 21 (56.76%) 11 (50.00%) 12 (75.00%)

Grade 0.170 0.366 0.327

III 21 (41.18%) 10 (27.03%) 7 (31.82%) 3 (18.75%)

IV 30 (58.82%) 27 (72.97%) 15 (68.18%) 13 (81.25%)

Side 0.384 0.050 0.219

Left 27 (52.94%) 15 (40.54%) 17 (77.27%) 7 (43.75%)

Right 20 (39.22%) 20 (54.05%) 3 (13.64%) 8 (50.00%)

Both 4 (7.84%) 2 (5.41%) 2 (9.09%) 1 (6.25%)

Location 0.048 0.028 0.421

Frontal 23 (45.10%) 7 (18.92%) 8 (36.36%) 1 (6.25%)

Temporal 16 (31.37%) 23 (62.16%) 4 (18.18%) 11 (68.75%)

Parietal 7 (13.73%) 3 (8.11%) 4 (18.18%) 2 (12.50%)

Occipital 2 (3.92%) 2 (5.41%) 2 (9.09%) 1 (6.25%)

Other 3 (5.88%) 2 (5.41%) 4 (18.18%) 1 (6.25%)

NeV† 0.42 (0.00-2.59) 0.86 (0.04-4.44) 0.243 0.41 (0.00-2.61) 0.95 (0.08-4.05) 0.102 0.559

EnV† 2.62 (0.02-41.70) 1.93 (0.03-37.17) 0.715 3.02 (0.20-28.36) 1.97 (0.11-9.99) 0.115 0.633

EdV† 1.31 (0.01-56.46) 2.88 (0.03-37.17) 0.162 1.16 (0.04-65.77) 2.15 (0.45-17.06) 0.856 0.827

CNV (%)† 14.71 (0.00-40.44) 43.48 (14.91-84.49) <0.001 14.38 (0.00-38.38) 37.64 (11.54-71.20) <0.001 0.264

ONV (%)† 12.44 (0.00-39.55) 15.42 (4.55-29.16) 0.196 6.75 (0.00-32.33) 17.98 (1.76-28.18) 0.091 0.197

Cho/NAA 4.65 (3.14) 4.40 (1.89) 0.670 4.22 (1.51) 4.80 (2.79) 0.413 0.868

Cho/Cr 2.75 (1.06) 3.39 (1.53) 0.023 2.54 (0.68) 3.19 (1.04) 0.025 0.390

Lip 0.616 0.152 0.944

No 33 (64.71%) 22 (59.46%) 16 (72.73%) 8 (50.00%)

Yes 18 (35.29%) 15 (40.54%) 6 (27.27%) 8 (50.00%)

Lac 0.025 0.034 0.370

No 33 (64.71%) 15 (40.54%) 17 (77.27%) 7 (43.75%)

Yes 18 (35.29%) 22 (59.46%) 5 (22.73%) 9 (56.25%)

†Data were the median(min-max); the remainder were mean (standard deviation) or number (%). p value <0.05 was considered a significant difference. NeV:
necrotic volume of tumor; EnV: volume of enhanced portion of tumor; EdV: volume of edema around tumor; CNV: necrotic volume percentage of core; ONV:
necrotic volume percentage of overall; Cho/NAA: the ratio of N-acetylaspartic acid to creatine inMRS; Cho/Cr: the ratio of choline to creatine inMRS; Lip: lipid
peak of MRS; Lac: lactate peak of MRS; TERTm: the TERT promoter mutations; TERTw: the wild type of TERT promoter.

Table 2: Results of dimensionality reduction and the ICC for each feature.

Abbreviation VOI Image type Feature class Feature name
ICC

Intra- Inter-

t1c_necrosis_glszm_6 Necrosis T1c_original glszm GrayLevelNonUniformity 0.977 0.951

t1c_necrosis_wavelet_448 Necrosis T1c_wavelet_HLH glszm SizeZoneNonUniformityNormalized 0.887 0.856

t2f_necrosis_wavelet_169 Necrosis T2f_wavelet_LHL glszm SizeZoneNonUniformityNormalized 0.908 0.889

necrosis_shap_6 Necrosis Original Shape LeastAxisLength 0.922 0.901

t1c_enhanced_wavelet_217 Enhanced T1c_wavelet_LHH glcm MCC 0.949 0.938

t2f_necrosis_wavelet_660 Necrosis T2f_wavelet_LLL gldm LargeDependenceEmphasis 0.979 0.952

T1c: contrast-enhanced T1-weighted; T2f: T2-weighted flair; VOI: the volume of interest; ICC: intraclass correlation coefficient; Intra-: intra-observer
agreement; Inter-: inter-observer agreement.

