

Research Article

Miscarriage on Endometriosis and Adenomyosis in Women by Assisted Reproductive Technology or with Spontaneous Conception: A Systematic Review and Meta-Analysis

Yangxue Huang¹,¹ Xianhong Zhao,¹ Yiyuan Chen,¹ Jie Wang,¹ Weilin Zheng,¹ and Lixing Cao²

¹Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China ²Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China

Correspondence should be addressed to Lixing Cao; clxtcm@163.com

Received 13 August 2020; Accepted 22 November 2020; Published 8 December 2020

Academic Editor: Carla B Andreucci

Copyright © 2020 Yangxue Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. In the past several years, there has been an increasing concern on miscarriage caused by endometriosis or adenomyosis. However, the results reported by different studies remain controversial. The present study is aimed at assessing the impact of endometriosis and adenomyosis on miscarriage. Materials and Methods. Searches were carried out in PubMed, Embase, and the Cochrane library for studies published from inception until February 29, 2020. The investigators included studies that evaluated miscarriage risk in pregnant women with endometriosis or adenomyosis by assisted reproductive technology (ART), or with spontaneous conception (SC). Miscarriage (<28 weeks) was the primary outcome. The secondary outcomes were antepartum hemorrhage (APH), postpartum hemorrhage (PPH), preterm birth, low birthweight, placenta praevia, placental abruption, ectopic pregnancy, stillbirth, gestational diabetes, preeclampsia, and intrauterine growth restriction (IUGR). Endnote was used for the study collection, and the data analyses were carried out by two authors using Review Manager version 5.2. Results. Thirty-nine studies, which is comprised of 697,984 women, were included in the present study. Miscarriage risk increased in women with endometriosis in SC (OR: 1.81, 95% CI: 1.44-2.28, $I^2 = 96\%$) compared with those without endometriosis, while women with endometriosis who underwent ART had a similar miscarriage risk, when compared to those with tubal infertility (OR: 1.03, 95% CI: 0.92-1.14, $I^2 = 0$ %). Compared with those without adenomyosis, women with adenomyosis had an augmented miscarriage risk in ART (OR: 2.81, 95% CI: 1.44-5.47, $I^2 = 64\%$). Compared with those without endometriosis, women with endometriosis had higher odds of APH, PPH, preterm birth, stillbirth, and placenta praevia. No difference was observed in the incidence of ectopic pregnancy, placental abruption, pre-eclampsia, gestational diabetes, low birthweight, and IUGR. Conclusion. Women with endometriosis had an augmented miscarriage risk in SC and a similar miscarriage risk during ART. Adenomyosis was associated with miscarriage in pregnant women using ART.

1. Introduction

Endometriosis (EMS) and adenomyosis (AD) are both complicated diseases that have influence on pregnancy outcomes. EMS is identified by the endometrium outside the uterus and is correlated to pelvic pain and infertility [1]. It has been reported that the disease affects up to 10%-15% of women during the reproductive age [2]. Adenomyosis, which is defined as ingrowth of the endometrial tissue into the myometrium [3], is associated with heavy menstrual bleeding and dysmenorrhea. It has been estimated that 20.9% of women are diagnosed with AD through transvaginal sonography (TVS) [4].

In the past several years, there has been an increasing concern on miscarriage caused by EMS or AD. Many studies have assessed the miscarriage risk in women with EMS or AD. However, the results reported from different studies remain controversial, since some studies presented positive results, while other studies reported negative results [5, 6]. Therefore, a systematic review and meta-analysis was carried

FIGURE 1: Flow chart of the literature selection.

out to evaluate the impact of EMS or AD on miscarriage in women who are pregnant with spontaneous conception (SC), or by using assisted reproductive technology (ART). The EMS was staged according to the American Fertility Society classification. Where appropriate, EMS I/II was compared with EMS III/IV on miscarriage, and the investigators planned to assess the miscarriage risk according to the types of EMS, including superficial peritoneal endometriosis (SUP), deep infiltrating endometriosis (DIE), and ovarian endometrioma (OMA). Where applicable, the investigators evaluated the effect of EMS or AD on early abortion (at <12 weeks) and late abortion (at \geq 12 weeks).

2. Materials and Methods

2.1. Search Strategy. Electronic databases (PubMed, Embase, and Cochrane library) were searched for published studies from inception to February 29, 2020, in all languages, by two authors, independently. The MeSH terms were as follows: "ademomyosis,""endometriosis," "spontaneous abortion," "miscarriage," "assisted reproductive technique," "ovulation induction," "artificial insemination," "in vitro fertilization," "intracytoplasmic sperm injection," and "embryo transfer." No restriction for geographic location was applied, and the references were collected by Endnote. In addition, the reference lists of eligible articles and relevant reviews were manually examined to identify potentially available studies. The present meta-analysis was registered with PROSPERO (https://www.crd.york.ac.uk/PROSPERO), and the registration code was CRD42020160594.

2.2. Inclusion and Exclusion Criteria. Duplicates were removed prior to the title and abstract screening. The inclu-

sion criteria were as follows: (1) studies that investigated miscarriage risk in pregnant women with SC or using ART; (2) women with EMS or AD who were included in the study group; (3) an appropriate control group; (4) among women with EMS who underwent ART, the control group consisted of only women with tubal infertility; and (5) randomized controlled trials, cohort studies, case control studies, or cross-sectional analysis. The EMS or AD could be preliminarily diagnosed by clinical symptoms, gynecological examination, and instrumental (ultrasound, computed tomography scan, or magnetic resonance imaging) presentation. The golden standard was pathological diagnosis. In addition, the exclusion criteria were as follows: (1) the publication was a conference abstract or a review; (2) the studies were conducted in animals; (3) the outcome did not include miscarriage; and (4) the necessary data was missing. After independently examining the eligibility of studies based on the titles and abstracts, the full texts were reviewed by two authors. A third author was consulted to resolve any discrepancies.

2.3. Data Extraction and Quality Assessment. For eligible studies, the data were extracted by two authors independently. A data collection form was designed for the data extraction, which included the first author, publication year, study design, sample size, study location, mode of conception, type of disease, exposure ascertainment, and outcomes. If disagreements appeared, this was discussed with a third reviewer to reach a consensus. If required, the authors of the qualified publications were contacted for detailed results and precise data.

According to the Newcastle-Ottawa Scale (NOS), the investigators evaluated the risk of bias to identify the

Authors (vear)	Study desion	Sample	Study	Mode of	Type of	Exposure ascertainment	Outcomes
Porpora et al. (2020)	Prospective cohort study	sıze 425	Iocation Italy	conception SC	disease EMS	Surgical/clinical/instrumental diagnosis	Miscarriage, PPH, IUGR, gestational diabetes, stillbirth, low birthweight preterm birth, placenta praevia,
Farland et al. (2019)	Prospective cohort study	196722	America	SC	EMS	Laparoscopic diagnosis	placental abrupuon, preeclampsia Miscarriage, gestational diabetes, ectopic pregnancy, stillbirth, low birthweight, nreferm birth
Mekaru et al. (2014)	Retrospective cohort study	108	Japan	SC	EMS	Laparoscopic evaluation	Miscarriage, low birthweight, breterm birth
Pittaway et al. (1988)	Retrospective cohort study	350	America	SC	EMS	Laparoscopy or laparotomy	Miscarriage, ectopic pregnancy
Hjordt Hansen et al. (2014)	Retrospective cohort study	123335	Denmark	SC	EMS	Discharge diagnosis by the international classification of diseases	Miscarriage, ectopic pregnancy
Santulli et al. (2016)	Retrospective cohort study	1851	France	SC	EMS	Surgical examination of the abdominopelvic cavity	Miscarriage
Saraswat et al. (2016)	Retrospective cohort study	13665	Scotland	SC	EMS	Laparoscopy or laparotomy	Miscarriage, PPH, APH, low birthweight, stillbirth, ectopic pregnancy, preterm birth, placenta praevia, placental abruption
Geber et al. (1995)	Retrospective cohort study	1506	London	IVF	EMS	Laparoscopy	Miscarriage, ectopic pregnancy
Omland et al. (2005)	Retrospective cohort study	1026	Norway	IVF/ICSI	EMS	Laparoscopic diagnosis	Miscarriage, ectopic pregnancy, stillbirth
Kuroda et al. (2009)	Case control study	82	Japan	IVF/ICSI	EMS	Laparoscopic surgery/ultrasound/MRI	Miscarriage
Olivennes et al. (1995)	Retrospective cohort study	325	America	IVF	EMS	Laparoscopic evaluation	Miscarriage
Polat et al. (2014)	Retrospective cohort study	616	Turkey	IVF	EMS	Laparoscopy or laparotomy, transvaginal ultrasonography	Miscarriage
Guo et al. (2016)	Retrospective cohort study	437	China	IVF	EMS	Laparoscopy or laparotomy	Miscarriage
Pop et al. (2014)	Prospective cohort study	235	Serbia	IVF	EMS	Surgically confirmed	Miscarriage
Sharma et al. (2020)	Prospective cohort study	652	India	IVF	EMS	Laparoscopic diagnosis	Miscarriage, PPH, APH, gestational diabetes, preterm birth, IUGR, preeclampsia
Matalliotakis et al. (2007)	Case control study	174	Greece	IVF-ET	EMS	Laparoscopic diagnosis	Miscarriage
Curtis et al. (1993)	Retrospective cohort study	206	England	IVF-ET	EMS	Laparoscopic diagnosis	Miscarriage, ectopic pregnancy
Arici et al. (1996)	Case control study	105	America	IVF-ET	EMS	Laparoscopic diagnosis	Miscarriage
Bergendal et al. (1998)	Retrospective cohort study	146	Canada	IVF-ET	EMS	Laparoscopic diagnosis	Miscarriage, ectopic pregnancy
Pabuccu et al. (2004)	Randomized controlled trials	171	Turkey	ICSI	EMS	Laparoscopic diagnosis	Miscarriage

Authors (year)	Study design	Sample size	Study location	Mode of conception	Type of disease	Exposure ascertainment	Outcomes
Mathieud et al. (2010)	Retrospective cohort study	526	France	IVF	EMS	Sonography, MRI	Miscarriage
Kim et al. (2011)	Prospective cohort study	40	Korea	IVF-ET	EMS	Laparoscopic diagnosis	Miscarriage
Kuivasaari et al. (2005)	Retrospective cohort study	185	Finland	IVF/ICSI	EMS	Laparoscopic diagnosis	Miscarriage, ectopic pregnancy
Opoien et al. (2012)	Retrospective cohort study	2245	Norway	ICSI	EMS	Laparoscopic diagnosis	Miscarriage
Singh et al. (2013)	Case control study	340	India	IVF	EMS	Laparoscopic diagnosis	Miscarriage
Senepati et al. (2016)	Retrospective cohort study	347185	Washington	IVF	EMS	Laparoscopic diagnosis	Miscarriage
Vaz et al. (2017)	Retrospective cohort study	181	Brazil	IVF	EMS	Laparoscopy or MRI	Miscarriage
Esinler et al. (2006)	Case control study	156	Turkey	IVF/ICSI	EMS	Laparoscopic diagnosis	Miscarriage
Bahceci et al. (2005)	Retrospective cohort study	1244	Turkey	ICSI	EMS	Laparoscopic diagnosis	Miscarriage
Sharma et al. (2019)	Retrospective cohort study	973	India	IVF	EMS and AD	EMS confirmed by laparoscopy, AD diagnosed by TVS	Miscarriage, PPH, APH, preteri birth, IUGR, preeclampsia
Costello et al. (2011)	Retrospective cohort study	201	Australia	IVF/ICSI	AD	Transvaginal ultrasound	Miscarriage
Youm et al. (2011)	Case control study	154	Korea	IVF-ET	AD	TVS	Miscarriage
Thailluri et al. (2012)	Retrospective cohort study	213	Australia	IVF-ET	AD	TVS	Miscarriage
Benaglia et al. (2014)	Case control study	98	Italy	IVF/ICSI	AD	TVS	Miscarriage
Hashimoto et al. (2017)	Case control study	294	Japan	ART	AD	MRI/TVS	Miscarriage
Martinez-Conejero et al. (2011)	Retrospective cohort study	443	Spain	ART	AD	TVS	Miscarriage
Yan et al. (2014)	Retrospective cohort study	154	China	ART	AD	Transvaginal ultrasound	Miscarriage, ectopic pregnancy
Salim et al. (2012)	Prospective cohort study	275	London	ART	AD	Transvaginal ultrasound	Miscarriage
Schwartz et al. (2017)	Cross-sectional study	940	Switzerland	SC or ART	EMS	Surgical diagnosis	Miscarriage

TABLE 1: Continued.

