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Purpose. To investigate the relationship between gut microbiota and liver fibrosis and establish a microbiota biomarker for
detecting and staging liver fibrosis. Methods. 131 Wistar rats were used in our study, and liver fibrosis was induced by carbon
tetrachloride. Stool samples were collected within 72 hours after the last administration. The V4 regions of 16S rRNA gene were
amplified. The sequencing data was processed using the Quantitative Insights Into Microbial Ecology (QIIME version 1.9). The
diversity, principal coordinate analysis (PCoA), nonmetric multidimensional scaling (NMDS), and linear discriminant analysis
(LDA) effect size (LEfSe) were performed. Random-Forest classification was performed for discriminating the samples from
different groups. Microbial function was assessed using the PICRUST. Results. The Simpson in the control group was lower
than that in the liver fibrosis group (p = 0:048) and differed significantly among different fibrosis stages (p = 0:047). The Chao1
index in the control group was higher than that in the liver fibrosis group (p < 0:001). NMDS analysis showed a marked
difference between the control and liver fibrosis groups (p < 0:001). PCoA analysis indicated the different community
composition between the control and liver fibrosis groups with variances of PC1 13.76% and PC2 5.89% and between different
liver fibrosis stages with variances of PC1 10.51% and PC2 7.78%. LEfSe analysis showed alteration of gut microbiota in the
liver fibrosis group. Biomarkers obtained from Random-Forest classification showed excellent diagnostic accuracy in prediction
of liver fibrosis with AUROCs of 0.99. The AUROCs were 0.77~0.84 in prediction of stage F4. There were six increased and
17 decreased metabolic functions in the liver fibrosis group and 6 metabolic functions significantly differed among four liver
fibrosis stages. Conclusion. Gut microbiota is a potential biomarker for detecting and staging liver fibrosis with high
diagnostic accuracies.

1. Introduction

The crosstalk between gut and liver is deduced by the gut-
liver axis [1]. They are connected by bile acids and portal
venous system. A number of liver diseases including non-
alcoholic fatty liver disease (NAFLD), liver cirrhosis and
cancer have a strong link with gut microbiota [2]. Chronic
liver diseases (CLD) can lead to impaired gastrointestinal
motility, spontaneous bacterial peritonitis, portal hyper-
tension, and intestinal bacteria overgrowth. Recently, one
gut microbiome analysis study validated that the compo-
sition of gut bacterial species altered in patients with liver

cirrhosis [3]. A high prevalence of 40.8% for small intestinal
bacterial overgrowth was found in patients with CLD [4]
and even 50.5% for patients with decompensated cirrhosis.
However, these studies focused on advanced liver disease,
i.e., liver cirrhosis.

Liver fibrosis is characterized by excessive deposition
of extracellular matrix (ECM). The activation of hepatic
stellate cells (HSCs) is crucial for liver fibrogenesis. The
dysfunction of the intestinal barrier in CLD patients
resulted in the increased translocation of intestinal bacteria
and their components [5]. Due to continuous exposure of
lipopolysaccharide (LPS) from gram-negative bacteria of
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the gut microbiota, transforming growth factor- (TGF-) β
signaling in HSCs was activated by Toll-like receptor
(TLR) 4-mediated innate immunity [6]. Therefore, gut
microbita in CLD patients promotes liver fibrosis. Because
liver fibrogenesis is an ongoing process, changes of gut
microbiota associated with liver fibrosis stages are still
unrevealed in detail.

To investigate the relationship between gut microbiota
and liver fibrosis, we used 16S rRNA Amplicon Pyrose-
quencing to disclose the alteration of microbiota composi-
tion in liver fibrosis rats. The purpose of the study was to
establish a microbiota biomarker for detecting and staging
liver fibrosis.

2. Materials and Methods

2.1. Induced Liver Fibrosis Rat Model. 131 specific pathogen-
free Wistar rats (male, 200 ± 50 g) were used in our study
and were housed in our institutional animal laboratory
with a room temperature of 25°C and room humidity of
50%. Rats of the liver fibrosis group were subcutaneously
administrated twice a week with 0.3ml/100 g mixed solu-
tion, which was composed of carbon tetrachloride (CCl4)
and olive oil at a ratio of 1 : 1. Rats of the control group
were treated with saline.

