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Acute appendicitis is one of the most common acute abdomens, but the confident preoperative diagnosis is still a challenge. In order
to profile noninvasive urinary biomarkers that could discriminate acute appendicitis from other acute abdomens, we carried out
mass spectrometric experiments on urine samples from patients with different acute abdomens and evaluated diagnostic
potential of urinary proteins with various machine-learning models. Firstly, outlier protein pools of acute appendicitis and
controls were constructed using the discovery dataset (32 acute appendicitis and 41 control acute abdomens) against a reference
set of 495 normal urine samples. Ten outlier proteins were then selected by feature selection algorithm and were applied in
construction of machine-learning models using naïve Bayes, support vector machine, and random forest algorithms. The models
were assessed in the discovery dataset by leave-one-out cross validation and were verified in the validation dataset (16 acute
appendicitis and 45 control acute abdomens). Among the three models, random forest model achieved the best performance:
the accuracy was 84.9% in the leave-one-out cross validation of discovery dataset and 83.6% (sensitivity: 81.2%, specificity:
84.4%) in the validation dataset. In conclusion, we developed a 10-protein diagnostic panel by the random forest model that was
able to distinguish acute appendicitis from confusable acute abdomens with high specificity, which indicated the clinical
application potential of noninvasive urinary markers in disease diagnosis.

1. Introduction

Acute appendicitis is one of the most common surgical
emergencies in clinic worldwide [1]. However, the precise
diagnosis of acute appendicitis is still a challenge, especially
in children and childbearing women. The absence of classical
clinical signs presents in 30~45% of patients [2]. Also, similar
symptoms of other acute abdominal inflammations (such as
gastrointestinal disorders, cholelithiasis, and gynecological

diseases) with appendicitis lead to misdiagnosis and high
negative appendectomy rates, which is reported to a range
between 10% and 32% [3–5]. In addition, the missed diag-
nostic rate of acute appendicitis ranges from 11% to 28%
[6, 7], and the delays in diagnosis and treatment would lead
to the increased risk of appendix rupture, abscess, and even
septicemia [8].

For now, the diagnosis of acute appendicitis mainly
depends on patient symptoms and serological results, such
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as white blood cell count (WBC), C-reactive protein (CRP),
and neutrophil cells. However, these tests did not present
efficient sensitivity and specificity for appendicitis diagnosis
[9, 10]. Imaging examinations such as ultrasonography and
computed tomography (CT) are also used to assist diagnosis.
Ultrasonography has moderate specificity (81%, 95% CI: 78–
84%) [11] in detecting acute appendicitis, limiting its diag-
nostic ability. Though CT examination is more accurate
[11], the strong radiation risk and high cost make it unsuit-
able for wide application. Additionally, several risk scores
by combing clinical signs have been developed to improve
the predictive ability for appendicitis. The Alvarado score is
one of the most well-known scoring systems; it has good sen-
sitivity (99%, 95% CI: 97–99%) but low specificity (43%, 95%
CI: 36-51%) [12]. Thus, efficient diagnostic methods for
discrimination of appendicitis from other confused acute
abdomens are in urgent need.

Urine is a kind of noninvasive, easily attainable clinical
sample. With less complexity than serum, urinary proteo-
mics has become an attractive field in biomarker discov-
ery. Current urinary proteomics is mainly applied in
diagnostic or prognostic marker discovery for urogenital
diseases [13–15] and nonurogenital diseases, such as chol-
angiocarcinoma [16], coronary artery disease (CAD) [17],
heart failure [18], and stroke [19]. Also, for acute appendi-
citis, candidate urinary biomarkers have been reported,
including 5-hydroxyindoleacetic acid (5-HIAA) [20, 21]
and leucine-rich α-2-glycoprotein (LRG) [22, 23]. However,
5-HIAA was proved to be nonreliable for determining acute
appendicitis in afterward studies [24, 25]. LRG had better
performance in diagnosing pediatric appendicitis with
nonappendicitis, but the diagnostic effects ranged largely in
different studies (area under the curve (AUC): 0.63-0.98)
[22, 23]. So, the improvement of a urinary proteomic system
in acute appendicitis diagnosis is still in great demand.