Authors (year)	Selection of study	Comparability	Ascertainment of exposure	Total NOS score	Risk of bias
Humoro (year)	group score	of group score	or outcome score		(low, medium, high)
Retrospective cohort study					
Omland et al. (2005)	3	2	2	7	Low
Martinez-Conejero et al. (2011)	3	2	2	7	Low
Hjordt Hansen et al. (2014)	3	1	3	7	Low
Yan et al. (2014)	3	2	2	7	Low
Santulli et al. (2016)	3	2	3	8	Low
Saraswat et al. (2016)	3	2	3	8	Low
Sharma et al. (2019)	3	1	3	7	Low
Pittaway et al. (1988)	3	1	3	7	Low
Geber et al. (1995)	4	2	2	8	Low
Olivennes et al. (1995)	3	2	2	7	Low
Mekaru et al. (2014)	3	2	2	7	Low
Polat et al. (2014)	3	2	3	8	Low
Guo et al. (2016)	3	2	2	7	Low
Costello et al. (2011)	3	2	2	7	Low
Mathieud et al. (2010)	3	2	2	7	Low
Senepati et al. (2016)	3	1	2	6	Medium
Curtis et al. (1993)	3	2	1	6	Medium
Bergendal et al. (1998)	3	2	2	7	Low
Kuivasaari et al. (2005)	3	2	2	7	Low
Opoien et al. (2012)	3	2	2	7	Low
Vaz et al. (2017)	3	1	2	6	Medium
Bahceci et al. (2005)	3	0	3	6	Medium
Thailluri et al. (2012)	3	2	2	7	Low
Prospective cohort study					
Pop et al. (2014)	3	2	2	7	Low
Kim et al. (2011)	3	2	3	8	Low
Salim et al. (2012)	3	2	2	7	Low
Farland et al. (2019)	3	1	3	7	Low
Porpora et al. (2020)	4	1	2	7	Low
Sharma et al. (2020)	3	2	2	7	Low
<i>Case control study</i>					
Arici et al. (1996)	3	1	2	6	Medium
Singh et al. (2013)	3	2	2	7	Low
Kuroda et al. (2009)	3	1	2	6	Medium
Esinler et al. (2006)	3	2	2	7	Low
Benaglia et al. (2014)	3	2	2	7	Low
Matalliotakis et al. (2007)	3	2	2	7	Low
Hashimoto et al. (2017)	3	2	2	7	Low
Youm et al. (2011)	4	0	2	6	Medium
Cross-sectional study					
Schwartz et al. (2017)	3	2	2	7	Low

TABLE 2: Newcastle-Ottawa risk of bias for included studies.

TABLE 3: Risk of bias for randomized controlled trials.

Bias	Selectio	on	Performance	Attrition	Reporting	
Studies (year)	Random sequence generation	Allocation concealment	Blinding	Incomplete outcome data	Selective reporting	Other sources of bias
Pabuccu et al. (2004)	Low risk	Unclear	Unclear	Low risk	Low risk	Low risk

Study or subgroup	Experim	mental	Con	itrol Total	Weight	Odds ratio	CI	О	dds ratio	
	Events	TOTAL	Events	Total		WI-11, Kandoni, 93%		IVI-11, P		
1.1.1 ART										
Arici et al 1996	5	12	9	35	0.6%	2.06 [0.52, 8.16]		-		
Bahceci et al 2005	11	46	20	114	1.7%	1.48 [0.64, 3.39]				
Bergendal et al 1998	5	57	5	98	0.7%	1.79 [0.49, 6.47]		-		
Curtis et al 1993	5	35	3	13	0.5%	0.56 [0.11, 2.75]				
Esinler et al 2006	3	22	6	43	0.5%	0.97 [0.22, 4.33]				
Geber et al 1995	0	44	16	465	0.1%	0.31 [0.02, 5.19]				
Guo et.al 2016	19	117	14	136	2.2%	1.69 [0.81, 3.54]				
Kim et al 2011	1	6	1	10	0.1%	1.80 [0.09, 35.42]				
Kuivasaari et al 2005	11	50	20	60	1.6%	0.56 [0.24, 1.33]				
kuroda et.al 2009	4	18	2	7	0.3%	0.71 [0.10, 5.18]				
Matalliotakis et al 2007	9	46	17	81	1.5%	0.92 [0.37, 2.26]				
Mathieud 2010 et al 2010	3	12	30	157	0.6%	1.41 [0.36, 5.53]				
Olivennes et.al 1995	8	80	6	57	1.0%	0.94 [0.31, 2.89]				
Omland et.al 2005	69	212	163	540	10.2%	1.12 [0.79, 1.57]			T_	
Opoien et al 2012	69	376	51	406	7.7%	1.56 [1.06, 2.32]				
Pabuccu et al 2004	3	29	1	14	0.2%	1.50 [0.14, 15.87]				
Polat et.al 2014	18	138	3	39	0.7%	1.80 [0.50, 6.46]				
Pop et.al 2014	7	31	13	64	1.1%	1.14 [0.40, 3.23]				
Senepati et al 2016	315	4441	668	8565	61.3%	0.90 [0.79, 1.04]				
Sharma et al 2020	16	80	21	122	2.3%	1.20 [0.58, 2.47]				
Sharma et.al 2019	19	130	21	161	2.7%	1.14 [0.58, 2.23]				
Singh et al 2013	32	68	17	57	2.2%	2.09 [1.00, 4.39]				
Vaz et al 2017	1	6	2	12	0.2%	1.00 [0.07, 13.87]			I.	
Subtotal (95% CI)	(22)	6056	1100	11256	100.0%	1.03 [0.92, 1.14]			Ť	
I otal events	633	0.50 10 0	1109	= =) T)	00/					
Heterogeneity: $tau^2 = 0.00$	$0; chi^2 = 2$	0.53, df = 2	22(P=0.)	.55); 12 =	= 0%					
Test for overall effect: Z =	= 0.47 (P =	0.64)								
1.1.2 spontaneous concep	otion									
Farland et al 2019	1714	8875	23150	187847	20.4%	1.70 [1.61, 1.80]				
Hjordt hansen et al 2014	3887	38795	12823	160219	20.5%	1.28 [1.23, 1.33]				
Mekaru et.al 2014	9	49	11	59	4.3%	0.98 [0.37, 2.60]				
Pittaway et.al 1988	60	157	28	150	9.9%	2.70 [1.60, 4.54]				
Porpora et al 2020	30	145	28	280	9.2%	2.35 [1.34, 4.11]			_	
Santulli et.al 2016	139	478	187	964	16.4%	1.70 [1.32, 2.20]				
Saraswat et.al 2016 Subtotal (95% CI)	662	5375 53874	450	8280 357799	19.4% 100.0%	2.44 [2.16, 2.77] 1.81 [1.44, 2.28]			•	
Total events	6501		36677							
Heterogeneity: $tau^2 = 0.02$	7; $chi^2 = 1$	52.71, df =	6 (P < 0.	.00001);	$I^2=96\%$					
Test for overall effect: Z =	= 5.13 (P <	0.00001)								
Test for subgroup differen	nces: chi ²	= 19.55, df	= 1 (P <	0.00001), $I^2 = 94$.9%				
							0.01	0.1	1 10	100
							Favours	endometric	sis] Favours [c	ontroll

FIGURE 2: Miscarriage risk in pregnant women with EMS in SC or using ART.

methodology quality of the eligible studies. Nine items were included in the NOS, which were categorized into three groups: consisted of the selection of the study group and control group (4 scores, indicating selection bias), the comparability of two groups (2 scores, indicating confounding bias), and the identification of either outcome or exposure (3 scores, indicating measurement bias). The outcome assessment of seven or more stars implied a low risk of bias. The risk of methodological bias in the randomized controlled trials (RCTs) was evaluated using the Cochrane risk of bias tool, including randomization, allocation concealment, blinding of participants and researchers, blinding of outcomes assessors, incomplete outcome reporting, selective outcome reporting, and other sources of bias.

2.4. Statistical Analysis. The data analyses were independently carried out by two authors using Review Manager version 5.2. If differences occurred, a third author was consulted for evaluation. According to the Cochrane handbook [7], the heterogeneity was measured by I^2 . An I^2 value of 0-50% was considered to represent low or moderate heterogeneity, while

>50% was taken to indicate substantial heterogeneity. The fixed effects model was applied for the meta-analysis. The random effects model was used when $I^2 > 50\%$. Pregnancy outcomes were depicted using the odds ratio and 95% confidence interval (CI) [8]. P < 0.05 was considered statistically significant. Potential publication biases were statistically evaluated using funnel plots and Begg's and Egger's tests [9]. The present study was reported in accordance with the Preferred Reporting Item for Systematic Reviews and Meta-analyses (PRISMA) statement [10].

The primary outcome was miscarriage, which was defined as spontaneous abortion at <28 weeks. The secondary outcomes were preterm birth (defined as birth < 37 gestational weeks), antepartum hemorrhage (APH), postpartum hemorrhage (PPH), low birthweight (defined as birth weight < 2,500 g), placenta praevia (identified by the placenta implanted in the lower uterine segment), placental abruption (defined as partial or complete detachment of the placenta from the myometrium before delivery), ectopic pregnancy, stillbirth, gestational diabetes, preeclampsia, and intrauterine growth restriction (IUGR).

Ctar day a march announ	Adeno	myosis	Con	trol	147 - 1 - 1 - 4	Odds ratio		Odds 1	ratio	
Study or subgroup	Events	Total	Events	Total	weight	M-H, Random, 95%	CI	M-H, Rande	om, 95% CI	
Benaglia et al 2014	4	21	5	14	9.5%	0.42 [0.09, 1.98]				
Costello et.al 2011	2	13	16	59	9.1%	0.49 [0.10, 2.45]				
Hashimoto et al 2017	6	49	3	245	10.3%	11.26 [2.71, 46.72]				
Martinez et al 2011	43	131	24	147	17.1%	2.50 [1.42, 4.43]				
Salim et.al 2012	2	4	3	108	6.0%	35.00 [3.61, 339.20]]			
Sharma et.al 2019	6	15	21	161	12.5%	4.44 [1.44, 13.76]				
Thailluri et al 2012	2	12	5	81	8.2%	3.04 [0.52, 17.80]			-	-
Yan et.al 2014	19	38	17	46	14.6%	1.71 [0.71, 4.09]		+		
Youm et al 2011	13	24	8	42	12.6%	5.02 [1.65, 15.28]				
Total (95% CI)		307		903	100.0%	2.81 [1.44, 5.47]			•	
Total events	97		102							
Heterogeneity: $tau^2 = 0$).59; chi ² =	= 21.95, 0	df = 8 (P	= 0.005); $I^2 = 649$	6		+ +	+	I
Test for overall effect: 2	Z = 3.03 (I	P = 0.002	2)				0.01	0.1 1	10	100
							Favours	[adenomyosis]	Favours [c	ontrol]

FIGURE 3: Miscarriage risk in pregnant women with AD in ART.

Chu day ou ouch anoun	Adenor	nyosis	Con	trol	Maight	Odds ratio		C	dds ratio		
Study or subgroup	Events	Total	Events	Total	weight	M-H, Random, 95%	CI	M-H, I	Random, 9	5% CI	
Benaglia et al 2014	4	21	5	14	9.6%	0.42 [0.09, 1.98]					
Costello et.al 2011	2	13	16	59	9.1%	0.49 [0.10, 2.45]					
Hashimoto et al 2017	6	49	3	245	10.6%	11.26 [2.71, 46.72]					_
Martinez et al 2011	43	131	24	147	19.7%	2.50 [1.42, 4.43]					
Sharma et.al 2019	6	15	21	161	13.3%	4.44 [1.44, 13.76]					
Thailluri et al 2012	2	12	5	81	8.1%	3.04 [0.52, 17.80]					
Yan et.al 2014	19	38	17	46	16.1%	1.71 [0.71, 4.09]			-		
Youm et al 2011	13	24	8	42	13.5%	5.02 [1.65, 15.28]					
Total (95% CI)		303		795	100.0%	2.41 [1.29, 4.50]			-		
Total events	95		99								
Heterogeneity: $tau^2 = 0$).43; chi ² =	16.73, 0	df = 7 (P)	= 0.02)	; $I^2 = 58\%$						
Test for overall effect:	Z = 2.76 (P	= 0.006)	,	-		0.01	0.1	1	10	100
							Favour	s [experime	ntall Fav	ours [con	troll

FIGURE 4: Sensitivity analysis of miscarriage risk in pregnant women with AD.

	Evneri	mental	Co	ntrol		Odds Ratio		Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95%	CI	M-H, Rand	dom, 95% CI	
1.10.1 prospective cohort	study									
Farland et al 2019	1714	8875	23150	187847	20.4%	1.70 [1.61, 1.80]				
Porpora et al 2020	30	145	28	280	9.2%	2.35 [1.34, 4.11]				
Subtotal (95% CI)		9020		188127	29.5%	1.76 [1.45, 2.14]			•	
Total events	1744		23178							
Heterogeneity: $tau^2 = 0.01$; $chi^2 = 1$.	25, df =	1 (P = 0.2)	26); $I^2 = 20$)%					
Test for overall effect: $Z =$	5.69 (<i>P</i> <	0.00001)								
1.10.2 retrospective cohor	t study									
Hjordt hansen et al 2014	3887	38795	12823	160219	20.5%	1.28 [1.23, 1.33]			•	
Mekaru et.al 2014	9	49	11	59	4.3%	0.98 [0.37, 2.60]				
Pittaway et.al 1988	60	157	28	150	9.9%	2.70 [1.60, 4.54]			_	
Santulli et.al 2016	139	478	187	964	16.4%	1.70 [1.32, 2.20]				
Saraswat et.al 2016	662	5375	450	8280	19.4%	2.44 [2.16, 2.77]				
Subtotal (95% CI)		44854		169672	70.5%	1.78 [1.19, 2.66]			◆	
Total events	4757		13499							
Heterogeneity: $tau^2 = 0.17$ Test for overall effect: $Z =$	7 ; chi ² = 10)4.39, df 0.005)	= 4 (<i>P</i> <	0.00001);	$I^2 = 96\%$					
rest for overall clicet. Z =	2.79 (1 -	0.005)								
Total (95% CI)		53874		357799	100.0%	1.81 [1.44, 2.28]			•	
Total events	6501		36677							
Heterogeneity: $tau^2 = 0.02$	7; $chi^2 = 1$	52.71, df	= 6 (P <	0.00001);	$I^2 = 96\%$		0.01		10	100
Test for overall effect: $Z =$	5.13 (<i>P</i> <	0.00001))				0.01	0.1 1	10	100
Test for subgroup differen	nces: chi ² =	= 0.00, di	f = 1 (P =	: 0.97), <i>I</i> ² =	= 0%		Favours [experimental] Favours [co	ntrol]

FIGURE 5: Miscarriage risk in women with EMS in retrospective cohort studies and prospective cohort studies in SC.