2.2. Stool Sample Collection and DNA Extraction. All stool
samples of both liver fibrosis and control groups were
collected within 72 hours after the last CCl4 or saline
administration and stored in a stool container with a novel
chemical stabilizer, i.e., N-octylpyridinium bromide-
(NOPB-) based reagent. It allows stool sample transporta-
tion and storage at room temperature with preservation of

bacterial composition, and the composition and perfor-
mance of NOPB-based reagent were described in detail
by Han et al. [7]. Total DNA was extracted from stool
samples by using the PowerMax (stool/soil) DNA isolation
kit (MoBio Laboratories, Carlsbad, CA, United States).
Then, DNA samples were stored at -20°C for further anal-
ysis. Extracted DNA concentrations were assessed with
absorption ratios of DNA at 260/280 nm and 260/230 nm
by using a NanoDrop 2000c spectrophotometer (Thermo
Scientific, USA).

2.3. 16S rRNA Gene Sequencing. The V4 regions of 16S
rRNA gene were amplified with the forward primer 515F
(5′–GTGCCAGCMGCCGCGGTAA–3′) and the reverse
primer 806R (5′–GGACTACHVGGGTWTCTAAT–3′).
PCR amplification was performed in a mixture containing
25μl of Phusion High-Fidelity PCR Master Mix, 3μl of
DMSO, 3μl of each forward and reverse primer, 10μl of
DNA Template, and 6μl of ddH2O. Thermal cycling reac-
tion was as the following: initial denaturation at 98°C for
30 s, followed by 30 cycles of denaturation at 98°C for 15 s,
annealing at 58°C for 15 s, and extension at 72°C for 15 s,
and final extension at 72°C for 1min. PCR products were
purified with AMPure XP Beads (Beckman Coulter, India-
napolis, IN). The amplicons were normalized, pooled, and
sequenced on the Illlumina HiSeq 4000 sequencer (2 × 150
bp; Guhe Information and Technology Co., Ltd., Hangzhou,
China).

2.4. Sequence Analysis and Statistical Analysis. The sequenc-
ing data was processed using the Quantitative Insights Into
Microbial Ecology (QIIME version 1.9) [8]. The low-quality
sequence reads were removed following the criteria: (1) reads

M-T

(j)(i)(h)(g)(f)

(e)(d)(c)(b)(a)

F4F3F2F1F0

H&E

(e)(d)(c)(b)(a)

Figure 1: H&E and Masson’s trichrome staining in liver fibrosis. Liver fibrosis stages: F0: no fibrosis (a, f); F1: fibrous portal expansion (b, g);
F2: few bridges or septa (c, h); F3: numerous bridges or septa (d, i); F4: cirrhosis (e, j). M-T: Masson trichrome staining.
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with a length of <150 bp, (2) reads with an average Phred
score of <20, (3) reads containing ambiguous bases, and (4)
reads containing mononucleotide repeats of >8 bp. High-
quality reads were clustered into 16S rRNA Operational Tax-
onomic Units (OTUs) with ≥97% sequence homology. The
taxonomic classification of each OTU was performed by
VSEARCH searching the representative sequence set against
the SILVA reference database [9].

The R package (3.2.0) was applied to analyze the distribu-
tion of sequence length in all samples. OTU tables were used
to record the abundance of each OTU of samples. Taxon
abundance at the levels of phylum, class, order, family, genus,
and species was calculated and statistically compared among
groups using R stats package. Based on the OTU table in
QIIME, alpha diversities including Chao1, Simpson, and
Shannon were calculated. The significant differences of alpha
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Figure 2: Differences of alpha diversity between the control and liver fibrosis groups and between different liver fibrosis stages. Between the
control and liver fibrosis group, no difference of Shannon was found (p = 0:465) (a). The Simpson in the control group was lower than that in
the liver fibrosis group (p = 0:048) (b). The Chao1 of the alpha diversity index in the control group was higher than that in the liver fibrosis
group (p < 0:001) (c). Between different liver fibrosis stages, there were no differences of Shannon and Chao1 indices (d, f). Significant
difference of Simpson was found with p = 0:047 (e). G1: control group; G2: liver fibrosis group; F1~F4: liver fibrosis stages.
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diversity metrics were performed using the R package
“Vegan.” The Venn diagram generated by R package was
used to visualize the shared and unique OTUs among groups.
In order to investigate the structural variation of microbial
communities, beta diversity analysis was performed using
UniFrac distance metrics [10, 11] and was visualized via
principal component analysis (PCA), principal coordinate
analysis (PCoA), and nonmetric multidimensional scaling
(NMDS) [12]. The linear discriminant analysis (LDA) effect
size (LEfSe) method based on the Kruskal-Wallis test and lin-
ear discriminant analysis (LDA) was conducted to identify
significant differentially abundant taxonomy between differ-
ent groups [13]. Random-Forest classification was performed
for discriminating the samples from different groups using
the R package “randomForest” [14, 15], and “pROC” package
was used for receiver operating curve (ROC) analysis. Based
on 16S rRNA marker gene sequences, microbial function
was predicted using the PICRUST (phylogenetic investiga-
tion of communities by reconstruction of unobserved states)
[16]. By means of the KEGG database, Welch’s t-test was
used to confirm the significant difference of function
between the control and liver fibrosis groups with a p value
less than 0.05. Differences of function between liver fibrosis
stages were analyzed using the Kruskal test from R stats
package.