In this study, a high throughput urinary proteome
analysis platform was employed to get deep profiling of urine
samples from patients with acute abdomens. The urinary
proteomic data were analyzed using several classification
strategies for diagnosis of acute appendicitis with other
mimic acute abdomen samples. Among these models, a ran-
dom forest diagnosis model with a panel of 10 urine proteins
achieved the best diagnostic result. Without using clinical
signs and imaging examinations, the random forest model

got an accuracy of 83.6% in the validation dataset, and the
sensitivity and specificity were 81.2% and 84.4%, respectively.
Hence, our study provides potential urinary markers and effi-
cient model for acute appendicitis diagnosis.

2. Materials and Methods

2.1. Patient Samples. The study was approved by the Tian-
jin Baodi Hospital Ethical Review Committee. Urine sam-
ples from 134 patients with acute abdomens were collected
between 2013 and 2016 from Tianjin Baodi Hospital,
including 48 cases with acute appendicitis (AA) and 86
cases with control diseases (cholecystitis and cholelithiasis
(CHO), pancreatitis (PAN), gastrointestinal perforation
(GP), intestinal obstruction (IO), and other acute abdo-
mens (OTH)). Patients were diagnosed according to blood
tests, radiological studies (CT and/or ultrasound), or path-
ological results after surgery. Patient information was
shown in Table 1, and the sample metadata were summa-
rized in Table S1.

2.2. Urine Sample Preparation. Midstream urine was
obtained from all donors before treatment and stored at
-80°C. Urine samples were prepared according to a previ-
ously described method (Figure S1) [26]. Briefly, 8.9ml of
urine was centrifuged at 200,000g for 70min. The pellet was
resuspended and heated at 56°C for 30min to remove
uromodulin. After heating, the solution volume was
adjusted to 8.9ml and centrifuged at 200,000g for 70min to
get the final pellet. Then urea buffer (8M urea, 50mM Tris,
75mM NaCl, pH8.2) was added to resolve the pellet. About
10μg of protein from each sample was separated by SDS-
PAGE in 10% gel. Each gel lane was cut into 3 bands. Each
band was cut into small gel pieces, distained with distaining
buffer (50% acetonitrile, 50% 50mM NH4HCO3), and then
washed with 75% acetonitrile and pure water. Gel pieces
were digested with trypsin at 37°C overnight.

2.3. LC-MS/MS Analysis. The digested peptides were
extracted and loaded onto a homemade trap column and
an analytical column that both packed with C18 (Dr. Maisch
GmbH, Germany). A 75min gradient was used for online
HPLC-MS. Thermo Fisher Orbitrap mass spectrometers
were used for measuring all urine samples. LC-MS/MS data

Table 1: Information of patients with acute appendicitis and other control diseases.

Diseases
Discovery set (n = 73) Validation set (n = 61)

Cases Gender (M/F) Age (year) Cases Gender (M/F) Age (year)

Acute appendicitis (AA, n = 48) 32 14/18 38:5 ± 17:9 16 9/7 34:2 ± 15:2
Control acute abdomens (CON, n = 86)

Cholecystitis and gallstones (CHO) 17 5/12 56:9 ± 17:0 15 9/6 62:7 ± 16:3
Pancreatitis (PAN) 5 0/5 42:0 ± 13:9 13 10/3 48:0 ± 13:9
Gastrointestinal perforation (GP) 6 4/2 67:2 ± 17:6 5 5/0 66:8 ± 14:1
Intestinal obstruction (IO) 9 4/5 60:3 ± 15:9 4 1/3 58:0 ± 13:0
Other abdomens (OTH) 4 0/4 34:2 ± 12:3 8 2/6 47:2 ± 25:5
Total 41 13/28 55:1 ± 18:2 45 14/17 56:6 ± 17:2
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were processed using Proteome Discoverer (V1.4, Thermo
Fisher) withMascot algorithm (Mascot V2.3, Matrix Science)
against human RefSeq database (2013.07.04). Tryptic pep-
tides of 293T cell lysates were used as quality control samples
for evaluation of the instrument reproducibility.