Study or subgroup	EN	1S	Con	trol	Weight	Odds ratio	Odds ratio
orday of subgroup	Events	Total	Events	Total	weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
1.19.1 prospective cohort s	tudy						
Kim et al 2011	1	6	1	10	3.0%	1.80 [0.09, 35.42]	
Pop et.al 2014	7	31	13	64	32.0%	1.14 [0.40, 3.23]	—— — ——
Sharma et al 2020	16	80	21	122	64.9%	1.20 [0.58, 2.47]	
Subtotal (95% CI)		117		196	100.0%	1.20 [0.67, 2.15]	•
Total events	24		35				
Heterogeneity: $chi^2 = 0.08$,	df = 2 (P	= 0.96)	; $I^2 = 0\%$				
Test for overall effect: $Z = 0$	0.62 (P =	0.53)					
1.19.2 retrospective cohort	study						
Bahceci et al 2005	11	46	20	114	1.7%	1.48 [0.64, 3.39]	
Bergendal et al 1998	5	57	5	98	0.6%	1.79 [0.49, 6.47]	
Curtis et al 1993	5	35	3	13	0.7%	0.56 [0.11, 2.75]	
Geber et al 1995	0	44	16	465	0.5%	0.31 [0.02, 5.19]	
Guo et.al 2016	19	117	14	136	2.1%	1.69 [0.81, 3.54]	+
Kuivasaari et al 2005	11	50	20	60	2.7%	0.56 [0.24, 1.33]	
Mathieud 2010 et al 2010	3	12	5	41	0.3%	2.40 [0.48, 11.97]	
Olivennes et.al 1995	8	80	6	57	1.2%	0.94 [0.31, 2.89]	
Omland et.al 2005	69	212	163	540	11.8%	1.12 [0.79, 1.57]	-
Opoien et al 2012	69	376	51	406	7.6%	1.56 [1.06, 2.32]	
Polat et.al 2014	18	138	3	39	0.8%	1.80 [0.50, 6.46]	
Senepati et al 2016	272	3836	512	6560	66.7%	0.90 [0.77, 1.05]	
Sharma et.al 2019	19	130	21	161	3.0%	1.14 [0.58, 2.23]	
Vaz et al 2017	1	6	2	12	0.2%	1.00 [0.07, 13.87]	
Subtotal (95% CI)		5139		8702	100.0%	1.01 [0.90, 1.14]	•
Total events	510		841				
Heterogeneity: $chi^2 = 15.67$	7, df = 13	(P = 0.2)	27); $I^2 = 1$	17%			
Test for overall effect: $Z = 0$	0.22 (P =	0.82)					
						F	
						0.01	0.1 1 10 10
Test for subgroup differen	ces: chi ² =	= 0.32. c	f = 1 (P)	= 0.57).	$I^2 = 0\%$	1	Favours [EMS] Favours [control]

FIGURE 6: Miscarriage risk in women with EMS in retrospective cohort studies and prospective cohort studies during ART.

Study or subgroup	Adeno	myosis	Con	trol	Weight	Odds ratio	Odd	s ratio	
Study of subgroup	Events	Total	Events	Total	weight	M-H, Fixed, 95% CI	M-H, Fiz	ked, 95% CI	
Costello et.al 2011	2	13	16	59	15.8%	0.49 [0.10, 2.45]			
Martinez et al 2011	43	131	24	147	49.0%	2.50 [1.42, 4.43]			
Sharma et.al 2019	6	15	21	161	6.9%	4.44 [1.44, 13.76]			
Thailluri et al 2012	2	12	5	81	3.5%	3.04 [0.52, 17.80]		•	
Yan et.al 2014	19	38	17	46	24.8%	1.71 [0.71, 4.09]	_		
Total (95% CI)		209		494	100.0%	2.14 [1.43, 3.21]		•	
Total events	72		83						
Heterogeneity: chi ² =	5.53, df =	4 (P = 0.	24); $I^2 =$	28%					
Test for overall effect:	Z = 3.68 (P = 0.00	02)			0.01	0.1	10	100
						Favour	s [adenomvosi	s] Favours [cor	utrol]

FIGURE 7: Miscarriage risk in women with AD in retrospective cohort studies during ART.

Where applicable, the subgroup analyses for miscarriage risk in women with EMS were performed based on the method of diagnosis (i.e., laparoscopic diagnosis), type of EMS (i.e., ovarian, peritoneal, or deep infiltrating endometriosis), and staging of EMS (I, II, III, or IV). Sensitivity analyses for miscarriage risk were carried out to evaluate the stability and reliability of the pooled results.

3. Results

3.1. Study Selection. A total of 1,894 articles were identified using the electronic search strategy. Furthermore, 1,336 arti-

cles were evaluated after the duplicates were removed. The eligibility of studies was assessed based on the titles and abstracts, and 1,281 articles were discarded for noncomparative studies (n = 395), for animal experiments (n = 270), for irrelevant topics (n = 388), for inappropriate outcomes (n = 201), or for being reviews (n = 27). Moreover, 55 articles were eligible for full-text review. Among these, 13 papers were excluded due to inadequate data reporting and 3 studies were excluded because of inappropriate controls. Lastly, 39 publications [11–49], which consisted of 697,984 women, met the present inclusion criteria and were analyzed in the present study (Figure 1).

