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Background. Split-hand/foot malformation (SHFM) is a severe congenital disability mainly characterized by the absence or
hypoplasia of the central ray of the hand/foot. To date, several candidate genes associated with SHFM have been identified,
including TP63, DLX5, DLX6, FGFR1, and WNT10B. Herein, we report a novel variant of TP63 heterozygously present in affected
members of a family with SHFM. Methods. This study investigated a Chinese family, in which the proband and his son suffered
from SHFM. The peripheral blood sample of the proband was used to perform whole-exome sequencing (WES) to explore the
possible genetic causes of this disease. Postsequencing bioinformatic analyses and Sanger sequencing were conducted to verify the
identified variants and parental origins on all family members in the pedigree. Results. By postsequencing bioinformatic analyses
and Sanger sequencing, we identified a novel missense variant (NM_003722.4:c.948G>A; p.Met316Ile) of TP63 in this family that
results in a substitution of methionine with isoleucine, which is probably associated with the occurrence of SHFM. Conclusion. A
novel missense variant (NM_003722.4:c.948G>A; p.Met316Ile) of TP63 in SHFM was thus identified, which may enlarge the
spectrum of known TP63 variants and also provide new approaches for genetic counselling of families with SHFM.

1. Introduction

Split-hand/foot malformation (SHFM) is a severe congenital
abnormality mainly characterized by the absence or hypopla-
sia of the central rays of the hand/foot, which can be isolated
or syndromic [1]. The reported incidence of SHFM ranges
from 1/6000 to 1/20000, worldwide. The incidence in China
could be higher, underlying higher disabilities in infants [2,
3]. Genetic and environmental factors have been proven to
contribute significantly to the occurrence of congenital mal-
formations. Several candidate genes have been reported to
be associated with SHFM, including TP63 (OMIM 603273),
DLX5 (OMIM 600028), DLX6 (OMIM 600030), FGFR1

(OMIM 136350), WNT10B (OMIM 601906), and BHLHA9
(OMIM 615416). The majority of SHFM cases display auto-
somal dominant inheritance, but other modes of inheritance
have also been described [4, 5]. In addition, environmental
exposure to medication and chemicals also increases the risk
of limb malformations [6, 7].

In the present study, we investigated an isolated Chinese
family with no history of exposure to environmental risk fac-
tors. In this family, the proband and his son suffered from
SHFM. Whole-exome sequencing (WES) was used to detect
possible genetic lesions, and a novel missense variant (NM_
003722.4:c.948G>A; p.Met316Ile) of TP63 was identified to
be associated with the occurrence of SHFM in this family.
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2. Materials and Methods

2.1. Subjects.We investigated 3 generations of a Chinese fam-
ily from Anhui province, with four family members partici-
pating in our study. The proband and his son suffered from
SHFM. Peripheral blood samples were collected from all
family members for genetic analyses. Clinical symptoms
and imaging results of the affected individuals were also
recorded. All participants signed informed consent, and this
study was approved by the local ethics committee.

2.2. WES, Postsequencing Bioinformatic Analyses, and Sanger
Sequencing. Genomic DNA was extracted from peripheral
blood samples taken from all participants using a DNA blood
mini kit (Qiagen, Germany). After quality control, the pro-
band’s DNA was used for WES, performed by the Beijing
Genomics Institute (Shenzhen, China) with a MGISEQ-
2000 genetic sequencer. Procedures were described as fol-
lows: (1) library prepared and assessed, (2) sequenced by
MGISEQ-2000, (3) reads aligned with hg19 using BWM
and GATK software after data filtering, (4) variants identified
and annotated (1KGP, ExAC_all, gnomAD, OMIM, Clin-
Var, HGMD, SIFT, PolyPhen-2, and MutationTaster), and
(5) variants validated by Sanger sequencing and cosegrega-
tion analysis. Detailed method information has been pro-
vided in a previous study [8].

3. Results

This study identified a family with two members (II-2 and
III-1) diagnosed with SHFM (Figure 1). The proband (II-2),
who already had a child with SHFM, went to the reproductive
centre for fertility counselling. The proband experienced

bilateral split-foot malformations, and his son suffered from
cleft hand and foot deformities. No other abnormities were
found in the proband or his son. The clinical and imaging
features of the affected individuals are shown in Figure 2.
Notably, in this family, the proband’s father (I-1) died before
seeking genetic counselling; thus, the clinical features were
not recorded. However, based on descriptions given by his
family members, he did not show any clinical signs of limb
malformations.

Using WES, we identified a novel heterozygous variant
(NM_003722.4:c.948G>A; p.Met316Ile) of TP63 in the pro-
band and his son (Figure 1). This new variant is not found
in the gnomAD, 1000G, and ExAC databases (Table 1). An
amino acid sequence alignment suggests that the 316th
amino acid in TP63 protein is highly conserved among differ-
ent species (Figure 3(a)). This novel variant was predicted to
be disease-causing/probably damaging by MutationTaster
and PolyPhen-2 (Table 1). Subsequently, we constructed a
partial model of TP63 protein using Swiss-model; the
mutated one exhibits an altered three-dimensional structure
of TP63 (Figure 3(b)). Finally, Sanger sequencing found this
new variant in affected family members but not in healthy
individuals, conforming to the cosegregation principle.