All assigned peptides were filtered with 1% false
discovery rate (FDR). Only proteins with ≥2 strict peptides
(1% FDR and ion score > 20) were kept for quantification.
Intensity-based absolute quantification (iBAQ) algorithm
was used for protein quantification. To normalize the
differences in loading amounts among samples, the iBAQ
value was converted to iFOT (fraction of total, iBAQ value
of each protein divided by the sum of all iBAQ values of
all proteins in the sample). For better visualization, iFOTs
were multiplied by 105 [27]. To eliminate the difference
between different groups, the iFOTs were normalized by
quantile algorithm [28].

2.4. Feature Selection and Construction of Machine-Learning
Models. In the discovery dataset, normalized iFOTs were log2
transformed, and the missing values were imputed with a
minimal value. For the selection of feature, firstly, AA and
CON outliers were screened with the normal reference
intervals (RIs) built with 495 normal urine samples [26].
The criterion of outlier is that the iFOT value of a protein is
more than 95% CI of normal RI plus 2 folds of interquartile
range (IQR). Outlier proteins in each sample were identified
and then were further screened depending on the iFOT cutoff
value and frequency in the disease group to build disease-
related outlier pool. Outlier pool selection standards: (1) the
iFOT of the outlier is more than 75% percentile of all the out-
lier iFOT cutoff values, and it should be outlier in at least 90%
percentile of all the outlier frequencies in the AA group or the
CON group; (2) if the protein is not expressed in healthy uri-
nary samples, it should be outlier in at least 95% percentile of
all the outlier frequencies in the AA group or the CON group.
AA outlier pool and CON outlier pool were established,
respectively. Then, the nonparametric Wilcoxon test was
performed between proteins in the two outlier pools; proteins
with p value < 0.05 were applied in feature selection algo-
rithm for further screening. Ten proteins were selected and
applied in the construction of classification models with dif-
ferent machine-learning algorithms, including random forest
(RF), support vector machine (SVM), and naïve Bayes (NB).
Leave-one-out cross validation was used in the evaluation of

model robustness. To evaluate the prediction effect, the
classification models were verified in the independent valida-
tion dataset.

2.5. Statistical Analysis. R software (version 3.5.3) and
RStudio (version 0.99.489) were used in the construction
outlier models and machine-learning models, statistical
analysis, receiver operating characteristic (ROC) analysis,
and plotting. Gene ontology (GO) analysis was performed
with DAVID (https://david.ncifcrf.gov/).

3. Results and Discussion

3.1. Proteomic Profiling of Acute Appendicitis (AA) and
Control Acute Abdomen (CON) Samples. A total of 134
samples passed quality control in protein identification
(more than 800 proteins in each sample) were used for data
analysis, including 48 AA samples and 86 CON samples
(Table 1). High instrument quantification reproducibility
was achieved with an average Pearson correlation coefficient
of 0.88 between quality control samples. Totally, 5335 pro-
teins were identified and quantified (Table S2), and an
average of 1561 ± 432 proteins was quantified in each
sample. Among them, 3834 proteins were identified in both
groups. There were 138 unique proteins in the AA group
and 1363 unique proteins in the CON group (Figure 1(a)).
There were 198 (5.0%) proteins identified in all AA
samples, 183 (3.5%) in the CON group, and 142 proteins
identified in all the samples (Figure 1(b)). The distribution
of proteins showed that the CON group had much more
low frequency (<10% frequency) proteins (43.7%) than the
AA group (31.4%) (Figure S2). What is more, the highly
expressed proteins with more than 90% frequency (AA: 449
proteins; CON: 542 proteins) had a greater proportion than
the other groups with more than 20% frequency, suggesting
that there were a considerable percentage of “core” urinary
proteins widely expressed in different urine samples.

3.2. Reliability Demonstration of Profiling Data in Acute
Pancreatitis. To assure whether the urinary proteomic
method could be applied in the diagnostic biomarker discov-
ery for nonurogenital disease, we checked the classification
ability of our data for acute pancreatitis (PAN) from other
acute abdomens because there were commonly accepted reli-
able urinary markers for pancreatitis. The diagnostic capabil-
ities of the urinary level of amylase (the expression products

3834138 1363AA CON

(a)

56 142AA CON41

(b)

Figure 1: Protein identification in the AA and CON groups. The Venn diagram of the overlaps between (a) total proteins and (b) nonzero
proteins identified in the AA and CON groups.

