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Gout is a common inflammatory arthritis triggered by monosodium urate deposition after longstanding hyperuricemia. In the
general community, the disease is largely polygenic in genetic architecture, with many polymorphisms having been identified in
gout or urate-associated traits. In a small proportion of cases, rare high penetrant mutations associated with monogenic seg-
regation of the disease in families have been demonstrated to be disease causative. In this study, we recruited a two-generation
pedigree with early-onset gout. To elucidate the genetic predisposition, whole-exome sequencing (WES) was performed. After
comprehensive variant analyses and cosegregation testing, we identified a missense variant (c.277C>A, p.L93M) in SLC16A9, an
extremely rare variant in genetic databases. Moreover, in silico assessments showed strong pathogenicity. .is variant coseg-
regated with the disease phenotype perfectly in the family and is located in a highly conserved functional domain. A few studies
supported our results of the association between SLC16A9 and gout and serum urate levels. In conclusion, we provide the first
evidence for the association of rare missense in SLC16A9 with early-onset gout. .ese findings not only expand our current
understanding of gout but also may have further implications for the treatment and prevention of gout.

1. Introduction

Gout is a common inflammatory arthritis caused by the
deposition of monosodium urate (MSU) crystals in and
around the joints following longstanding hyperuricemia [1].
It affects 1-2% of adults in developed countries [1–3] and has
a prevalence of 1.14% in eastern China [4]. Similar to other
complex phenotypes, gout results from the interplay be-
tween inherited genetic risk variants and environmental
factors [5]. Genome-wide association studies (GWAS) have

confirmed the importance of genetic basis in gout. Several
genetic loci have been associated with gout, such as ABCG2,
ALDH16A1, BCAS3, RFX3, KCNQ1, ATXN2, CUX2, GCKR,
PDZK1, CNTN5, and mitochondrial genetic variation
[6–14]. For example, ABCG2 dysfunctional variants have a
strong impact on the progression of hyperuricemia. .e
most common dysfunction variant rs2231142 (p.Q141K)
increases the risk of gout and hyperuricemia, significantly
influences the age of onset of gout, and is highly associated
with a familial gout history [15]. Moreover, ABCG2

Hindawi
BioMed Research International
Volume 2020, Article ID 4321419, 6 pages
https://doi.org/10.1155/2020/4321419

mailto:xxr7799@163.com
https://orcid.org/0000-0002-5280-7100
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4321419


dysfunction was reported as a strong independent risk factor
for pediatric-onset hyperuricemia/gout [16].

Notably, almost all these loci identified in gout GWAS
were also associated with serum urate levels, indicating the
shared genetic basis between gout and serum urate con-
centrations [5]. .is is mainly because elevated serum urate
levels are a critical risk factor for gout onset [17]. However,
as GWAS for gout have been relatively limited in size and
power compared with the GWAS of serum urate levels, less
is known about the specific genetic contribution to gout as
opposed to genetic associations of hyperuricemia. Associ-
ation with gout at most urate-associated loci is still unclear.

SLC16A9 encodes monocarboxylate transporter 9
(MCT9), a member of solute carrier (SLC) superfamily that
comprises more than 400 transporters [18]. SLC16A9 is
ubiquitously expressed, including at particularly high levels
in the kidney [19, 20]. Recent GWAS and meta-analysis
revealed a significant association between polymorphisms of
SLC16A9 and serum urate concentrations [7, 21, 22].
However, a role for variants of SLC16A9 and gout itself has
not been demonstrated [7, 11]. To date, the transport
substrate of MCT9 is still unknown and the function of
SLC16A9 remains poorly understood, especially its potential
association with gout.

Despite dozens of genetic loci identified in gout or urate-
associated traits, little is known about the genetic aetiology of
patients presenting with early-onset gout (EOG), which was
defined as before the age of 40 years [23–26]. Previous
studies have reported rs2231142 (Q141K) in ABCG2 as a
genetic factor in early-onset gout [16, 27, 28]. In this study,
we investigated a two-generation pedigree with early-onset
gout. To elucidate the genetic predisposition, whole-exome
sequencing (WES) was performed, and we identified a rare
missense mutation (c.277C>A, p.L93M) in SLC16A9, pro-
viding new evidence for the association of SLC16A9 with
gout.