4. Discussion

SHFM is a severe congenital heterogeneous limb abnormal-
ity that mainly affects the development of the central rays
in the hand/foot. It may occur in an isolated or syndromic
manner. The clinical phenotypes of SHFM are highly vari-
able, ranging from hypoplasia in a single phalanx or syn-
dactyly to aplasia in one or more central limbs [9]. The
development of limbs is a very complex process that begins
with the formation of limb buds. The apical ectodermal
ridge (AER), located at the distal edge of the developing
limb bud, acts as the main signal centre regulating growth
along the proximal/distal axis. Disruption of the AER may
contribute to SHFM [4].

Recently, it has been reported that genetic factors play a
crucial role in the occurrence of SHFM. Several chromo-
somal loci have been identified that associate with the occur-
rence of SHFM. Chromosomal rearrangements in 7q21 lead
to SHFM1; DLX5 and DLX6 located in this area are involved
in the development of limb malformation [10, 11]. SHFM2 is
caused by mutations in Xq26 [12]. Duplications involving
BTRC and FBXW4 in 10q24 contribute to the occurrence of
SHFM3 [13, 14]. SHFM4-associated mutations mapping to
3q28 have been found to be in TP63 [15–17]. Dysregulation
of the HOXD gene cluster located in 2q31 plays a key role
in SHFM5 [18]. WNT10B mutations in 12q13 are involved
in the development of SHFM6 [19, 20]. In addition, there
exists a specific SHFM with tibia and fibula deficiency called
SHFMD. BHLHA9-associated duplications in 17p13 display
significant association with SHFMD [21]. SHFM1, 3, 4, and
5 mainly exhibit an autosomal dominant inheritance pattern,
while SHFM2 and 6 display X-linked and autosomal reces-
sive models of inheritance, respectively.

Heterozygous expression of mutant TP63 could underlie
the occurrence of SHFM4 [4, 5]. Hence, it is essential to
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Figure 1: Variant of TP63 identified in a Chinese family with SHFM
(NM_3722.4:c.948G>A). The proband (II-2) and his son (III-1)
were heterozygous for this variant. The red arrow indicates variant
information in Sanger sequencing. Abbreviations: SHFM= split-
hand/foot malformation; WT=wild type; M=TP63 variant.
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provide families with histories of SHFM with molecular
genetic testing and counselling. In the present study, we iden-
tified a novel heterozygous variant of TP63 in an isolated
SHFM family. Based on clinical features and WES results,
this type was diagnosed as SHFM4, probably inherited in
an autosomal dominant inheritance pattern. However, the
proband’s father died before molecular testing; although he
did not show any clinical signs of limb malformations, we
cannot exclude paternal inheritance.

TP63 is a protein-coding gene comprising 17 exons, 2
promoters, and some variable splice sites. The TP63 isoforms
encoded by this gene can be divided into two categories
(TAp63 and ΔNp63) whose expression is driven by different
promoters. TAp63 isoforms own an N-terminal transactiva-
tion (TA) domain, which is absent in ΔNp63 isoforms. Both
the TAp63 and ΔNp63 isoforms can be further divided into
TAp63 and ΔNp63α, β, and γ variants after undergoing
mRNA alternative splicing. TAp63α is the longest isoform,
containing a TA domain, a central DNA-binding domain
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Figure 2: (a–d) Clinical phenotypes and X-rays of the proband’s son (III-1). (e, f) Clinical phenotypes and X-rays of the proband (II-2).

Table 1: TP63 variant (NM_003722.4:c.948G>A; p.Met316Ile) in a
Chinese family with SHFM.

Gene TP63

DNA change NM_003722.4:c.948G>A (heterozygous)

Amino acid alteration p.Met316Ile

Variant type Missense

Allele frequency

1KGP 0

ExAC_all 0

gnomAD 0

Function prediction

MutationTaster Disease causing (1.000)

PolyPhen-2 Probably damaging (0.937)

SIFT Tolerated (0.074)

Abbreviations: SHFM: split-hand/foot malformation; 1KGP: 1000 Genomes
Project; ExAC_all: all the data of Exome Aggregation Consortium; gnomAD:
the Genome Aggregation Database.
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(DBD), an oligomerization domain (OD), a C-terminal Ster-
ile Alpha Motif (SAM), and a Transactivation Inhibitory (TI)
domain [22–25].

As a member of the p53 family of transcription factors,
TP63 plays a key role in the formation and differentiation
of the AER and is crucial to limb development [4]. The newly
discovered amino acid substitution (p.Met316Ile) confirmed
in this study occurred at a mutational hotspot in DBD, which
is responsible for DNA binding. According to the Alamut
Visual software and the ACMG 2015 guidelines, this variant
is regarded as a class 3-unknown pathogenicity. However,
this site in TP63 is evolutionarily highly conserved among
different species. Despite there was small physicochemical
difference between Met and Ile according to Grantham
scores, bioinformatics software (MutationTaster and Poly-
Phen-2) predicted that this new variant would be disease-
causing/probably damaging. Importantly, Swiss-model soft-
ware also suggested that this novel variant may change the
TP63 partial structure in its DNA-binding domain, which
may affect the formation and differentiation of the AER,
probably leading to limb malformation.

In conclusion, a novel heterozygous missense variant
(NM_003722.4:c.948G>A; p.Met316Ile) of TP63 was detected
in a Chinese family by whole-exome sequencing. It must be
included in genetic diagnoses and counselling discussions of
families with SHFM.
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Figure 3: (a) The novel variant (p.Met316Ile) is located in the highly conserved site among species. The red letter represents the mutated
amino acid; (b) the partial structure of TP63 protein constructed by Swiss-model with red circles emphasizing the changed conformation.
WT=wild type. M=TP63 variant.
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