3BioMed Research International

https://david.ncifcrf.gov/


of AMY2A and AMY2B) and trypsinogen-2 (the expression
product of PRSS2) had been proved in many researches
[29, 30]. We found that AMY2A, AMY2B, and PRSS2 were
significantly highly expressed in urine samples from pancre-
atitis patients compared with those from other acute
abdomen patients (Figures 2(a)–2(c), Kruskal-Wallis test,
p < 0:05). The AUCs of the three proteins between pancre-
atitis and the rest of the acute abdomen samples were all
above 0.75 (Figure 2(d), Table 2). The AUC of AMY2A
was 0.83, which was the best one among these three proteins,
showing its outstanding ability in diagnosing pancreatitis.
This result demonstrated that the urinary proteome system
could produce reliable datasets, and proteins derived from
nonurogenital tissues could be detected and beneficial in
disease diagnosis.

3.3. Feature Selection for Classification of AA and CON. Based
on the type of mass spectrometers (MS), the dataset was
divided into discovery dataset and independent validation
dataset (Table S2). In the discovery dataset, a total of 73
urine samples including acute appendicitis (AA, n = 32)
and control acute abdomen (CON, n = 41) specimens that
processed with multiple MS types were used for feature
selection and classification model construction. The
independent validation dataset consisted of 16 AA and 45
CON specimens, which were all produced by the same MS
type (Orbitrap-QE-Plus).

In order to select the features for classification
(Figure 3(a)), AA outliers and CON outliers were identified,
respectively, in the discovery dataset against a normal urine
database including 495 samples. Outliers were proteins with
expression that is higher than 95% confidence interval (CI)
of reference interval (RI) plus 2 folds of interquartile range
(IQR) of RI. The frequently detected outliers could be consid-
ered as markers to reveal changes under pathological condi-
tions. With further screening by frequency (shown in
Methods), 287 proteins were selected as AA outliers, and
322 were CON outliers (Table S2).
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Figure 2: Expression and receiver operating characteristic (ROC) analysis of PAN markers. The abundance of AMY2A (a), AMY2B (b), and
PRSS2 (c) in different disease groups (Kruskal-Wallis test, ∗∗ means p < 0:01, ∗ means p < 0:05). (d) ROC analysis of AMY2A, AMY2B, and
PRSS2, respectively.

Table 2: AUC, sensitivity, and specificity of PAN marker proteins
in diagnosing PAN with other acute abdomens.

Proteins AUC Sensitivity Specificity

AMY2A 0.83 83.3% 71.5%

AMY2B 0.75 66.7% 83.6%

PRSS2 0.82 83.3% 79.3%
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For the above two outlier pools, Gene ontology (GO)
analysis was conducted (Figures 3(b), 3(c), and S3). Among
the top 5 processes, three items including platelet degranula-
tion, acute-phase response, and cellular oxidant detoxifica-
tion were enriched both in AA outliers and CON outliers
(Figures 3(b) and 3(c)). For proteins enriched in acute-
phase response (ranked second and third in AA outliers and
CON outliers, respectively), eight proteins were shared by
AA and CON; one protein (ITIH4, inter-alpha-trypsin inhib-
itor heavy chain family member 4) was CON-specific. Hence,
in order to distinguish different diseases, specific proteins in
outliers should be further filtered as classification features.
The 151 significantly differential proteins between the two
groups (nonparametric Wilcoxon test, p value < 0.05,
Table S2) were used for feature selection algorithm. Ten
proteins (LYVE1: lymphatic vessel endothelial hyaluronan
receptor 1; AHCYL1: adenosylhomocysteinase-like 1; APOC1:
apolipoprotein C1; SECTM1: secreted and transmembrane
1; SLC31A1: solute carrier family 31 member 1; ITGA6:
integrin subunit alpha 6; SLC35F2: solute carrier family 35
member F2; GPX3: glutathione peroxidase 3; TMEM14C:

transmembrane protein 14C; SLC47A2: solute carrier family
47 member 2) were further selected for the establishment
of classification models, and their expressions were shown
in Figure S4.