Study of subgroup Events Total Events Total Weight M-H, Random, 95% C1 M-H, Random, 95% C1 1.8.1 laparoscopy in ART Arrici et al 1996 5 12 9 35 1.1% 2.06 [0.52, 8.16] Bahccci et al 2005 11 46 20 114 2.9% 1.48 [0.64, 3.39] Bergendal et al 1998 5 57 5 98 1.2% 1.79 [0.49, 6.47] Curtis et al 1995 0 44 16 465 0.3% 0.56 [0.11, 2.75] Gober et al 2016 19 117 14 136 3.6% 1.69 [0.81, 3.54] Kim et al 2011 1 6 1 10 0.2% 1.80 [0.09, 35.42] Mutalitotakis et al 2007 9 46 17 81 2.5% 0.92 [0.37, 2.26] Ohivenes et al 2104 7 31 3 64 1.9% 1.41 [0.40, 3.23] Senepati et al 2012 68 6 57 1.6% 0.90 [0.7, 1.64] 4.3% Pop et al 2014 7 31 13 64 1.9% 1.41 [0.40	Study on out moun	Experi	imental	Cor	ntrol	Mainha	Odds ratio			Odds ratio		
1.8.1 laparoscopy in ART Arcic et al 1996 5 12 9 35 1.1% 2.06 [0.52, 8.16] Bachecci et al 2005 11 46 20 114 2.9% 1.79 [0.49, 6.47] Curtis et al 1993 5 35 3 13 0.8% 0.56 [0.12, 2.43] Geber et al 1995 0 44 16 465 0.3% 0.31 [0.02, 5.19] Guo et al 2016 19 117 14 136 3.6% 0.56 [0.24, 1.33] Kuivasari et al 2005 11 50 20 60 2.7% 0.56 [0.24, 1.33] Matalliotakis et al 2007 9 46 17 81 2.5% 0.92 [0.37, 2.26] Ohvennes et al 2005 69 212 163 540 1.38 1.12 [0.79, 1.57] Opcien et al 2012 69 376 51 406 11.3% 1.56 [1.06, 2.32] Pabuccu et al 2014 7 31 13 64 1.9% 1.09 [0.58, 2.47] [0.58, 2.47]	Study or subgroup	Events	Total	Events	Total	weight	M-H, Random, 95%	CI	M-H	, Random, 9	5% CI	
Arrici et al 1996 5 12 9 35 1.1% 2.06 [0.52, 8.16] Bahceci et al 2005 11 46 20 114 2.9% 1.48 [0.64, 3.39] Bergendal et al 1998 5 57 5 98 1.2% 1.79 [0.49, 6.47] Curtis et al 1993 5 35 3 1 3 0.8% 0.56 [0.11, 2.75] Esinler et al 2006 3 2.2 6 43 0.9% 0.97 [0.22, 4.33] Geber et al 1995 0 44 16 465 0.3% 0.31 [0.02, 5.19] Guo et al 2016 19 117 14 136 3.6% 1.69 [0.81, 3.54] Kuivasaari et al 2007 9 46 17 81 2.5% 0.92 [0.37, 2.26] Olivennes et al 2007 9 46 17 81 2.5% 0.92 [0.37, 2.26] Olivennes et al 2006 69 2.12 163 540 14.3% 1.12 [0.79, 1.57] Popien et al 2012 69 376 51 406 11.3% 1.56 [1.66, 2.32] Pobuccu et al 2016 3 29 1 14 0.4% 1.50 [0.14, 15.87] Popien et al 2004 3 29 1 14 0.4% 1.50 [0.14, 15.87] Popien et al 2014 7 31 13 64 1.9% 1.14 [0.58, 2.47] Sharma et al 2020 16 80 2.1 122 3.8% 1.20 [0.58, 2.47] Sharma et al 2020 16 80 2.1 122 3.8% 1.20 [0.58, 2.47] Sharma et al 2020 16 80 12 122 3.8% 1.20 [0.58, 2.47] Sharma et al 2020 16 80 12 122 3.8% 1.20 [0.58, 2.47] Sharma et al 2020 16 80 12 122 3.8% 1.20 [0.58, 2.47] Sharma et al 2020 16 80 17 072 Heterogeneity: tau ² = 0.01; chi ² = 19.45, df el = 0.36; l ² = 7% Test for overall effect: $Z = 1.17$ ($P = 0.24$) 1.8.2 laparoscopy in SC Farland et al 2014 9 49 11 59 5.2% 0.98 [0.37, 2.60] Pittaway et al 2016 139 478 187 964 23.1% 1.70 [1.61, 1.80] Mekaru et al 2016 139 478 187 964 23.1% 1.70 [1.61, 2.77] Subtotal (95% CI) 617 28 150 12.7% 2.70 [1.60, 4.54] Santull et al 2016 139 478 187 964 23.1% 1.70 [1.53, 2.48] Total events 2584 23826 Heterogeneity: tau ² = 0.05; chi ² = 3.37 ($P < 0.00001$); $P = 87\%$ Test for overall effect: $Z = 5.37$ ($P < 0.00001$); $P = 87\%$ Test for overall effect: $Z = 5.37$ ($P < 0.00001$)	1.8.1 laparoscopy in AR	Г										
Bahceci et al 2005 11 46 20 114 2.9% 1.48 [0.64, 3.39] Bergendal et al 1998 5 57 5 98 1.2% 1.79 [0.49, 6.47] Curris et al 1993 5 35 3 13 0.8% 0.56 [0.11, 2.75] Esinler et al 2006 3 22 6 43 0.9% 0.97 [0.22, 4.33] Geber et al 2016 19 117 14 136 3.6% 1.69 [0.81, 3.54] Kim et al 2011 1 6 1 10 0.2% 1.80 [0.09, 35.42] Matalliotakis et al 2007 9 46 17 81 2.5% 0.92 [0.37, 2.26] Olivennes et.al 1995 8 80 6 57 1.6% 0.94 [0.31, 2.89] Olimand et.al 2005 69 212 163 540 14.3% 1.12 [0.79, 1.57] Opoien et al 2004 3 29 1 14 0.4% 1.50 [0.14, 1.587] Pop et.al 2014 7 31 13 64 1.9% 1.14 [0.40, 3.23] Senepati et al 2020 16 80 21 22 3.8% 1.20 [0.58, 2.47] Sharma et.al 2020 16 80 21 122 3.8% 1.20 [0.58, 2.47] Sharma et.al 2020 16 80 21 163 4441 668 8565 42.5% 0.99 [0.77, 1.04] Pop et.al 2014 7 31 13 64 1.9% 1.14 [0.40, 3.23] Senepati et al 2020 16 80 21 122 3.8% 1.20 [0.58, 2.47] Sharma et.al 2020 16 80 21 122 3.8% 1.20 [0.58, 2.47] Sharma et.al 2020 16 80 21 161 4.4% 1.14 [0.58, 2.23] Singh et al 2013 32 68 17 57 3.6% 2.20 [1.00, 4.39] Mekaru et.al 2014 9 49 11 59 5.2% 0.98 [0.37, 2.60] Pittaway et.al 2014 9 49 11 59 5.2% 0.98 [0.37, 2.60] Pittaway et.al 2014 9 49 11 59 5.2% 0.98 [0.37, 2.60] Pittaway et.al 2014 9 49 11 59 5.2% 0.98 [0.37, 2.60] Pittaway et.al 2014 9 49 11 59 5.2% 0.98 [0.37, 2.60] Pittaway et.al 2014 9 49 11 59 5.2% 0.98 [0.37, 2.60] Pittaway et.al 2014 9 49 11 59 5.2% 0.98 [0.37, 2.60] Pittaway et.al 2014 9 49 11 59 5.2% 0.98 [0.37, 2.60] Pittaway et.al 2014 9 478 187 964 23.1% 1.70 [1.61, 1.80] Mekaru et.al 2014 9 478 187 964 23.1% 1.70 [1.64, 1.54] Sabtotal (95% CI) 14934 197300 100.0% 1.95 [1.53, 2.48] Pittaway et.al 2016 62 5377 450 8280 28.6% 2.44 [2.16, 2.77] Subtotal (95% CI) 14934 197300 100.0% 1.95 [1.53, 2.48] Pittaway et.al 2016 62 5377 450 8280 28.6% 2.44 [2.16, 2.77] Subtotal (95% CI) 14934 197300 100.0% 1.95 [1.53, 2.48] Pittaway et.al 2016 62 5377 450 8280 28.6% 2.44 [2.16, 2.77] Subtotal (95% CI) 14934 197300 100.0% 1.95 [1.53, 2.48] Pittaway et.al 2016 62 5377 4	Arici et al 1996	5	12	9	35	1.1%	2.06 [0.52, 8.16]			·		
Bergendal et al 1998 5 57 5 98 1.2% 1.79 [0.49, 6.47] Curtis et al 1993 5 35 3 13 0.8% 0.56 [0.11, 2.75] Exhiner et al 2006 3 22 6 43 0.9% 0.97 [0.22, 4.33] Geber et al 1995 0 444 16 465 0.3% 0.31 [0.02, 5.19] Guo et al 2016 19 117 14 136 3.6% 1.69 [0.81, 3.54] Kwi et al 2011 1 6 1 1 0 0.2% 1.80 [0.09, 35.42] Kwi et al 2007 9 46 17 81 2.5% 0.92 [0.37, 2.26] Olivennes et al 2007 9 46 17 81 2.5% 0.92 [0.37, 2.26] Olivennes et al 2007 9 46 17 81 2.5% 0.92 [0.37, 2.26] Olivennes et al 2007 6 9 212 163 540 14.3% 1.12 [0.79, 1.57] Popien et al 2012 69 376 51 406 11.3% 1.52 [1.06, 2.32] Pabuccu et al 2004 3 29 1 14 0.4% 1.50 [0.14, 15.87] Pop et al 2016 315 4441 668 8565 42.5% 0.90 [0.79, 1.04] Sharma et al 2020 16 80 21 122 3.8% 1.20 [0.58, 2.47] Sharma et al 2010 15 5441 46 668 8565 42.5% 0.90 [0.79, 1.04] Sharma et al 2010 15 5441 46 688 8565 42.5% 0.90 [0.79, 1.04] Sharma et al 2013 32 68 17 57 3.6% 2.20 [1.00, 4.39] Subtoal (95% CI) 5882 11041 100.0% 1.09 [0.94, 1.26] Total events 607 1072 Heterogeneity: tau ² = 0.01; chi ² = 19.45, df = 18 ($P = 0.36$); $P = 7\%$ Test for overall effect: $Z = 1.17$ ($P = 0.24$) 1.8.2 laparoscopy in SC Farland et al 2016 139 478 187 964 23.1% 1.70 [1.61, 1.80] Mekaru et al 2016 139 478 187 964 23.1% 1.70 [1.64, 4.54] Santuil et al 2016 139 478 187 964 23.1% 1.70 [1.64, 4.54] Santuil et al 2016 139 478 187 964 23.1% 1.70 [1.64, 2.52] Farland et al 2016 139 478 187 964 23.1% 1.70 [1.64, 2.77] Subtoal (95% CI) 14934 197300 100.0% 1.95 [1.53, 2.48] Total events 2584 23826 Heterogeneity: tau ² = 0.05; chi ² = 31.01, df = 4 ($P < 0.00001$); $P = 87\%$ Test for overall effect: $Z = 5.37$ ($P < 0.00001$) P = 87% Test for overall effect: $Z = 5.37$ ($P < 0.00001$); $P = 87\%$ Test for overall effect: $Z = 5.37$ ($P < 0.00001$); $P = 87\%$	Bahceci et al 2005	11	46	20	114	2.9%	1.48 [0.64, 3.39]					
Curiis et al 1993 5 35 3 13 0.8% 0.56 [0.11, 2.75] Esinler et al 2006 3 22 6 43 0.9% 0.97 [0.22, 4.33] Geber et al 1995 0 44 16 456 0.3% 0.31 [0.02, 5.19] Guo et al 2016 19 117 14 136 3.6% 1.69 [0.81, 3.54] Kim et al 2011 1 6 1 10 0.2% 1.80 [0.09, 35, 42] Matalliotakis et al 2007 9 46 17 81 2.5% 0.92 [0.37, 2.26] Olivennes et al 1995 8 80 6 57 1.6% 0.94 [0.31, 2.89] Omland et al 2006 9 212 163 540 14.3% 1.12 [0.79, 1.57] Opoient et al 2014 7 31 13 64 1.9% 1.14 [0.40, 3.23] Pabuccu et al 2014 7 31 13 64 1.9% 1.14 [0.40, 3.23] Pabuccu et al 2014 7 31 13 64 1.9% 1.14 [0.40, 3.23] Senepati et al 2016 315 4441 668 8565 42.5% 0.90 [0.79, 1.04] Sharma et al 2020 16 80 21 122 3.8% 1.20 [0.58, 2.24] Sharma et al 2020 16 80 21 122 3.8% 1.20 [0.58, 2.24] Sharma et al 2019 19 130 21 161 4.4% 1.14 [0.58, 2.23] Singh et al 2013 32 68 17 57 3.6% 2.09 [1.00, 4.39] Subtotal (95% CI) 5882 11041 100.0% 1.09 [0.94, 1.26] Total events 607 1072 Heterogeneity: tau ² = 0.01; chi ² = 19.45, df = 18 ($P = 0.36$); $P = 7\%$ Test for overall effect: $Z = 1.17$ ($P = 0.24$) 1.8.2 laparoscopy in SC Farland et al 2016 139 478 187 964 23.1% 1.70 [1.61, 1.80] Mekaru et al 2016 139 478 187 964 23.1% 1.70 [1.61, 2.20] Santuli et al 2016 139 478 187 964 23.1% 1.70 [1.61, 2.20] Sarawat et al 2016 139 478 187 964 23.1% 1.70 [1.61, 2.20] Sarawat et al 2016 139 478 187 964 23.1% 1.70 [1.61, 2.20] Sarawat et al 2016 139 478 187 964 23.1% 1.70 [1.62, 2.77] Subtotal (95% CI) 14934 197300 100.0% 1.95 [1.53, 2.48] Total events 2584 23826 Heterogeneity: tau ² = 0.05; chi ² = 31.01, df = 4 ($P < 0.00001$); $P = 87\%$ Test for overall effect: $Z = 5.37$ ($P < 0.00001$); $P = 87\%$ Test for overall effect: $Z = 5.37$ ($P < 0.00001$); $P = 87\%$ Test for overall effect: $Z = 5.37$ ($P < 0.00001$); $P = 87\%$ Test for overall effect: $Z = 5.37$ ($P < 0.00001$); $P = 87\%$	Bergendal et al 1998	5	57	5	98	1.2%	1.79 [0.49, 6.47]				_	
Esinler et al 2006 3 22 6 43 0.9% 0.97 [0.22, 5.13] Geber et al 1995 0 44 16 465 0.3% 0.31 [0.02, 5.19] Guo et al 2016 19 117 14 136 3.6% 1.69 [0.81, 5.54] Kim et al 2011 1 6 1 10 0.2% 1.80 [0.09, 35.42] Matallitotakis et al 2007 9 46 17 81 2.5% 0.92 [0.37, 2.26] Olivennes et al 1995 8 80 6 57 1.6% 0.94 [0.31, 2.89] Omland et al 2005 69 212 163 540 14.3% 1.12 [0.79, 1.57] Opcien et al 2012 69 376 51 406 11.3% 1.56 [1.06, 2.32] Pabuccu et al 2004 3 29 1 14 0.4% 1.50 [0.14, 15.87] Pop et al 2012 61 80 21 122 3.8% 1.20 [0.58, 2.47] Sharma et al 2016 1315 4441 668 8565 42.5% 0.90 [0.79, 1.04] Sharma et al 2016 1315 4441 668 8565 42.5% 0.90 [0.79, 1.04] Sharma et al 2010 16 80 21 122 3.8% 1.20 [0.58, 2.47] Sharma et al 2013 32 68 17 57 3.6% 2.09 [1.00, 4.39] Subtotal (95% CI) 5882 11041 100.0% 1.09 [0.94, 1.26] Total events 607 1072 Heterogeneity: tau ² = 0.01; chi ² = 19.45, df = 18 ($P = 0.36$); $P = 7\%$ Test for overall effect: $Z = 1.17$ ($P = 0.24$) 1.8.2 laparoscopy in SC Farland et al 2016 139 478 187 964 23.1% 1.70 [1.61, 1.80] Mekaru et al 2016 139 478 187 964 23.1% 1.70 [1.60, 4.54] Santulli et al 2016 139 478 187 964 23.1% 1.70 [1.62, 7.7] Subtotal (95% CI) 14934 197300 100.0% 1.95 [1.53, 2.48] Total events 2584 23826 Heterogeneity: tau ² = 0.05; chi ² = 31.01, df = 4 ($P < 0.00001$); $P = 87\%$ Test for overall effect: $Z = 5.37$ ($P < 0.00001$)	Curtis et al 1993	5	35	3	13	0.8%	0.56 [0.11, 2.75]					