2. Materials and Methods

2.1. Participant Recruitment. .is study conformed to the
tenets of the Declaration of Helsinki and was approved by
the Ethics Committee of the First Affiliated Hospital of
Wenzhou Medical University. Informed consent was ob-
tained from the patient. Patients were clinically evaluated by
rheumatologist according to the 2015 gout classification
criteria by an American College of Rheumatology/European
League against Rheumatism Collaborative Initiative [29, 30].
Peripheral blood samples were collected from patients and
unaffected family members, from which genomic DNA was
extracted.

2.2. Whole-Exome Sequencing. Whole-exome sequencing
(WES) was performed on the proband. Briefly, genomic
DNA was sheared into 200- to 250-base pair (bp) fragments
using a Covaris S220 ultrasonicator. .en the fragments
were ligated with adapters to both ends, amplified by liga-
tion-mediated polymerase chain reaction, purified, and
hybridized. Nonhybridized fragments were washed out.

Enrichment of the DNA libraries was performed using the
Exome Enrichment V5 Kit (Agilent Technologies, Palo Alto,
CA, USA) according to the manufacturers’ protocol. Sub-
sequently, enriched DNA libraries were sequenced on a
HiSeq X Ten sequencer (Illumina, San Diego, CA, USA). All
raw sequencing data were processed according to a cus-
tomized bioinformatics pipeline described previously [31].
After the quality control test, the reads were mapped to the
reference human genome (hg19) using SOAPaligner soft-
ware and further visualized using the SplicingViewer soft-
ware [32]. SNV and Indel calls as well as annotation were
performed using GATK tool and mirTrios with integrated
ANNOVAR tool [33].

2.3. Variant Analyses and Identification. We used the fol-
lowing databases for selecting rare variants as an initial
filtration: Genome Aggregation Database (http://gnomad.
broadinstitute.org/), Exome Aggregation Consortium
(ExAC, http://exac.broadinstitute.org/), NHLBI Exome Se-
quencing Project (ESP, http://evs.gs.washington.edu/EVS/),
and 1000 Genome (http://www.1000genomes.org). Variants
with a minor allele frequency of over 0.01 in any of these
databases were discarded. .e effects of the candidate var-
iants were assessed using in silico prediction programs.
Missense variants were analyzed by M-CAP (http://
bejerano.stanford.edu/mcap/), Polyphen-2 (http://genetics.
bwh.harvard.edu/pph2/), and MutationTaster (http://
mutationtaster.org/). Direct Sanger sequencing was then
used to confirm the segregated variants in the present family,
using an ABI 3500 Genetic Analyzer (Applied Biosystems,
Carlsbad, CA, USA).

2.4. SLC16A9 Amplification and Genotyping. An additional
cohort of unrelated cases (n� 30) with gout was recruited,
and their DNA was submitted for Sanger sequencing.
Primers were designed to amplify all coding regions and the
intron-exon boundaries of the SLC16A9 gene. .e PCR
products were purified and sequenced on an ABI 3500
Genetic Analyzer (Applied Biosystems, Carlsbad, CA, USA).

3. Results

3.1. Clinical Observations. .e proband was a 25-year-old
male from a Han Chinese family, having suffered his first
gout flare at the age of 20. His father was also diagnosed with
gout having the first gout flare at the age of 25, whereas all
the other family members were unaffected (Table 1 and
Figure 1(a)).

Both proband and his affected father experienced re-
current acute monoarticular arthritis affecting the first
metatarsophalangeal joint (MTP1) and/or knee starting at
20 and 25 years of age, respectively. .e symptoms generally
started at night and peaked within 24 hours, preventing
walking and could not bear touch. .e symptomatic course
lasted no more than one week. .e symptoms typically
completely resolved within one or two days after taking
nonsteroidal anti-inflammatory drug and colchicine. Pa-
tients have normal intelligence and are competent of the job.
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.e muscle tension and renal function are normal, and no
urate nephrolithiasis has been found. In both cases, serum
uric acid was increased but not achieved to an extremely
high level (see in Table 1), and the fractional excretion of uric
acid (FEUa) was decreased (the normal range for FEUa is
7%–12%) [30, 34], consistent with renal underexcretion
(RUE) gout. So the purine overproduction gout (HGPRT
deficiency, PRPS1 superactivity) was excluded in the family.
.e detailed clinical information is summarized in Table 1.