3. Results

3.1. Liver Fibrosis Stages. Wistar rats were induced via injec-
tion of CCl4 for 4, 6, 8, and 12 weeks. Rats were sacrificed at
72 h after the last injection of CCl4. Liver species of rats were
fixed in formalin and underwent hematoxylin-eosin staining
and Masson’s trichrome staining. According to the histo-
pathologic analysis, liver fibrosis was categorized into five
stages [17]: F0: no fibrosis; F1: fibrous portal expansion; F2:
few bridges or septa; F3: numerous bridges or septa; and
F4: cirrhosis.

Finally, a total of 131 rats were enrolled in our study
and were divided into the control group (n = 65) and liver
fibrosis group (n = 66). As for the liver fibrosis group,
there were 15 F1 rats, 22 F2 rats, 11 F3 rats, and 18 F4
rats (Figure 1).

3.2. Differences between Control and Liver Fibrosis Groups.
No difference of Shannon was found between the control
and liver fibrosis groups (p = 0:465) (Figure 2(a)). The
Simpson in the control group was lower than that in the
liver fibrosis group (p = 0:048) (Figure 2(b)). The Chao1
of the alpha diversity index in the control group was
higher than that in the liver fibrosis group (p < 0:001)
(Figure 2(c)).

NMDS analysis showed that there was a marked differ-
ence between the control group and the liver fibrosis group
(p < 0:001) (Figure 3). By using unweighted UniFrac dis-
tance, PCoA analysis indicated the different community
composition in OUT-level between the control group and
the liver fibrosis group with variances of PC1 13.76% and
PC2 5.89% (Figure 4(a)).

According to analysis of similarities (ANOSIM), a signif-
icant difference of the bacteria community composition was
found between the control and liver fibrosis groups
(p = 0:001) (Figure 5(a)). The LEfSe analysis was performed
to identify the distinct bacterial species between the control
and liver fibrosis groups with a LAD score > 2 (Figures 6(a)
and 6(b)). At the phylum level, significantly increased relative
abundance of Actinobacteria, TM7, and Tenericutes and
decreased relative abundance of Bacteroidetes and Verruco-
microbia were found in the liver fibrosis group (p < 0:05).
At the class level, higher abundance of Actinobacteria, Corio-
bacteriia, Erysipelotrichi, TM7-3, and Mollicutes and lower
abundance of Bacteroidia, Bacilli, Betaproteobacteria, and
Verrucomicrobiae were found in the liver fibrosis group
(p < 0:05). At the order level, 6 orders of Bifidobacteriales,Cor-
iobacteriales, Turicibacterales, Erysipelotrichales, CW040, and
RF39 increased significantly in the liver fibrosis group, and 4
orders of Bacteroidales, Lactobacillales, Burkholderiales, and
Verrucomicrobiales decreased significantly (p < 0:05). At the
family level, higher abundance of Bifidobacteriaceae, Corio-
bacteriaceae, S24-7, Turicibacteraceae, Clostridiaceae, Lach-
nospiraceae, Erysipelotrichaceae, and F16 was identified in
the liver fibrosis group and lower abundance of Bacteroida-
ceae, Prevotellaceae, Paraprevotellaceae,Veillonellaceae,Alcali-
genaceae, and Verrucomicrobiaceae in the liver fibrosis group
(p < 0:05). At the genus level, 9 genera including Bifidobac-
terium, Adlercreutzia, CF231, Turicibacter, Clostridium,
Dorea, Ruminococcus, Phascolarctobacterium, and Allobacu-
lum increased significantly in the liver fibrosis group, and 6
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Figure 3: Nonmetric multidimensional scaling (NMDS) analysis
between control and liver fibrosis. There was a marked difference
between the control group and the liver fibrosis group (p < 0:001).
G1: control group; G2: liver fibrosis group.
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Figure 4: Principal coordinate analysis (PCoA) between the control and liver fibrosis groups and between different liver fibrosis stages. PCoA
analysis indicated the different community composition in OUT-level between the control group and the liver fibrosis group with variances of
PC1 13.76% and PC2 5.89% (a) and between four different fibrosis stages with variances of PC1 10.51% and PC2 7.78% (b). G1: control group;
G2: liver fibrosis group.
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genera including Bacteroides, Prevotella (Prevotellaceae),
Prevotella (Paraprevotellaceae), Faecalibacterium, Megamo-
nas, and Akkermansia decreased significantly (p < 0:05).