Geber et al 1995 0 44 16 465 0.3% 0.31 [0.02, 5.19] Guo et al 2016 19 117 14 136 3.6% 1.69 [0.81, 3.54] Kui et al 2011 1 6 1 10 0.2% 1.80 [0.09, 35.42] Matalliotakis et al 2005 11 50 20 60 2.7% 0.56 [0.24, 1.33] Matalliotakis et al 2007 9 46 17 81 2.5% 0.92 [0.37, 2.26] Olivenes et al 2004 9 16 1.4 0.4% 1.50 [1.06, 2.32] Poincu et al 2004 3 29 1 14 0.4% 1.50 [1.04, 1.587] Pop et al 2014 7 31 13 64 1.9% 1.14 [0.40, 3.23] Sharma et al 2019 19 130 21 161 4.4% 1.14 [0.58, 2.47] Sharma et al 2013 32 68 17 57 3.6% 2.09 [1.04, 4.39] Subtotal (95% CI) 5882 11041 100.0% 1.09	Esinler et al 2006	3	22	6	43	0.9%	0.97 [0.22, 4.33]					
Guo et al 2016 19 117 14 136 3.6% 1.69 [0.81, 3.54] Kim et al 2011 1 6 1 10 0.2% 1.80 [0.09, 35.42] Matalliotakis et al 2007 9 46 17 81 2.5% 0.92 [0.37, 2.26] Olivennes et al 1995 8 80 6 57 1.6% 0.94 [0.31, 2.89] Onland et al 2005 69 212 163 540 14.3% 1.12 [0.79, 1.57] Opoien et al 2012 69 376 51 406 11.3% 1.56 [1.06, 2.32] Pabuccu et al 2004 3 29 1 14 0.4% 1.50 [0.14, 15.87] Pop et al 2014 7 31 13 64 1.9% 1.14 [0.40, 3.23] Senepati et al 2016 315 4441 668 8565 42.5% 0.90 [0.79, 1.04] Sharma et al 2020 16 80 21 122 3.8% 1.20 [0.58, 2.47] Sharma et al 2019 19 130 21 161 4.4% 1.14 [0.58, 2.23] Subtotal (95% CI) 5882 11041 100.0% 1.09 [0.94, 1.26] Total events 607 1072 Heterogeneity: tau ² = 0.01; ch ² = 19.45, df = 18 ($P = 0.36$); $P = 7\%$ Test for overall effect: $Z = 1.17$ ($P = 0.24$) 1.8.2 laparoscopy in SC Farland et al 2016 139 478 187 964 2.3.1% 1.70 [1.61, 1.80] Mekaru et al 2016 62 5375 450 8280 28.6% 2.44 [2.16, 2.77] Subtotal (95% CI) 14934 197300 100.0% 1.95 [1.53, 2.48] Total events 2584 23826 Heterogeneity: tau ² = 0.05; ch ² = 31.01, df = 4 ($P < 0.00001$); $P = 87\%$ Test for overall effect: $Z = 5.37$ ($P < 0.00001$) P = 0.0000000000000000000000000000000000	Geber et al 1995	0	44	16	465	0.3%	0.31 [0.02, 5.19]				-	
Kim et al 2011 1 6 1 10 0.2% 1.80 [0.09, 35.42] Kuivasari et al 2005 11 50 20 60 2.7% 0.56 [0.24, 1.33] Matalliotakis et al 2007 9 46 17 81 2.5% 0.92 [0.37, 2.26] Olivennes et.al 1995 8 80 6 57 1.6% 0.94 [0.31, 2.89] Omland et.al 2005 69 212 163 540 14.3% 1.56 [1.06, 2.32] Pabuccu et al 2012 69 376 51 406 11.3% 1.56 [1.06, 2.32] Pabuccu et al 2014 7 31 13 64 1.9% 1.14 [0.40, 3.23] Senepati et al 2016 315 4441 668 8565 42.5% 0.90 [0.79, 1.04] Sharma et al 2010 16 80 21 122 3.8% 1.20 [0.58, 2.47] Sharma et al 2013 32 68 17 57 3.6% 2.09 [1.00, 4.33] Subtotal (95% CI) 5882 11041 100.0% 1.09 [0.94, 1.26] Total events 607 1072 Heterogeneity: tau ² = 0.01; chi ² = 19.45, df = 18 ($P = 0.36$); $P = 7\%$ Test for overall effect: $Z = 1.17$ ($P = 0.24$) 1.8.2 laproscopy in SC Farland et al 2016 139 478 187 964 23.1% 1.70 [1.61, 1.80] Mekaru et.al 2014 9 49 11 59 5.2% 0.98 [0.37, 2.60] Pittaway et.al 1988 60 157 28 150 12.7% 2.70 [1.60, 4.54] Santulli et.al 2016 662 5375 450 8280 28.6% 2.44 [2.16, 2.77] Subtotal (95% CI) 14934 197300 100.0% 1.95 [1.53, 2.48] Total events 2584 23826 Heterogeneity: tau ² = 0.05; chi ² = 31.01, df = 4 ($P < 0.00001$); $P = 87\%$ Test for overall effect: $Z = 5.37$ ($P < 0.0001$) (-0.1 1 1 0)	Guo et.al 2016	19	117	14	136	3.6%	1.69 [0.81, 3.54]			+		
Kuivasaari et al 2005 11 50 20 60 2.7% 0.56 [0.24, 1.33] Matalliotakis et al 2007 9 46 17 81 2.5% 0.92 [0.37, 2.26] Omland et al 2005 69 212 163 540 14.3% 1.12 [0.79, 1.57] Opoien et al 2012 69 376 51 406 11.3% 1.56 [1.06, 2.32] Pabuccu et al 2004 3 29 1 14 0.4% 1.50 [0.14, 15.87] Pop et al 2014 7 31 13 64 1.9% 1.14 [0.40, 3.23] Senepati et al 2016 315 4441 668 8565 42.5% 0.90 [0.79, 1.04] Sharma et al 2020 16 80 21 122 3.8% 1.20 [0.58, 2.47] Sharma et al 2019 19 130 21 161 4.4% 1.14 [0.58, 2.23] Singh et al 2013 32 68 17 57 3.6% 2.09 [1.00, 4.39] Subtotal (95% CI) 5882 11041 100.0% 1.09 [0.94, 1.26] Total events 607 1072 Heterogeneity: tau ² = 0.01; chi ² = 19.45, df = 18 ($P = 0.36$); $I2 = 7\%$ Test for overall effect: $Z = 1.17$ ($P = 0.24$) 1.8.2 laparoscopy in SC Farland et al 2019 1714 8875 23150 187847 30.4% 1.70 [1.61, 1.80] Mekaru et al 2016 139 478 187 964 23.1% 1.70 [1.60, 4.54] Santulli et.al 2016 662 5375 450 8280 28.6% 2.44 [2.16, 2.77] Subtotal (95% CI) 14934 197300 100.0% 1.95 [1.53, 2.48] Total events 2584 23826 Heterogeneity: tau ² = 0.05; chi ² = 31.01, df = 4 ($P < 0.00001$); $I2 = 87\%$ Test for overall effect: $Z = 5.37$ ($P < 0.00001$)	Kim et al 2011	1	6	1	10	0.2%	1.80 [0.09, 35.42]					-
Matalliotakis et al 2007 9 46 17 81 2.5% 0.92 $[0.37, 2.26]$ Olivennes et al 1995 8 80 6 57 1.6% 0.94 $[0.31, 2.89]$ Omland et al 2005 69 212 163 540 14.3% 1.12 $[0.79, 1.57]$ Opoien et al 2012 69 376 51 406 11.3% 1.56 $[1.06, 2.32]$ Pabuccu et al 2004 3 29 1 14 0.4% 1.50 $[0.14, 15.87]$ Pop et al 2014 7 31 13 64 1.9% 1.14 $[0.40, 3.23]$ Senepati et al 2016 315 4441 668 8565 42.5% 0.90 $[0.79, 1.04]$ Sharma et al 2020 16 80 21 122 3.8% 1.20 $[0.58, 2.47]$ Sharma et al 2019 19 130 21 161 4.4% 1.14 $[0.58, 2.23]$ Singh et al 2013 32 68 17 57 3.6% 2.09 $[1.00, 4.39]$ Subtotal (95% C1) 5882 11041 100.0% 1.09 $[0.94, 1.26]$ Total events 607 1072 Heterogeneity: tau ² = 0.01; chi ² = 19.45, df = 18 ($P = 0.36$); $I^2 = 7\%$ Test for overall effect: $Z = 1.17$ ($P = 0.24$) 1.8.2 laparoscopy in SC Farland et al 2014 9 49 11 59 5.2% 0.98 $[0.37, 2.60]$ Pittaway et al 1988 60 157 28 150 12.7% 2.70 $[1.60, 4.54]$ Santsut et al 2016 139 478 187 964 23.1% 1.70 $[1.32, 2.20]$ Saraswat et al 2016 662 5375 450 8280 28.6% 2.44 $[2.16, 2.77]$ Subtotal (95% C1) 14934 197300 100.0% 1.95 $[1.53, 2.48]$ Total events 2584 23826 Heterogeneity: tau ² = 0.05; chi ² = 31.01, df = 4 ($P < 0.00001$); $I^2 = 87\%$ Test for overall effect: $Z = 5.37$ ($P < 0.00001$) = 0.01 0.1 1 00	Kuivasaari et al 2005	11	50	20	60	2.7%	0.56 [0.24, 1.33]		-			
Olivennes et al 1995 8 80 6 57 1.6% 0.94 [0.31, 2.89] Omland et al 2005 69 212 163 540 14.3% 1.12 [0.79, 1.57] Opoien et al 2012 69 376 51 406 11.3% 1.56 [1.06, 2.32] Pabuccu et al 2004 3 29 1 14 0.4% 1.50 [0.14, 15.87] Pop et al 2014 7 31 13 64 1.9% 1.14 [0.40, 3.23] Senepati et al 2016 315 4441 668 8565 42.5% 0.90 [0.79, 1.04] Sharma et al 2020 16 80 21 122 3.8% 1.20 [0.58, 2.47] Sharma et al 2019 19 130 21 161 4.4% 1.14 [0.58, 2.23] Singh et al 2013 32 68 17 57 3.6% 2.09 [1.00, 4.39] Subtotal (95% CI) 5882 11041 100.0% 1.09 [0.94, 1.26] Total events 607 1072 Heterogeneity: tau ² = 0.01; chi ² = 19.45, df = 18 (P = 0.36); I^2 = 7% Test for overall effect: Z = 1.17 (P = 0.24) 1.8.2 laparoscopy in SC Farland et al 2016 139 478 187 964 23.1% 1.70 [1.61, 1.80] Mekaru et al 2016 62 5375 450 8280 28.6% 2.44 [2.16, 2.77] Subtotal (95% CI) 14934 197300 100.0% 1.95 [1.53, 2.48] Total events 2584 23826 Heterogeneity: tau ² = 0.05; chi ² = 31.01, df = 4 (P < 0.00001); I^2 = 87% Test for overall effect: Z = 5.37 (P < 0.00001)	Matalliotakis et al 2007	9	46	17	81	2.5%	0.92 [0.37, 2.26]					
Omland et.al 2005 69 212 163 540 14.3% 1.12 [0.79, 1.57] Opoien et al 2012 69 376 51 406 11.3% 1.56 [1.06, 2.32] Pabuccu et al 2004 3 29 1 14 0.4% 1.50 [0.14, 15.87] Pop et.al 2014 7 31 13 64 1.9% 1.14 [0.40, 3.23] Senepati et al 2016 315 4441 668 8565 42.5% 0.90 [0.79, 1.04] Sharma et al 2020 16 80 21 122 3.8% 1.20 [0.58, 2.47] Sharma et al 2019 19 130 21 161 4.4% 1.14 [0.58, 2.23] Singh et al 2013 32 68 17 57 3.6% 2.09 [1.00, 4.39] Subtotal (95% CI) 5882 11041 100.0% 1.09 [0.94, 1.26] Total events 607 1072 Heterogeneity: tau ² = 0.01; chi ² = 19.45, df = 18 ($P = 0.36$); $I^2 = 7\%$ Test for overall effect: $Z = 1.17$ ($P = 0.24$) 11.8.2 laparoscopy in SC Farland et al 2016 139 478 187 964 23.1% 1.70 [1.61, 1.80] Mekaru et.al 2016 139 478 187 964 23.1% 1.70 [1.32, 2.20] Subtotal (95% CI) 14934 197300 100.0% 1.95 [1.53, 2.48] Total events 2584 23826 Heterogeneity: tau ² = 0.05; chi ² = 31.01, df = 4 ($P < 0.00001$); $I^2 = 87\%$ Test for overall effect: $Z = 5.37$ ($P < 0.00001$) Total events 2584 23826 Heterogeneity: tau ² = 0.05; chi ² = 31.01, df = 4 ($P < 0.00001$); $I^2 = 87\%$ Test for overall effect: $Z = 5.37$ ($P < 0.00001$)	Olivennes et.al 1995	8	80	6	57	1.6%	0.94 [0.31, 2.89]		-			
Opoien et al 2012 69 376 51 406 11.3% 1.56 [1.06, 2.32] Pabuccu et al 2004 3 29 1 14 0.4% 1.50 [0.14, 15.87] Pop et.al 2014 7 31 13 64 1.9% 1.14 [0.40, 3.23] Senepati et al 2016 315 4441 668 8565 42.5% 0.90 [0.79, 1.04] Sharma et al 2020 16 80 21 122 3.8% 1.20 [0.58, 2.47] Sharma et al 2019 19 130 21 161 4.4% 1.14 [0.58, 2.23] Singh et al 2013 32 68 17 57 3.6% 2.09 [1.00, 4.39] Subtotal (95% CI) 5882 11041 100.0% 1.09 [0.94, 1.26] Total events 607 1072 Heterogeneity: tau ² = 0.01; chi ² = 19.45, df = 18 ($P = 0.36$); $I^2 = 7\%$ Test for overall effect: $Z = 1.17$ ($P = 0.24$) 1.8.2 laparoscopy in SC Farland et al 2014 9 49 11 59 5.2% 0.98 [0.37, 2.60] Pittaway et.al 2016 662 5375 450 8280 28.6% 2.44 [2.16, 2.77] Sabtotal (95% CI) 14934 197300 100.0% 1.95 [1.53, 2.48] Total events 2584 23826 Heterogeneity: tau ² = 0.05; chi ² = 31.01, df = 4 ($P < 0.00001$); $I^2 = 87\%$ Test for overall effect: $Z = 5.37$ ($P < 0.00001$)	Omland et.al 2005	69	212	163	540	14.3%	1.12 [0.79, 1.57]					
Pabuccu et al 2004 3 29 1 14 0.4% 1.50 [0.14, 15.87] Pop et al 2014 7 31 13 64 1.9% 1.14 [0.40, 3.23] Senepati et al 2016 315 4441 668 8565 42.5% 0.90 [0.79, 1.04] Sharma et al 2020 16 80 21 122 3.8% 1.20 [0.58, 2.47] Sharma et al 2019 19 130 21 161 4.4% 1.14 [0.58, 2.23] Singh et al 2013 32 68 17 57 3.6% 2.09 [1.00, 4.39] Subtotal (95% CI) 5882 11041 100.0% 1.09 [0.94, 1.26] Total events 607 1072 Heterogeneity: tau ² = 0.01; chi ² = 19.45, df = 18 ($P = 0.36$); $I^2 = 7\%$ Test for overall effect: $Z = 1.17$ ($P = 0.24$) 1.8.2 laparoscopy in SC Farland et al 2014 9 49 11 59 5.2% 0.98 [0.37, 2.60] Pittaway et.al 2016 139 478 187 964 23.1% 1.70 [1.61, 1.80] Mekaru et.al 2016 662 5375 450 8280 28.6% 2.44 [2.16, 2.77] Subtotal (95% CI) 14934 197300 100.0% 1.95 [1.53, 2.48] Total events 2584 23826 Heterogeneity: tau ² = 0.05; chi ² = 31.01, df = 4 ($P < 0.00001$); $I^2 = 87\%$ Test for overall effect: $Z = 5.37$ ($P < 0.00001$)	Opoien et al 2012	69	376	51	406	11.3%	1.56 [1.06, 2.32]					
Pop et.al 2014 7 31 13 64 1.9% 1.14 [0.40, 3.23] Senepati et al 2016 315 4441 668 8565 42.5% 0.90 [0.79, 1.04] Sharma et al 2020 16 80 21 122 3.8% 1.20 [0.58, 2.47] Sharma et al 2019 19 130 21 161 4.4% 1.14 [0.58, 2.23] Singh et al 2013 32 68 17 57 3.6% 2.09 [1.00, 4.39] Subtotal (95% CI) 5882 11041 100.0% 1.09 [0.94, 1.26] Total events 607 1072 Heterogeneity: tau ² = 0.01; chi ² = 19.45, df = 18 ($P = 0.36$); $I^2 = 7\%$ Test for overall effect: $Z = 1.17$ ($P = 0.24$) 1.8.2 laparoscopy in SC Farland et al 2019 1714 8875 23150 187847 30.4% 1.70 [1.61, 1.80] Mekaru et.al 2014 9 49 11 59 5.2% 0.98 [0.37, 2.60] Pittaway et.al 1988 60 157 28 150 12.7% 2.70 [1.60, 4.54] Santulli et.al 2016 662 5375 450 8280 28.6% 2.44 [2.16, 2.77] Subtotal (95% CI) 14934 197300 100.0% 1.95 [1.53, 2.48] Total events 2584 23826 Heterogeneity: tau ² = 0.05; chi ² = 31.01, df = 4 ($P < 0.00001$); $I^2 = 87\%$ Test for overall effect: $Z = 5.37$ ($P < 0.00001$)	Pabuccu et al 2004	3	29	1	14	0.4%	1.50 [0.14, 15.87]					