3.2. Genetic Assessments. To reveal the genetic predisposi-
tion, WES was performed on the proband (III:2). .e mean
read depth for the WES was >100X and the coverage of the
targeted regions (>1X) reached >99%. Variant analyses and a
step-by-step filtering strategy by combination of minor allele
frequency, in silico assessments, gene function, and cose-
gregation analysis were carried out [35–37]. A total of six
candidate variants were submitted for cosegregation analysis
and only one survived, a rare missense mutation (c.277C>A,
p.L93M) in SLC16A9. .is is an extremely rare variant
(rs550527563) in all of the databases (Table 2). For example,
the allele frequency is 0.0032% (8 in 251050) and 0.0033% (4
in 120986) in gnomAD and ExAC, respectively, while it is
absent in ESP (Table 2). All these alleles are from Asian,
while it is absent in Caucasians. Moreover, in silico

assessments showed strong pathogenicity for this variant
including the M-CAP, a newly developed tool for variants
with uncertain significance in clinical exomes at high sen-
sitivity [38]. Importantly, segregation testing in all available
family members indicated that L93M cosegregated with the
disease phenotype in this pedigree (Figures 1(a) and 1(b)).
Both patients harbor a heterozygous variant while the
healthy individuals do not have the nucleotide change. .e
variant c.277C>A results in a switch from leucine to me-
thionine in the major facilitator superfamily (MFS) domain
(Figure 2(a)). Multiple orthologous sequence alignment
revealed that leucine at position 93 is in a highly conserved
region across different species (Figure 2(b)).

.e probability of being loss-of-function (LoF) intol-
erant (pLI) is 0.64, and the expected number of LoF is 11.7
while the observed number is only 2, suggesting the prob-
ability of being a functionally important variant [39]. Ex-
panded screening of SLC16A9 in a cohort of 30 patients with
gout failed to identify any additional rare variants in this
gene. Taken together, WES revealed a putative causal variant
in SLC16A9 in a family with early-onset gout.

4. Discussion

In the present study, we recruited an unusual pedigree with
early-onset gout. It is reasonable to speculate that it is

Table 1: Summary of clinical observations of the participants in this study.

ID Gender Age (y) SUA HUA SCr BUN FEUa UPH Onset age (y) Arthritis Tophi TG TC Obesity HBP HG Obesity
II:1 F 63 257 − 51 6.8 6.5 − − − − − − + − −

II:4 M 48 581 + 69 4.2 3.77 6.0 25 + − − + + + + +
II:5 F 46 305 − 44 6.0 5.5 − − − + − + − − +
III:1 M 45 321 − 50 5.3 6.0 − − − − − − − − −

III:2 M 25 517 + 71 5.1 4.63 5.0 20 + − − − − − − −

SUA, serum uric acid, μmol/l; HUA, hyperuricemia; SCr, serum creatine, μmol/l; BUN, blood urea nitrogen, mmol/l; FEUa, fractional excretion of uric
acid,%; (hyperuricemia: male> 420 μmol/l; female> 360 μmol/l); UPH, urine PH; TG, triglyceride; TC, total cholesterol; HBP, high blood pressure; HG,
hyperglycemia.

I:1 I:2

II:1 II:3II:2 II:5II:4

III:1 III:2

W/W W/M W/W

W/W W/M

(a)

SLC16A9, c.277C > A, p.L93M, heterozygous

Wild-type

(b)