According to Random-Forest classification analysis, the
top 60 species were selected, and the areas under ROC
(AUROC) at the phylum, class, order, family, and genus were
0.99 for all in differentiating the control and liver fibrosis
groups (Figure 7).

The PICRUST analysis results indicated that 23 KEGG
pathways in level 3 were significantly different between
the control and liver fibrosis groups. There were six
increased metabolic functions in the liver fibrosis group
including electron transfer carriers (unclassified), basal
transcription factors, ether lipid metabolism, nucleotide
metabolism, biosynthesis of stilbenoid diarylheptanoid
and gingerol, and various types of N-glycan biosynthesis
(p < 0:05). 17 decreased metabolic functions were identi-
fied in the liver fibrosis group including endocytosis, lyso-
some, cellular antigens, Notch signaling pathway, Wnt
signaling pathway, mRNA surveillance pathway, 1,1,1-tri-
chloro-2,2-bis(4-chlorophenyl)-ethane (DDT) degradation,
biosynthesis of type II polyketide products, carotenoid
biosynthesis, cytochrome P450, glycosaminoglycan degrada-
tion, glycosphingolipid biosynthesis (ganglio series), glyco-
sphingolipid biosynthesis (globo series), glycosphingolipid
biosynthesis (lacto and neolacto series), N-glycan biosynthe-
sis, other glycan degradation, and steroid hormone biosyn-
thesis (p < 0:05).

3.3. Differences among Different Liver Fibrosis Stages. No sig-
nificant differences of Chao1 and Shannon were found

among different fibrosis stage rats (p > 0:05) (Figures 2(d)
and 2(f)). The Simpson of the alpha diversity index differed
significantly among four different fibrosis stages (p = 0:047)
(Figure 2(e)). PCoA analysis using unweighted UniFrac
distance showed the different community composition in
OUT-level among four different fibrosis stages with vari-
ances of PC1 10.51% and PC2 7.78% (Figure 4(b)).

According to ANOSIM, a significant difference in the
bacteria community composition was found among differ-
ent fibrosis stages (p = 0:046) (Figure 5(b)). To identify the
distinct bacterial species among different fibrosis stages,
the LEfSe analysis results were shown in Figures 6(c)
and 6(d). At the phylum level, 3 phyla including Actino-
bacteria, Proteobacteria, and TM7 differed significantly
among four different fibrosis stages (p < 0:05). At the class
level, 5 classes of Actinobacteria, Bacilli, Erysipelotrichi,
TM7-3, and Verrucomicrobiae were distinct among four
fibrosis stages (p < 0:05). At the order level, 5 orders of
Bifidobacteriales, Lactobacillales, Erysipelotrichales, CW040,
and Verrucomicrobiales differed significantly among four
fibrosis stages (p < 0:05). At the family level, significant
differences of Bifidobacteriaceae, Lactobacillaceae, Veillo-
nellaceae, Erysipelotrichaceae, F16, and Verrucomicrobia-
ceae were found among four different fibrosis stages
(p < 0:05). At the genus level, 7 genera of Bifidobacterium,
CF231, Lactobacillus, Dorea, Allobaculum, Morganella, and
Akkermansia were different significantly among four fibro-
sis stages (p < 0:05).

AUROCs in prediction of stages F1, F2, F3, and F4 at the
phylum level were 0.72, 0.53, 0.61, and 0.80, respectively. At
the class level, the AUROCs were 0.65, 0.59, 0.67, and 0.83.
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Figure 5: Analysis of similarities (ANOSIM) between the control and liver fibrosis groups and between different liver fibrosis stages.
Significant difference of the bacteria community composition was found between the control and liver fibrosis groups (p = 0:001) (a) and
between different liver fibrosis stages (p = 0:046) (b). G1: control group; G2: liver fibrosis group; F1~F4: liver fibrosis stages.
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At the order level, the AUROCs were 0.61, 0.54, 0.68, and
0.81. At the family level, the AUROCs were 0.58, 0.47,
0.71, and 0.77. At the genus level, the AUROCs were
0.61, 0.52, 0.72, and 0.84 (Figure 8).