Senepati et al 2016 315 4441 668 8565 42.5% 0.90 [0.79, 1.04] Sharma et al 2020 16 80 21 122 3.8% 1.20 [0.58, 2.47] Sharma et al 2019 19 130 21 161 4.4% 1.14 [0.58, 2.23] Singh et al 2013 32 68 17 57 3.6% 2.09 [1.00, 4.39] Subtotal (95% CI) 5882 11041 100.0% 1.09 [0.94, 1.26] Total events 607 1072 Heterogeneity: tau ² = 0.01; chi ² = 19.45, df = 18 ($P = 0.36$); $I2 = 7\%$ Test for overall effect: $Z = 1.17$ ($P = 0.24$) 1.8.2 laparoscopy in SC Farland et al 2019 1714 8875 23150 187847 30.4% 1.70 [1.61, 1.80] Mekaru et.al 2014 9 49 11 59 5.2% 0.98 [0.37, 2.60] Pittaway et.al 1988 60 157 28 150 12.7% 2.70 [1.60, 4.54] Santulli et.al 2016 139 478 187 964 23.1% 1.70 [1.32, 2.20] Saraswat et.al 2016 662 5375 450 8280 28.6% 2.44 [2.16, 2.77] Subtotal (95% CI) 14934 197300 100.0% 1.95 [1.53, 2.48] Heterogeneity: tau ² = 0.05; chi ² = 31.01, df = 4 ($P < 0.00001$); $I2 = 87\%$ Test for overall effect: $Z = 5.37$ ($P < 0.00001$)	Pop et.al 2014	7	31	13	64	1.9%	1.14 [0.40, 3.23]					
Sharma et al 2020 16 80 21 122 3.8% 1.20 $[0.58, 2.47]$ Sharma et al 2019 19 130 21 161 4.4% 1.14 $[0.58, 2.23]$ Singh et al 2013 32 68 17 57 3.6% 2.09 $[1.00, 4.39]$ Subtotal (95% CI) 5882 11041 100.0% 1.09 $[0.94, 1.26]$ Total events 607 1072 Heterogeneity: tau ² = 0.01; chi ² = 19.45, df = 18 ($P = 0.36$); $I2 = 7\%$ Test for overall effect: $Z = 1.17$ ($P = 0.24$) 1.8.2 laparoscopy in SC Farland et al 2019 1714 8875 23150 187847 30.4% 1.70 $[1.61, 1.80]$ Mekaru et.al 2014 9 49 11 59 5.2% 0.98 $[0.37, 2.60]$ Pittaway et.al 1988 60 157 28 150 12.7% 2.70 $[1.60, 4.54]$ Santulli et.al 2016 139 478 187 964 23.1% 1.70 $[1.32, 2.20]$ Saraswat et.al 2016 662 5375 450 8280 28.6% 2.44 $[2.16, 2.77]$ Subtotal (95% CI) 14934 197300 100.0% 1.95 $[1.53, 2.48]$ Total events 2584 23826 Heterogeneity: tau ² = 0.05; chi ² = 31.01, df = 4 ($P < 0.00001$); $I2 = 87\%$ Test for overall effect: $Z = 5.37$ ($P < 0.00001$)	Senepati et al 2016	315	4441	668	8565	42.5%	0.90 [0.79, 1.04]					
Sharma et.al 2019 19 130 21 161 4.4% 1.14 $[0.58, 2.23]$ Singh et al 2013 32 68 17 57 3.6% 2.09 $[1.00, 4.39]$ Subtotal (95% CI) 5882 11041 100.0% 1.09 $[0.94, 1.26]$ Total events 607 1072 Heterogeneity: tau ² = 0.01; chi ² = 19.45, df = 18 ($P = 0.36$); $I^2 = 7\%$ Test for overall effect: $Z = 1.17$ ($P = 0.24$) 1.8.2 laparoscopy in SC Farland et al 2019 1714 8875 23150 187847 30.4% 1.70 $[1.61, 1.80]$ Mekaru et.al 2014 9 49 11 59 5.2% 0.98 $[0.37, 2.60]$ Pittaway et.al 1988 60 157 28 150 12.7% 2.70 $[1.60, 4.54]$ Santulli et.al 2016 139 478 187 964 23.1% 1.70 $[1.32, 2.20]$ Saraswat et.al 2016 662 5375 450 8280 28.6% 2.44 $[2.16, 2.77]$ Subtotal (95% CI) 14934 197300 100.0% 1.95 $[1.53, 2.48]$ Total events 2584 23826 Heterogeneity: tau ² = 0.05; chi ² = 31.01, df = 4 ($P < 0.00001$); $I^2 = 87\%$ Test for overall effect: $Z = 5.37$ ($P < 0.00001$)	Sharma et al 2020	16	80	21	122	3.8%	1.20 [0.58, 2.47]					
Singh et al 2013 32 68 17 57 3.6% 2.09 $[1.00, 4.39]$ Subtotal (95% CI) 5882 11041 100.0% 1.09 $[0.94, 1.26]$ Total events 607 1072 Heterogeneity: tau ² = 0.01; chi ² = 19.45, df = 18 ($P = 0.36$); $I^2 = 7\%$ Test for overall effect: $Z = 1.17$ ($P = 0.24$) 1.8.2 laparoscopy in SC Farland et al 2019 1714 8875 23150 187847 30.4% 1.70 $[1.61, 1.80]$ Mekaru et.al 2014 9 49 11 59 5.2% 0.98 $[0.37, 2.60]$ Pittaway et.al 1988 60 157 28 150 12.7% 2.70 $[1.60, 4.54]$ Sanatuli et.al 2016 662 5375 450 8280 28.6% 2.44 $[2.16, 2.77]$ Subtotal (95% CI) 14934 197300 100.0% 1.95 $[1.53, 2.48]$ Total events 2584 23826 Heterogeneity: tau ² = 0.05; chi ² = 31.01, df = 4 ($P < 0.00001$); $I^2 = 87\%$ Test for overall effect: $Z = 5.37$ ($P < 0.00001$)	Sharma et.al 2019	19	130	21	161	4.4%	1.14 [0.58, 2.23]					
Subtotal (95% CI) 5882 11041 100.0% 1.09 [0.94, 1.26] Total events 607 1072 Heterogeneity: tau ² = 0.01; chi ² = 19.45, df = 18 ($P = 0.36$); $I^2 = 7\%$ Test for overall effect: $Z = 1.17$ ($P = 0.24$) 1.8.2 laparoscopy in SC Farland et al 2019 1714 8875 23150 187847 30.4% 1.70 [1.61, 1.80] Mekaru et.al 2014 9 49 11 59 5.2% 0.98 [0.37, 2.60] Pittaway et.al 1988 60 157 28 150 12.7% 2.70 [1.60, 4.54] Santulli et.al 2016 139 478 187 964 23.1% 1.70 [1.32, 2.20] Saraswat et.al 2016 662 5375 450 8280 28.6% 2.44 [2.16, 2.77] Subtotal (95% CI) 14934 197300 100.0% 1.95 [1.53, 2.48] Total events 2584 23826 Heterogeneity: tau ² = 0.05; chi ² = 31.01, df = 4 ($P < 0.00001$); $I^2 = 87\%$ Test for overall effect: $Z = 5.37$ ($P < 0.00001$)	Singh et al 2013	32	68	17	57	3.6%	2.09 [1.00, 4.39]					
Total events 607 1072 Heterogeneity: $\tan^2 = 0.01$; $\operatorname{ch}^{12} = 19.45$, $\operatorname{df} = 18$ ($P = 0.36$); $I^2 = 7\%$ Test for overall effect: $Z = 1.17$ ($P = 0.24$) 1.8.2 laparoscopy in SC Farland et al 2019 1714 8875 23150 187847 30.4% 1.70 [1.61, 1.80] Mekaru et.al 2019 1714 8875 23150 12.7% 2.70 [1.60, 4.54] Santulli et.al 2016 139 478 187 964 23.1% 1.70 [1.32, 2.20] Saraswat et.al 2016 662 5375 450 8280 28.6% 2.44 [2.16, 2.77] Subtotal (95% CI) 14934 197300 100.0% 1.95 [1.53, 2.48] Total events 2584 23826 Heterogeneity: $\tan^2 = 0.05$; $\operatorname{ch}^2 = 31.01$, $\operatorname{df} = 4$ ($P < 0.00001$); $I^2 = 87\%$ Test for overall effect: $Z = 5.37$ ($P < 0.00001$)	Subtotal (95% CI)		5882		11041	100.0%	1.09 [0.94, 1.26]			•		
Heterogeneity: $\tan^2 = 0.01$; $\operatorname{chi}^2 = 19.45$, $\operatorname{df} = 18$ ($P = 0.36$); $I^2 = 7\%$ Test for overall effect: $Z = 1.17$ ($P = 0.24$) 1.8.2 laparoscopy in SC Farland et al 2019 1714 8875 23150 187847 30.4% 1.70 [1.61, 1.80] Mekaru et.al 2014 9 49 11 59 5.2% 0.98 [0.37, 2.60] Pittaway et.al 1988 60 157 28 150 12.7% 2.70 [1.60, 4.54] Santulli et.al 2016 139 478 187 964 23.1% 1.70 [1.32, 2.20] Saraswat et.al 2016 662 5375 450 8280 28.6% 2.44 [2.16, 2.77] Subtotal (95% CI) 14934 197300 100.0% 1.95 [1.53, 2.48] Total events 2584 23826 Heterogeneity: $\tan^2 = 0.05$; $\operatorname{chi}^2 = 31.01$, $\operatorname{df} = 4$ ($P < 0.00001$); $I^2 = 87\%$ Test for overall effect: $Z = 5.37$ ($P < 0.00001$)	Total events	607		1072								
Test for overall effect: $Z = 1.17 (P = 0.24)$ 1.8.2 laparoscopy in SC Farland et al 2019 1714 8875 23150 187847 30.4% 1.70 [1.61, 1.80] Mekaru et.al 2014 9 49 11 59 5.2% 0.98 [0.37, 2.60] Pittaway et.al 1988 60 157 28 150 12.7% 2.70 [1.60, 4.54] Santulli et.al 2016 139 478 187 964 23.1% 1.70 [1.32, 2.20] Saraswat et.al 2016 662 5375 450 8280 28.6% 2.44 [2.16, 2.77] Subtotal (95% CI) 14934 197300 100.0% 1.95 [1.53, 2.48] Total events 2584 23826 Heterogeneity: tau ² = 0.05; chi ² = 31.01, df = 4 ($P < 0.00001$); $I^2 = 87\%$ Test for overall effect: $Z = 5.37 (P < 0.00001)$	Heterogeneity: $tau^2 = 0.0$)1; $chi^2 =$	19.45, df	f = 18 (P = 1)	= 0.36); I ²	² = 7%						
1.8.2 laparoscopy in SC Farland et al 2019 1714 8875 23150 187847 30.4% 1.70 [1.61, 1.80] Mekaru et.al 2014 9 49 11 59 5.2% 0.98 [0.37, 2.60] Pittaway et.al 1988 60 157 28 150 12.7% 2.70 [1.60, 4.54] Santulli et.al 2016 139 478 187 964 23.1% 1.70 [1.32, 2.20] Saraswat et.al 2016 662 5375 450 8280 28.6% 2.44 [2.16, 2.77] Subtotal (95% CI) 14934 197300 100.0% 1.95 [1.53, 2.48] Total events 2584 23826 Heterogeneity: tau ² = 0.05; chi ² = 31.01, df = 4 ($P < 0.00001$); $I^2 = 87\%$ Test for overall effect: $Z = 5.37$ ($P < 0.00001$) 10 U 0.01 0.1 10 U 0.01 0.1 10	Test for overall effect: Z	= 1.17 (P	= 0.24)									
Farland et al 2019 1714 8875 23150 187847 30.4% 1.70 [1.61, 1.80] Mekaru et.al 2019 1714 8875 23150 187847 30.4% 1.70 [1.61, 1.80] Mekaru et.al 2014 9 49 11 59 5.2% 0.98 [0.37, 2.60] Pittaway et.al 1988 60 157 28 150 12.7% 2.70 [1.60, 4.54] Santulli et.al 2016 139 478 187 964 23.1% 1.70 [1.32, 2.20] Saraswat et.al 2016 662 5375 450 8280 28.6% 2.44 [2.16, 2.77] Subtotal (95% CI) 14934 197300 100.0% 1.95 [1.53, 2.48] Total events 2584 23826 Heterogeneity: tau ² = 0.05; chi ² = 31.01, df = 4 ($P < 0.00001$); $I^2 = 87\%$ Test for overall effect: $Z = 5.37$ ($P < 0.00001$)	1.8.2 Japaroscopy in SC											
Minimut et al 2017 1711 0073 2010 10711 0073 2010 107111 107111 <td>Farland et al 2019</td> <td>1714</td> <td>8875</td> <td>23150</td> <td>187847</td> <td>30.4%</td> <td>1 70 [1 61 1 80]</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Farland et al 2019	1714	8875	23150	187847	30.4%	1 70 [1 61 1 80]					
The first detail of the construction of the c	Mekaru et al 2014	9	49	11	59	5.2%	0.98 [0.37, 2.60]					
The first first problem is the first problem is the first problem is the first problem is problem if the first problem is problem is problem if the first problem is problem is problem if the first problem is problem is problem is problem if the first problem is proble	Pittaway et al 1988	60	157	28	150	12.7%	2 70 [1 60 4 54]					
Saraswat et.al 2016 662 5375 450 8280 28.6% 2.44 [2.16, 2.77] Subtotal (95% CI) 14934 197300 100.0% 1.95 [1.53, 2.48] Total events 2584 23826 Heterogeneity: tau ² = 0.05; chi ² = 31.01, df = 4 ($P < 0.00001$); I^2 = 87% Test for overall effect: $Z = 5.37$ ($P < 0.00001$)	Santulli et al 2016	139	478	187	964	23.1%	1.70 [1.32, 2.20]					
Subtotal (95% CI) 14934 197300 100.0% 1.95 [1.53, 2.48] Total events 2584 23826 Heterogeneity: tau ² = 0.05; chi ² = 31.01, df = 4 (<i>P</i> < 0.00001); <i>I</i> ² = 87% Test for overall effect: <i>Z</i> = 5.37 (<i>P</i> < 0.00001)	Saraswat et al 2016	662	5375	450	8280	28.6%	2.44 [2.16, 2.77]					
Total events 2584 23826 Heterogeneity: tau ² = 0.05; chi ² = 31.01, df = 4 (<i>P</i> < 0.00001); <i>I</i> ² = 87% Test for overall effect: <i>Z</i> = 5.37 (<i>P</i> < 0.00001) Under the second	Subtotal (95% CI)	002	14934	100	197300	100.0%	1.95 [1.53, 2.48]			•		
Heterogeneity: $tau^2 = 0.05$; $chi^2 = 31.01$, $df = 4$ ($P < 0.00001$); $I^2 = 87\%$ Test for overall effect: $Z = 5.37$ ($P < 0.00001$)	Total events	2584		23826								
Test for overall effect: $Z = 5.37$ ($P < 0.00001$) 1 = 0.00001 0.01 = 0.1 = 0.00001 0.01 = 0.1 = 0.00001	Heterogeneity tau ² – 0 ($(5 \cdot chi^2 - 1)$	31 01 df	f = 4 (P <	0.00001)	$I^2 = 87\%$						
	Test for overall effect: Z	= 5.37 (P)	< 0.0000	1)	0.00001)	,1 = 0770						
				,								
								0.01	0.1	1	10	10
	m (1 1)			16 1 (- 11 - 12		