5BioMed Research International



and 5(b)). Additionally, NRI was 0.187 (95% CI, 0.022-0.351)
in the training cohort, 0.261 (95% CI, 0.045-0.478) in the val-
idation cohort. Besides, the IDI was 0.146 (95% CI, 0.071-
0.221) in training cohort, 0.128 (95% CI, 0.033-0.222) in
the validation cohort. The DCA curves illustrated that Model
A offered a higher overall net benefit in contrast to Model B,
indicating Model A was superior across nearly the entire
range of pt values (Figure 5(c)).

3.5. The Visualization of Radiomics Nomogram. From the
above, Model A was visualized as the radiomics nomogram
(Figure 6(a)). The AUC of the nomogram was 0.951 (95%
CI, 0.906-0.982) in the training cohort, 0.883 (95% CI,

0.757-0.953) in the validation cohort (Figure 6(b)). More-
over, the calibration curves of the nomograms in training
and validation cohorts both indicated good agreement
between the predictability of TERT promoter mutations
and actual status, respectively (Figure 6(c)).

4. Discussions

In this study, we found that the radiomics method can well
predict TERT promoter mutations. Radiogenomics was a
new field for studying the relationship between radiological
features and genomic data, which explored the relationship
between radiological features and gene phenotypes by
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Figure 4: Characteristic stability evaluated by the interclass correlation coefficient (ICC). (a) 209 characteristics had poor stability in the
intraobserver agreement analysis (below the red cutoff line). (b) 299 characteristics were unqualified in the interobserver agreement analysis.

Table 3: Univariate and multivariate analyses of TERT promoter mutations.

Univariate Multivariate
OR (95% CI) p value OR (95% CI) p value

Age 1.04 (1.00, 1.08) 0.038 1.06 (1.01, 1.12) 0.025

Gender 0.78 (0.33, 1.85) 0.571

Grade 1.89 (0.76, 4.72) 0.173

Side 2.00 (0.33, 12.18) 0.452

Location 2.19 (0.30, 15.85) 0.437

NeV 1.38 (0.80, 2.35) 0.245

EnV 0.99 (0.93, 1.05) 0.712

EdV 1.04 (0.98, 1.11) 0.197

CNV (%) 1.15 (1.09, 1.22) <0.001 1.12 (1.06 1.18) <0.001
ONV (%) 1.04 (0.98, 1.10) 0.196

Cho/NAA 0.96 (0.82, 1.14) 0.668

Cho/Cr 1.48 (1.04, 2.09) 0.028 2.71 (1.15, 3.25) 0.012

Lip 1.25 (0.52, 2.99) 0.616

Lac 2.69 (1.12, 6.43) 0.026 3.14 (1.01, 9.74) 0.048

Radscore 2.72 (1.78, 4.14) <0.001 2.04 (1.51, 2.77) <0.001
OR: odds ratios; CI: confidence intervals; NeV: necrotic volume of tumor; EnV: volume of enhanced portion of tumor; EdV: volume of edema around tumor;
CNV: necrotic volume percentage of core; ONV: necrotic volume percentage of overall; Cho/NAA: the ratio of N-acetylaspartic acid to creatine in MRS;
Cho/Cr: the ratio of choline to creatine in MRS; Lip: lipid peak of MRS; Lac: lactate peak of MRS; Radscore: radiomics feature. p value <0.05 was
considered significant difference.
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extracting quantitative information on a large number of
radiological data features [13]. Studies predicting glioma
genes based on radiomics mainly focused on the IDH,

1p/19q, MGMT, ATRX, and EGFR genes, which all agreed
that radiomics was an excellent noninvasive method for pre-
dicting the genetic status of glioma [14, 25, 26]. However, the

Table 4: Performance of 4 models for TERT promoter mutations prediction.