According to the PICRUST analysis, six metabolic
functions of apoptosis, 1,1,1-trichloro-2,2-bis(4-chlorophe-
nyl)ethane (DDT) degradation, betalain biosynthesis, ether
lipid metabolism, fatty acid elongation in mitochondria,
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Figure 6: The linear discriminant analysis (LDA) effect size (LEfSe) analysis between the control and liver fibrosis groups and between
different liver fibrosis stages. Cladogram (a, c) and the distinct bacterial species between the control and liver fibrosis groups and between
different liver fibrosis stages, with a LAD score > 2 (b, d). G1: control group; G2: liver fibrosis group.
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and indole alkaloid biosynthesis, were different significantly
among different liver fibrosis stages (p < 0:05).

4. Discussion

In our study, the marked changes of gut microbiota were
identified between normal liver rats and liver fibrosis rats.
Furthermore, changes in gut microbiota were also found in
four different liver fibrosis stages. On the basis of our results,
it can help us to further understand the gut-liver axis.

Compared with normal liver rats, lower bacteria commu-
nity richness (Chao1 index) and lower community diversity
(Simpson index) were found in liver fibrosis rats in our study.
A significant difference in bacteria community diversity
(Simpson index) was found among four different fibrosis
stages (p = 0:047). Moreover, the community diversity in
stage F4 rats was higher than that in stages F1, F2, and F3,
respectively. A number of liver diseases resulting in liver
fibrosis can affect the richness and diversity of gut microbi-
ota. As for the alcoholic liver disease (ALD), lower fungal
species richness and diversity were confirmed in ALD
patients compared with healthy controls [18]. Reduction in
microbial diversity was found in patients with primary scle-
rosing cholangitis (PSC) [19, 20] and primary biliary cholan-
gitis (PBC) [21]. HCV and HBV infection patients showed
lower bacterial diversity [22, 23]. In addition, there is a
decrease in microbial diversity in nonobese patients with
NAFLD [24], and in patients with obesity and diabetes
[25]. These studies mentioned above demonstrate the alter-

ation of gut microbiota in different etiologies of liver fibrosis.
However, these studies have not explained the correlation
between gut microbiota and liver fibrosis. Recently, one study
using a blood sample showed the lower bacterial 16S rDNA
diversity in obese patients with liver fibrosis [26]. Undoubt-
edly, there is a significant difference between blood micro-
biomes and gut microbiomes [27]. Herein, our study fills
this gap with encouraging results.

Remarkable biomarkers between normal liver rats and
liver fibrosis rats were identified by using the LEfSe analysis
in our study. There were three increased phyla and two
decreased phyla, five increased and four decreased classes,
six increased and four decreased orders, eight increased and
six decreased families, and nine increased and six decreased
genera. Moreover, we used the Random-Forest Classifier
with AUROCs to predict the control group and the liver
fibrosis group. At the phylum, class, order, family, and genus
levels, biomarkers obtained from Random-Forest classifica-
tion showed excellent diagnostic accuracies in differentiating
between the control and liver fibrosis groups with AUROCs
of 0.99 for all. Similarly, one recent study showed that using
the Random-Forest Classifier model could distinguish mild/-
moderate from advanced liver fibrosis in NAFLD patients
with an AUROC of 0.936 [28]. Furthermore, we also con-
ducted Random-Forest classification to differentiate among
liver fibrosis stages. Our results indicated that there was low
diagnostic accuracy in the prediction of F2 with AUROC of
less than 0.60. We speculated that there were overlaps
between stages F1 and F2, and F2 and F3, in bacterial
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Figure 7: ROC analysis between the control group (G1) and the liver fibrosis group (G2). The areas under ROC at the phylum (a), class (b),
order (c), family (d), and genus (e) were 0.99 for all in differentiating the control and liver fibrosis groups.
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Figure 8: Continued.

13BioMed Research International



community diversity and composition. As to the prediction
of stage F4, there were relatively high diagnostic accuracies
with AUROC of 0.77~0.84 in our study.

The alterations of metabolic functions in gut microbiota
were predicted by PICRUST analysis in our study. We found
6 increased and 17 decreased metabolic functions in the liver
fibrosis group and 6metabolic functions significantly differed
among stages F1, F2, F3, and F4.

Our study disclosed the relationship between liver fibro-
sis and gut microbiota and successfully identified the bio-
markers in predicting liver fibrosis. But there are some
limitations including the relatively small sample size and a
rodent animal study.

In conclusion, our study verifies that gut microbiota is a
potential biomarker for detecting and staging liver fibrosis
with high diagnostic accuracies.
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