FIGURE 8: Miscarriage risk in women with EMS diagnosed by laparoscopy.

3.2. Characteristics of Eligible Studies. The principal characteristics of the qualified publications are summarized in Table 1. According to the cautious assessment using the NOS, the majority of the studies had scores of 7 or greater (31/38), indicating a low risk of bias. Seven publications had a medium risk of bias, with scores of 6 (Table 2). According to the systematic risk evaluation of methodological bias, the descriptions about allocation concealment and blinding methods were not provided in this RCT (Table 3).

3.3. Clinical Outcomes. The risk of miscarriage increased in women with EMS, when compared with those without EMS in SC (OR: 1.81, 95% CI: 1.44-2.28, $I^2 = 96\%$). Among women who underwent ART, women with EMS had a similar miscarriage risk when compared to women with tubal infertility (OR: 1.03, 95% CI: 0.92-1.14, $I^2 = 0\%$) (Figure 2). Compared to women without AD, women who had a prior diagnosis of AD had a higher miscarriage risk in ART (OR: 2.81, 95% CI: 1.44-5.47, $I^2 = 64\%$) (Figure 3). The data of women with AD, who conceived spontaneously, was lacking. In the sensitivity analysis, the results of women with EMS

who conceive spontaneously concurred with the pooled results after eliminating anyone study. At the same time, the sensitivity analysis of AD did not alter the conclusion (OR: 2.41, 95% CI: 1.29-4.50, $I^2 = 58\%$) (Figure 4).

The subgroup analyses in women with EMS for retrospective cohort studies (OR: 1.78, 95% CI: 1.19-2.66, $I^2 =$ 96%) and prospective cohort studies (OR: 1.76, 95% CI: 1.45-2.14, $I^2 = 20\%$) were consistent with the overall analysis, observing an increased miscarriage risk in SC (Figure 5). Miscarriage risk was similar between women with EMS and tubal infertility who underwent ART in retrospective cohort studies (OR: 1.01, 95% CI: 0.90-1.14, $I^2 = 17\%$), prospective cohort studies (OR: 1.20, 95% CI: 0.67-2.15, I² = 0%), and a RCT (OR: 1.50, 5% CI: 0.14-15.87, 1 study) (Figure 6). Women with AD had higher odds of miscarriage in retrospective cohort studies (OR: 2.14, 95% CI: 1.43-3.21, $I^2 = 28\%$) (Figure 7). In the subgroup analysis, the findings of women with EMS diagnosed by laparoscopy remained in line with the overall results, implying an augmented miscarriage risk in women with or without EMS in SC (OR: 1.95, 95% CI: 1.53-2.48, $I^2 = 87\%$) and a similar miscarriage risk

0.1.1	Experin	mental	Con	trol		Odds ratio	Odds ratio
Study or subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
1.6.1 resected OMA vs control	ol						
Esinler et al 2006	3	22	6	43	7.7%	0.97 [0.22, 4.33]	
Guo et.al 2016	2	20	14	136	7.0%	0.97 [0.20, 4.62]	
kuroda et.al 2009	2	8	2	7	3.3%	0.83 [0.08, 8.24]	
Pabuccu et al 2004	1	11	1	14	2.0%	1.30 [0.07, 23.43]	
Santulli et.al 2016	28	104	187	964	80.0%	1.53 [0.96, 2.43]	+
Subtotal (95% CI)		165		1164	100.0%	1.40 [0.93, 2.12]	•
Total events	36		210				
Heterogeneity: $tau^2 = 0.00$; c	hi ² = 0.79, df	f = 4 (P =	$(0.94); I^2 =$	0%			
Test for overall effect: $Z = 1.5$	59 (P = 0.11)		,,				
1.6.2 SUP vs control							_
Omland et.al 2005	69	212	219	814	37.7%	1.31 [0.95, 1.82]	† ■•
Santulli et.al 2016	33	87	187	964	32.5%	2.54 [1.60, 4.03]	
Schwartz et al 2017	34	79	59	268	29.8%	2.68 [1.57, 4.55]	
Subtotal (95% CI)		378		2046	100.0%	2.01 [1.22, 3.31]	•
Total events	136		465				
Heterogeneity: $tau^2 = 0.14$; c	hi ² = 7.92, df	T = 2 (P =	0.02 ; $I^2 =$	75%			
Test for overall effect: $Z = 2.7$	$^{\prime}4 (P = 0.006)$)					
1.6.2 DIE ve control							
Mathim 12010 at al 2010	2	12	20	157	2 70/	1 41 [0 26 5 52]	
	3	12	30	15/	5.7%	1.41 [0.36, 5.53]	
Santulli et.al 2016	78	287	18/	964	/3.2%	1.55 [1.14, 2.10]	
Schwartz et al 2017	20	59	59	268	18.2%	1.82 [0.99, 3.35]	
Sharma et al 2020	3	18	21	122	3.9%	0.96 [0.26, 3.62]	
Vaz et al 2017	1	6	2	12	1.0%	1.00 [0.07, 13.87]	
Subtotal (95% CI)		382		1525	100.0%	1.55 [1.20, 2.02]	•
Total events	105		299				
Heterogeneity: $tau^2 = 0.00$; c	$hi^2 = 0.88, df$	= 4 (P = 0)	$(0.93); I^2 =$	0%			
Test for overall effect: $Z = 5.3$	P = 0.000	9)					
1.6.4 unresected OMA vs con	ntrol						
Guo et.al 2016	2	20	14	136	7.6%	0.97 [0.20, 4.62]	
kuroda et.al 2009	1	6	2	7	2.5%	0.50 [0.03, 7.45]	
Olivennes et.al 1995	1	32	6	57	3.9%	0.27 [0.03, 2.39]	
Pabuccu et al 2004	1	8	1	14	2.2%	1.86 [0.10, 34.44]	
Schwartz et al 2017	22	77	59	268	56.2%	1.42 [0.80, 2.51]	
Sharma et al 2020	11	51	21	122	27.7%	1.32 [0.58, 2.99]	
Subtotal (95% CI)		194		604	100.0%	1.24 [0.81, 1.91]	•
Total events	38		103				
Heterogeneity: $tau^2 = 0.00$; cl	hi ² = 2.73, df	= 5 (P =	0.74 ; $I^2 =$	0%			
Test for overall effect: $Z = 0.9$	98 (<i>P</i> = 0.32)						
						1	
						0.01	0.1 1 10 1
Test for subgroup differences	s: $chi^2 = 2.24$,	, df = 3 (I	P = 0.52), I	$2^2 = 0\%$		Favo	urs [experimental] Favours [control]

FIGURE 9: Miscarriage risk in women with resected OMA, unresected OMA, DIE, and SUP.

between women with EMS and tubal infertility during ART (OR: 1.09, 95% CI: 0.94-1.26, $I^2 = 7\%$) (Figure 8).

Compared with women without EMS, women with DIE (OR: 1.55, 95% CI: 1.20-2.02, $I^2 = 0\%$) and women with SUP (OR: 2.01, 95% CI: 1.22-3.31, $I^2 = 75\%$) had a higher miscarriage risk, while resected OMA (OR: 1.40, 95% CI: 0.93-2.12, $I^2 = 0\%$) and unresected OMA (OR: 1.24, 95% CI: 0.81-1.91, $I^2 = 0\%$) both had a similar miscarriage risk (Figure 9). Compared with those with tubal infertility, who underwent ART, women with EMS I/II (OR: 1.27, 95% CI: 0.99-1.62, $I^2 = 0\%$) and women with EMS III/IV (OR: 1.28, 95% CI: 0.95-1.74, $I^2 = 0\%$) had a similar miscarriage risk, respectively. Compared with those without EMS, who conceived spontaneously, women with EMS I/II (OR: 1.68, 95% CI: 1.20-2.35, 1 study) and women with EMS III/IV (OR: 1.72, 95% CI: 1.26-2.34, 1 study) had a higher miscarriage

risk, respectively. There was no significant difference observed in miscarriage risk when EMS I/II was compared with EMS III/IV (OR: 1.13, 95% CI: 0.87-1.47, $I^2 = 0\%$) (Figure 10). Compared to those without EMS, women with EMS had a higher risk in early abortion (at <12 weeks) (OR: 1.69, 95% CI: 1.16-2.47, $I^2 = 67\%$), while late abortion risk (at ≥12 weeks) (OR: 2.00, 95% CI: 0.76-5.25, $I^2 = 0\%$) was similar in women with or without EMS. In addition, early abortion risk was higher than late abortion risk in women with EMS (OR: 15.87, 95% CI: 8.12-31.03, $I^2 = 0\%$) (Figure 11). A subgroup analysis for early abortion and late abortion in AD was not feasible, because there were insufficient data stratified by week of miscarriage.