Figure 1: Identification of SLC16A9missense in the family with early-onset gout. (a) Pedigree and cosegregation results. Affected individual
is represented as a filled square. Normal individuals are shown as empty symbols. (b) Sanger sequencing confirmed the segregation of the
rare missense variant, c.277C>A (p.L93M).
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possibly caused by rare monogenic variants because of two
reasons, the family history and early-onset age. Firstly, this
gout pedigree exhibited an autosomal dominant-like trait,
consistent with a monogenic aetiology. More importantly,
both proband and his affected father suffered first gout flare
at early age. Epidemiological studies show that gout inci-
dence increases with age until the age of 70 years and that
onset before the age of 40 years is unusual [40, 41]. A few
studies have demonstrated that complex disease with early-
onset age could be caused by monogenic inheritance of
mutated genes [42–44]. .erefore, aiming to investigate
potential causal gene in this pedigree, we used WES which
has proven to be highly robust and efficient in the identi-
fication of disease-causing genes in monogenic conditions or
complex disorders [45]. Using this approach, we identified a
rare missense in SLC16A9 gene by the comprehensive an-
alyses including allele frequency, in silico assessments, gene
function, and cosegregation analysis.

A few studies supported our results of the association
between SLC16A9 and gout. .e first evidence reported by
Kolz et al. observed a SNP in SLC16A9, rs12356193, was
significantly associated with serum uric acid levels by ameta-
analysis of 28,141 individuals of European descent
(P � 1.1 × 10− 8) [21]. .en the locus was successfully rep-
licated in a cohort of 7,795 individuals [22]. Nakayama et al.
investigated the relationship between another common
variant (rs2242206) and gout. .ey found that the P value
was significant in renal overload gout (ROL), but not with all
gout susceptibility [46]. Subsequently, Köttgen et al. con-
firmed the SLC16A9 locus was associated with serum urate
concentrations (rs1171614, P � 2.3 × 10− 28), but showed
only nominal association with gout (rs1171614, P �

1.7 × 10− 2) [7]. Phipps-Green et al. tested 28 loci for as-
sociation with gout in 1536 cases with gout and 2645
controls. At SLC16A9, the observed association with gout
was restricted to the lower Polynesian ancestry group
(rs12356193, P � 0.006) [11]. Of note, the relationship
between GWAS signals and genes underlying Mendelian

phenotypes has been observed [47, 48]. .us, it is rea-
sonable to find rare pathogenic variants in GWAS signals.
In addition to these genetic association studies, several
studies also provided functional evidence. SLC16A9 is
ubiquitously expressed and is especially expressed at a high
level in the kidney [19, 20]. ALDH16A1 gene is associated
with serum uric acid levels and gout, and RNA sequencing
in the kidney of wild-type (WT) and Aldh16a1 knockout
(KO) mice revealed changes in Slc16a9 are localized to the
apical membrane of the proximal convoluted tubule cells
and influence uric acid homeostasis [49]. .ese findings
suggested the potential role of SLC16A9 in the aetiology of
gout.

However, there are two main limitations in this study.
Firstly, no functional genomics studies were performed in
the present study. Experimental validations are essential to
determine if interesting variants are indeed responsible for
clinical symptoms [50, 51]. For example, a recent study
demonstrates the rare variants of ABCG2 at both the clinical
level and the functional level by complex approach [52].
Second is the lack of independent replication family. .e
genetic screening of SLC16A9 in gout pedigrees is required
in the future studies. .e copy number variations (CNVs)
are not considered in this study [53].

In conclusion, we provide the first evidence for the
association of rare missense in SLC16A9 with early-onset
gout. .ese findings not only expand our current under-
standing of gout, but also may have further implications for
the treatment and prevention of gout.

Data Availability

Summary data are available from the corresponding author
on request.
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Figure 2: (a) Domain structure of SLC16A9 and location of L93M variant. (b) Conservation analyses of the mutated residues 93 in SLC16A9
across different species.

Table 2: Variant identified in patients with early-onset gout.

ID Variant Type
Frequency (allele count) In silico assessments

gnomAD ExAC ESP 1K Polyphen-2 MutationTaster LRT M-CAP

II:4 c.277C>A,
p.L93M Hetero 0.0032%

(8)
0.0033%

(4) 0 0.04%
(2) Damaging Damaging Damaging Possibly pathogenic

III:2 c.277C>A,
p.L93M Hetero 0.0032%

(8)
0.0033%

(4) 0 0.04%
(2) Damaging Damaging Damaging Possibly pathogenic
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