3.4. Construction and Evaluation of Classification Models.
However, AUCs of the ten single-feature-based classifica-
tion models were all less than 0.75 (Figure 4(a)), indicat-
ing the limitation of single feature in classification.
Aiming at model optimization, machine-learning algo-
rithms were further adopted to integrate multiple features
for model construction, including random forest (RF),
support vector machine (SVM), and naïve Bayes (NB)
(Figure 4(b)). The robustness of these 3 models was eval-
uated by leave-one-out cross validation, and the accura-
cies of the 3 models were 84.9%, 83.6%, and 79.4%,
respectively. In the independent validation dataset, 16
AA and 45 CON specimens were included. The RF
model could correctly distinguish 83.6% of samples (sen-
sitivity: 81.2%, specificity: 84.4%), SVM model had an
accuracy of 78.7% (sensitivity: 25.0%, specificity: 97.8%),
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Figure 3: Feature selection workflow (a) and GO Biological Process analysis of outlier proteins in AA (b) and CON (c) outlier pools.
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and NB had 70.5% (sensitivity: 68.8%, specificity: 71.1%),
respectively. The RF model achieved the best performance
among the 3 models and showed advantage in differential
classification.

4. Discussion

Acute appendicitis is one of the most significant acute abdo-
men diseases in clinic, but the diagnosis of acute appendicitis
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is still difficult. In our study, a urinary proteomic system was
applied to discover urinary markers for differential diagnosis
of AA with other acute abdomens. A panel of 10 proteins
integrated by the RF model achieves 84.9% of accuracy in
leave-one-out cross validation and 83.6% in the independent
validation dataset, which was better than the reported results
of WBC (sensitivity 62%, specificity 75%) and CRP (sensitiv-
ity 57%, specificity 87%) [10]. Notably, without relying on
any clinical sign, this RF model using urine markers showed
high specificity in AA diagnosis, which was helpful in reduc-
ing negative appendectomy.

Among the 10 features in this diagnostic model, two
features had AUCs higher than 0.7, including LYVE1
(lymphatic vessel endothelial hyaluronan receptor 1) and
AHCYL1 (adenosylhomocysteinase-like 1). LYVE1 is an
immunity-related factor that may play a role in the migra-
tion of immune cells, and the loss of LYVE1 is a sign of
activation of inflammation [31, 32]. The expression of
LYVE1 is lower in the AA group than in the CON group.
Since the appendix is also an immune organ, this may
indicate that inflammation is more easily activated in
AA. AHCYL1 is upregulated in the CON group, maybe
because it acts as a regulator of fluid secretion [33], which
is important for the secretary organs in the CON group.
APOC1 (apolipoprotein C1) is a feature that upregulated
in the AA group. APOC1 can bind to lipopolysaccharide
(LPS) on the outer-membrane of gram-negative bacteria
to present LPS to macrophages, thereby stimulating the
inflammatory response [34]. The upregulation of APOC1
might reflect the existence of bacterial infection in AA
than the diseases in the CON group, such as cholecystitis
and pancreatitis.

In this study, we found that the urinary protein panel and
the random forest model were powerful in the diagnosis of
acute appendicitis with the other acute abdomens. The
advantages of random forest algorithm, such as nonoverfit-
ting, robustness to noise, make it a robust tool in classifica-
tion. Our results also demonstrated the potential of urinary
protein in the diagnosis of nonurogenital diseases, as the
change of acute pancreatitis biomarkers could be well
detected in different disease groups. With the relatively high
specificity, our result might provide beneficial supplement to
the clinical auxiliary diagnosis of acute appendicitis. How-
ever, there are still areas that need further improvement.
Firstly, this urinary diagnostic model should be further vali-
dated in a larger number of samples. Secondly, for facilitation
in potential clinical application, the feature proteins need to
be absolutely quantified. Except for the immunological
methods, the MS-based method for quantification is becom-
ing popular, with the increasingly high-throughput detection
of target proteins independent on antibodies. Lastly, since
urine is rich of small metabolites, the combination of urinary
protein makers with metabolites might contribute to improv-
ing diagnostic efficiency.

5. Conclusions

In summary, a urinary proteomic system was applied to
discover urinary markers for differential diagnosis of AA

with other acute abdomens. A panel of 10 proteins inte-
grated by the RF model achieves 84.9% of accuracy in
leave-one-out cross validation and 83.6% in the indepen-
dent validation dataset. Without relying on any clinical
sign, this RF model using urine markers showed high
specificity in AA diagnosis, which was helpful in reducing
negative appendectomy, indicating the potential of nonin-
vasive urinary markers in clinical application.
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