Training cohort Validation cohort
AUC (95% CI) SEN SPE ACC PPV NPV Cutoff AUC (95% CI) SEN SPE ACC PPV NPV Cutoff

Model A 0.955 (0.899-0.979) 0.947 0.840 0.886 0.818 0.955 -0.652 0.889 (0.746-0.959) 0.750 0.909 0.842 0.857 0.833 -0.652

Model B 0.917 (0.840-0.959) 0.973 0.745 0.841 0.735 0.974 -1.14 0.868 (0.668-0.923) 0.813 0.818 0.816 0.765 0.857 -1.14

Model C 0.841 (0.802-0.913) 0.919 0.725 0.807 0.708 0.925 -0.798 0.747 (0.586-0.891) 0.750 0.727 0.737 0.667 0.800 -0.798

Model D 0.832 (0.798-0.919) 0.914 0.717 0.795 0.681 0.927 24.899 0.714 (0.608-0.829) 0.867 0.652 0.737 0.619 0.882 24.899

Abbreviations: Model A: Age+Lac+Cho/Cr+Radscore +CNV; Model B: Age+Lac+Cho/Cr+Radscore; Model C: Radscore; Model D: CNV; AUC: area under the
curve; SEN: sensitivity; SPE: specificity; ACC: accuracy; PPV: positive predictive value; NPV: negative predictive value; CI: confidence intervals. The bootstrap
resampling method was adopted for 95% CI and the significance test of AUC (times = 500). The cutoff value was determined based on the output value of the
radiomics nomogram in the training cohort.
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relevant researches using radiomics to predict TERT geno-
types were relatively rare. Arita et al. [27] used radiomics
methods to predict IDH and TERT genes in grade II/III glio-
mas, suggesting that conventional MRI-based radiomics
could be a noninvasive diagnostic technique for molecular
characterization of grade II/III gliomas. As Gillies states
[13], “radiomics: images are data, not just pictures,” radio-
mics analysis will play an increasingly important role in clin-
ical work.

The LASSO regression was adopted to decrease redun-
dant radiomics features. By shrinking irrelevant variables to
zero and only maintaining useful features, LASSO could
effectively reduce the number of variables for model fitting,
which have been demonstrated to be available for high
dimensional data [18, 28]. Eventually, 6 radiomics features
were selected from the multiparametric and multiregional
MR images in our study. With the information on regional
angiogenesis and the destruction of the blood-brain barrier,
the CE-T1w sequence can well display the active and necrotic
areas of the tumor. Moreover, the anatomical information of
the tumor can be obtained from the T2flair sequence, such as
peritumoral edema [29]. In our study, 5 out of the 6 radio-
mics features were associated with necrosis, including 3
GLSZM features, 1 GLDM feature, and 1 shape-based fea-
ture. GLSZM features are high-order ones, which play a sig-

nificant role in measuring the local heterogeneity of tumor
in respect of size and grayscale. In previous studies, it has
been substantiated that the information reflected by GLSZM
features is most similar to the details observed by doctors at
the time of manual film reading [30]. It is considered to be
an important radiomics feature for the prediction of GBM
survival [3]. GLDM refers to the adjacent gray correlation
feature of the matrix, which reflects the gray homogeneity
of the local focus. These two groups of features are common
in suggesting a significant difference in the volume and gray-
scale of the necrotic area between the TERTm cohort and the
TERTw cohort. As a statistic of grayscale texture complexity,
GLCM indicates the heterogeneity and malignancy of the
enhancement region. Wavelet filters are effective in improv-
ing the texture features of images significantly. An analysis
led us to find out that the radiomics features of necrosis,
especially GLSZM and GLDM have a potential to be closely
associated with TERT promoter mutations. For further veri-
fication, nevertheless, a larger sample size and multiple cen-
ters are still required.

Yamashita et al. [31] investigated 112 GBM patients with
IDH wild type based on radiomics and revealed that TERT
promoter mutations were correlated with the percentage of
necrotic volume and age. Our further research demonstrated
that CNV dramatically upregulated in TERTm than TERTw,
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Figure 6: Establishment and assessment of radiomics nomogram. (a) Model A was visualized as radiomics nomogram with age, Cho/Cr, Lac,
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rather than ONV, probably because the latter contained
edema volume, which was more susceptible to steroids and
antihydrophobic agents [32]. To verify the discovery, 4
models were established, and there was only one more factor
(CNV) in Model A than Model B. The AUC of Model A in
both training cohort and validation cohort were higher than
that of Model B in the ROC analyses (0.955 vs 0.917, 0.889 vs
0.868, respectively). Performing NRI and IDI analyses in
both training cohort and validation cohort, the results also
illustrated that Model A had a remarkable improvement over
Model B (NRI >0, IDI >0). Additionally, the area under the
DCA curve of Model A was larger, and the clinical net
benefit was better. Therefore, it was reasonable to believe
that CNV was an independent predictor for TERT pro-
moter mutations. Various previous researches provided a
rational explanation that the levels of epidermal growth
factor receptor amplification and interleukin 6 could be
upregulated by TERT promoter mutations, inducing tumor
angiogenesis and necrosis [33].

MRS is a noninvasive MR-based imaging technique that
provides data on cellular metabolism. Plenty of published
studies have confirmed that MRS can not only improve the
diagnostic accuracy of glioma, grade the tumor, but also
identify the radioactive necrosis and recurrence and predict
survival rate [34]. There was a strong connection between

the Cho/Cr and Lac and TERTm in our study. Cho peak,
located at 3.22 ppm, was an indicator of myelination, cell
metabolism, and glial hyperplasia. The increase of choline
suggested an enhancement of cell membrane conversion,
which was a sign of accelerated cell proliferation [35]. The
concentration of creatine in brain tissue and the position of
its peak in the spectral line were relatively consistent. The
peak was located at 3.02 ppm, which was frequently taken
as a control value. The increasing level of Cho/Cr indicated
that the tumor cells were active in proliferation, which made
the malignancy of the tumor predictable to some extent [36].
Lac peak, located at 1.32 ppm, was the product of anaerobic
glycolysis and could not be measured in normal brain tissue.
It was demonstrated in previous studies that Lac peak is more
frequent to appear in HGG, which is supposedly attributed to
the inhibition of aerobic respiration and cerebral tissue ische-
mia and hypoxia [36, 37]. According to our findings, the Lac
peak appears more frequently in the TERTm group than in
the TERTw group, which is potentially ascribed to the abnor-
mal increase in cell membrane metabolism, energy depletion,
anaerobic glycolysis, and the cell necrosis caused by the
increased cell proliferation and mitosis of the tumor. Though
Lip peak was verified to be associated with the activity of
tumor necrosis [38], there was no predictive value demon-
strated in our research, which may be due to the Lip peak

(a) (b)

0.4

0.3

0.2

0.1

0.0

4 3 2 1
ppm

NAA
I : 2.01Cr

I : 1.55

Cr2
I : 1.92

Cho
I : 3.51

–0.1

(c)

(d)

C C C C C GY T

(e)

Figure 7: Representative images: TERT genetic status of HGG was well predicted by the radiomics nomogram. Male, 64 years old. (a) CE-
T1w image. (b) T2flair image, CNV = 36%, Radscore = 2:28. (c) MRS features, Cho/cr = 2:26, Lac peak presented “M” pattern appears at
1.32 ppm. (d) Pathological hematoxylin and eosin staining image at ×20 magnification. (e) Gene sequencing revealed mutations in the
TERT promoter. Applying radiomics nomogram for prediction, the probability of TERT promoter mutation was close to 0.9.
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being more sensitive to the placement of voxels, thus affect-
ing the definitive results [34]. Therefore, it is necessary to
conduct a further study on the Lip feature for predicting
TERT promoter mutations. Age and gender were also taken
into consideration for model development. From the results
of univariate analyses, the probability of TERT mutation
upregulated with every additional year of age (4% and 6%
in training and validation cohorts, respectively). However,
gender was not statistically significant in this study. You
et al. [39] analyzed 887 gliomas for TERT promoter muta-
tions based on histological and genetic backgrounds by
DNA sequencing, which demonstrated that the frequency
of TERT mutations increased with age. From what has been
discussed above, TERTm in adults with HGG were more
likely to be older, with visible Lac peaks, the higher Cho/Cr
indexes, Radscore, and CNV (Figure 7).

Despite the promising results, some limitations of this
study were also necessary to be further investigated. Firstly,
functional magnetic resonance imaging series were not taken
into account in this study, such as diffusion-weighted imag-
ing, dynamic contrast-enhanced, and intravoxel incoherent
motion. We believed that the addition of the advanced imag-
ing features would improve the performance of the estab-
lished radiomics nomogram which was expected to be tried
in the next step. Secondly, it has been indicated in the litera-
ture that TERT played different roles in different IDH and
ATRX phenotypes [38]. However, only the feasibility and
methods to predict TERT promoter mutations were explored
in our study, and no above-stratified analysis was performed,
which was also the emphasis in our next research. Lastly,
more advanced machine learning modeling methods was
not used, such as support vector machines and neural net-
works, because the simplest logistic regression we used has
yielded satisfactory results.

5. Conclusions

In conclusion, Age, Cho/Cr, Lac, CNV, and Radscore were
important indicators for TERT promoter mutation predic-
tions in HGG. Furthermore, tumor necrosis seems to be
closely related to TERT promoter mutations. Radiomics
nomogram based on multiparameter MRI and CNV could
effectively predict the TERT promoter mutations in adults
who suffered from HGG with high accuracy.
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