Since there were less than 10 studies presenting the association between AD and miscarriage, the funnel plot was not conducted for publication bias. Furthermore, the funnel plot

Study or subgroup	Experimental (trol	Weight	Odds ratio		(Odds ratio	atio	
orady of subgroup	Events	Total	Events	Total	weight	M-H, Fixed, 95% C	I	M-H,	Fixed, 95% CI		
1.9.1 EMS I/II vs tubal											
Arici et al 1996	2	5	9	35	1.2%	1.93 [0.28, 13.44]				_	
Curtis et al 1993	2	5	5	35	0.7%	4.00 [0.53, 30.28]					
Kuivasaari et al 2005	4	20	20	60	7.2%	0.50 [0.15, 1.69]					
Olivennes et.al 1995	6	43	6	57	4.0%	1.38 [0.41, 4.61]			_ 		
Omland et.al 2005	69	212	163	540	55.8%	1.12 [0.79, 1.57]			-		
Opoien et al 2012	49	261	51	406	29.2%	1.61 [1.05, 2.47]					
Polat et.al 2014	3	25	3	39	1.9%	1.64 [0.30, 8.83]				-	
Subtotal (95% CI)		571		1172	100.0%	1.27 [0.99, 1.62]			•		
Total events	135		257								
Heterogeneity: chi ² = 5.49,	df = 6 (P = 0)	0.48); <i>I</i> ² =	= 0%								
Test for overall effect: $Z =$	1.87 (P = 0.0	6)									
1.9.2 EMS III/IV vs tubal											
Arici et al 1996	3	7	9	35	2.4%	2.17 [0.40, 11.60]				_	
Curtis et al 1993	1	8	5	35	2.3%	0.86 [0.09, 8.54]			-	-	
Guo et.al 2016	19	117	14	136	15.2%	1.69 [0.81, 3.54]			+		
Kim et al 2011	1	6	1	10	0.9%	1.80 [0.09, 35.42]					
Kuivasaari et al 2005	7	30	20	60	14.3%	0.61 [0.22, 1.66]					
Matalliotakis et al 2007	9	46	17	81	13.9%	0.92 [0.37, 2.26]		-			
Olivennes et.al 1995	1	5	6	57	1.1%	2.13 [0.20, 22.26]					
Opoien et al 2012	20	115	51	406	26.0%	1.47 [0.83, 2.58]			+		
Polat et.al 2014	15	113	3	39	5.4%	1.84 [0.50, 6.72]					
Sharma et al 2020	16	80	21	122	18.6%	1.20 [0.58, 2.47]					
Subtotal (95% CI)		527		981	100.0%	1.28 [0.95, 1.74]			•		
Total events	92		147								
Heterogeneity: chi ² = 4.45,	df = 9 (P = 0)	0.88); I ² =	= 0%								
Test for overall effect: $Z =$	1.61 (P = 0.1)	1)									
1.9.3 EMS I/II vs III/IV											
Arici et al 1996	2	5	3	7	1.4%	0.89 [0.09, 9.16]			-	-	
Curtis et al 1993	2	5	1	8	0.4%	4.67 [0.30, 73.38]					
Kuivasaari et al 2005	4	20	7	30	4.2%	0.82 [0.21, 3.28]			-		
Olivennes et.al 1995	6	43	1	5	1.5%	0.65 [0.06, 6.84]					
Opoien et al 2012	49	261	20	115	21.3%	1.10 [0.62, 1.95]					
Polat et.al 2014	3	25	15	113	4.5%	0.89 [0.24, 3.35]		_	-		
Santulli et.al 2016	62	215	77	263	46.6%	0.98 [0.66, 1.46]					
Schwartz et al 2017	45	107	41	133	20.0%	1.63 [0.96, 2.77]					
Subtotal (95% CI)		681		674	100.0%	1.13 [0.87, 1.47]			•		
Total events	173		165								
Heterogeneity: chi ² = 3.93,	df = 7 (P = 0)	0.79); <i>I</i> ² =	= 0%								
Test for overall effect: $Z = 0$	0.94 (P = 0.3)	5)									
							I				
							0.01	0.1	1	10	100
Test for subgroup differen	ces: $chi^2 = 0$.	50, df = 2	P = 0.78), <i>I</i> ² = 09	%		Favou	rs [experime	ntal] Favours	s [contro	ol]

FIGURE 10: Miscarriage risk in EMS I/II and EMS III/IV.

was made to describe the miscarriage risk in women with EMS (Figure 12), which was generally in symmetry, with the Begg's test (P = 0.301) and Egger's test (P = 0.942) implying no publication bias.

Women with EMS were not found to be associated with low birthweight (OR: 1.32, 95% CI: 0.98-1.77, $I^2 = 78\%$), placental abruption (OR: 1.90, 95% CI: 0.26-13.76, $I^2 = 51\%$), IUGR (OR: 1.54, 95% CI: 0.71-3.31, $I^2 = 26\%$), and preeclampsia (OR: 1.91, 95% CI: 0.98-3.73, $I^2 = 0\%$) (Figure 13). Compared to those without EMS, women with EMS had higher odds of APH (OR: 1.49, 95% CI: 1.26-1.76, $I^2 = 0\%$), PPH (OR: 1.76, 95% CI: 1.59-1.95, $I^2 = 0\%$), and preterm birth (OR: 1.54, 95% CI: 1.26-1.87, $I^2 = 55\%$) (Figure 14). Women with EMS were more likely to have placenta praevia (OR: 2.09, 95% CI: 1.48-2.96, $I^2 = 0\%$) and stillbirth (OR: 1.41, 95% CI: 1.19-1.68, $I^2 = 0\%$) compared to women without EMS, while no difference was observed in gestational diabetes (OR: 1.24, 95% CI: 0.71-2.14, $I^2 = 32\%$) and ectopic pregnancy (OR: 0.77, 95% CI: 0.38-1.58, $I^2 = 97\%$) (Figure 15).

4. Discussion

The present study revealed that EMS is correlated to increased miscarriage risk in pregnant women with SC, while women with EMS had a similar miscarriage risk when compared to those with tubal infertility, who underwent ART. At the same time, an increased miscarriage risk was observed in women with EMS during ART/SC, when compared to those without EMS [50]. No difference was observed in women with or without EMS, who underwent IVF/ICSI [6]. As it is known, EMS was defined as the endometrium outside the uterus, which has major effects

Study or subgroup	Experi	mental	Con	trol	Weight	Odds ratio		Od	lds ratio	
Study of subgroup	Events	Total	Events	Total	weight	M-H, Random, 95%	CI	M-H, R	andom, 95% CI	
1.4.1 ≤12weeks										
Bahceci et al 2005	11	46	20	114	12.7%	1.48 [0.64, 3.39]			+	
Guo et.al 2016	19	117	14	136	14.6%	1.69 [0.81, 3.54]			+	
Omland et.al 2005	65	212	158	540	25.9%	1.07 [0.76, 1.51]			+	
Pittaway et.al 1988	51	157	18	150	18.2%	3.53 [1.95, 6.40]				
Santulli et.al 2016	139	478	187	964	28.7%	1.70 [1.32, 2.20]			-	
Subtotal (95% CI)		1010		1904	100.0%	1.69 [1.16, 2.47]			•	
Total events	285		397							
Heterogeneity: tau ² =	0.11; chi ²	= 12.30,	df = 4 (1)	P = 0.02	2); $I^2 = 67$	%				
Test for overall effect:	Z = 2.72 ((P = 0.00)	06)							
1.4.2 >12weeks										
Omland et.al 2005	4	212	5	540	52.9%	2.06 [0.55, 7.74]				
Pittaway et.al 1988	6	157	3	150	47.1%	1.95 [0.48, 7.93]				
Subtotal (95% CI)		369		690	100.0%	2.00 [0.76, 5.25]				
Total events	10		8							
Heterogeneity: $tau^2 =$	0.00; chi ²	= 0.00, a	df = 1 (P	= 0.96)	; $I^2 = 0\%$					
Test for overall effect:	Z = 1.41 ((P = 0.1)	5)							
1.4.3 ≤ 12weeks VS >1	2weeks									
Omland et.al 2005	65	212	4	212	42.2%	22.99 [8.20, 64.50]				
Pittaway et.al 1988	51	157	6	157	57.8%	12.11 [5.01, 29.24]				_
Subtotal (95% CI)		369		369	100.0%	15.87 [8.12, 31.03]			-	
Total events	116		10							
Heterogeneity: tau ² =	0.00; chi ²	= 0.87, 0	df = 1 (P	= 0.35)	; $I^2 = 0\%$					
Test for overall effect:	Z = 8.09 ((P < 0.00)	0001)`							
							H			
							0.01	0.1	1 10	100
Test for subgroup diffe	erences: c	hi ² = 33.	.05, df = 2	2 (P < 0)).00001), j	I ² = 93.9%	Favours	[experime	ntal] Favours [co	ontrol]

FIGURE 11: Early abortion and late abortion in women with EMS.

FIGURE 12: Funnel plot of miscarriage risk in women with EMS.

FIGURE 13: Low birthweight, preeclampsia, IUGR, and placental abruption in women with EMS.

on the pelvic environment. The potential explanation might be that EMS generates major effects on the process of fertilization. Therefore, EMS has less impact on women using ART, whose site of fertilization is not in the pelvis. Among women who underwent ART, AD was found to be associated with miscarriage, which is consistent with some literatures [5, 51]. Adenomyosis is identified by ingrowth of the endometrial tissue into the myometrium, which may have a major impact on intrauterine embryos in women using ART.

The sensitivity analyses of miscarriage risk in EMS or AD were both consistent with the whole conclusion, which proves the stability and reliability of the pooled results. In the subgroup analysis, AD was found to be associated with miscarriage in the retrospective cohort study. The findings in the retrospective cohort study, prospective cohort study, and RCT for women with EMS concurred with the overall results, implying the augmented miscarriage risk in women with SC and a similar miscarriage risk in women who underwent ART. Similarly, among women whose EMS was diagnosed by laparoscopy, it was found that there was a similar miscarriage risk in women during ART and an increased miscarriage risk in women who conceived spontaneously. As it is known, the major indications of ART were various factors of infertility. The risk of spontaneous abortion might be affected by different factors of infertility and not ascribed to EMS or AD alone. In the present included studies, some publications included purely endometriosis-associated infertility or purely adenomyosis-associated infertility in the study group. Among the other studies, adjustments were made for patients with other factors of infertility between the two groups. Therefore, the robustness of the present finding was proven, indicating that women who suffer from EMS in SC or AD during ART should be included among those who may need closer prenatal monitoring and follow-up to prevent miscarriage.

The present study demonstrated that compared with women with tubal infertility during ART, women with EMS I/II or EMS III/IV had a similar miscarriage risk, respectively. However, one included study revealed that women with EMS I/II or EMS III/IV had a higher miscarriage risk in SC, when compared with those without EMS, separately. It was reported that there was no obvious difference observed in miscarriage risk when 238 women with EMS III/IV were compared with 439 women with stage I/II EMS during

Ctur las en cultantes en	EM	EMS		Control		Odds ratio	Odds ratio
Study or subgroup	Events	Total	Events	Total	weight	M-H, Random, 95% CI	M-H, Random, 95% CI
1.24.1 APH							
Saraswat et.al 2016	270	5375	281	8280	94.1%	1.51 [1.27, 1.79]	
Sharma et al 2020	9	64	11	101	3.1%	1.34 [0.52, 3.44]	
Sharma et.al 2019	8	111	9	140	2.8%	1.13 [0.42, 3.03]	
Subtotal (95% CI)		5550		8521	100.0%	1.49 [1.26, 1.76]	•
Total events	287		301				
Heterogeneity: $tau^2 = 0$	$0.00; chi^2 = 0$.36, df = 2	2(P = 0.83)); $I^2 = 0\%$			
Test for overall effect:	$Z = 4.71 \ (P < $	0.00001)					
1.24.2 PPH							
Porpora et al 2020	4	145	3	280	0.5%	2.62 [0.58, 11.86]	
Saraswat et.al 2016	844	5375	786	8280	97.0%	1.78 [1.60, 1.97]	
Sharma et al 2020	8	64	9	101	1.0%	1.46 [0.53, 4.00]	
Sharma et.al 2019	11	111	13	140	1.5%	1.07 [0.46, 2.50]	
Subtotal (95% CI)		5695		8801	100.0%	1.76 [1.59, 1.95]	•
Total events	867		811				
Heterogeneity: $tau^2 = 0$	$0.00; chi^2 = 1$.74, df = 3	3 (P = 0.63)); $I^2 = 0\%$			
Test for overall effect:	Z = 10.85 (P	< 0.00001)				
1.24.3 preterm birth							
Farland et al 2019	748	6236	11708	145000	45.7%	1.55 [1.43, 1.68]	
Mekaru et.al 2014	3	49	4	59	1.6%	0.90 [0.19, 4.21]	
Porpora et al 2020	29	145	21	280	8.8%	3.08 [1.69, 5.63]	
Saraswat et.al 2016	321	5375	388	8280	38.1%	1.29 [1.11, 1.50]	
Sharma et al 2020	2	64	3	101	1.2%	1.05 [0.17, 6.49]	
Sharma et.al 2019	14	111	9	140	4.6%	2.10 [0.87, 5.05]	
Subtotal (95% CI)		11980		153860	100.0%	1.54 [1.26, 1.87]	•
Total events	1117		12133				
Heterogeneity: $tau^2 = 0$	$0.02; chi^2 = 1$	1.03, df =	5 (P = 0.0)	5); $I^2 = 55^{\circ}$	%		
Test for overall effect:	Z = 4.27 (P <	0.0001)					
							F F F F F
							0.01 0.1 1 10 10
Test for subgroup diffe	rences: chi ²	= 3.56, df	f = 2 (P = 0)	$(.17), I^2 = 4$	3.8%		Favours [EMS] Favours [control]

FIGURE 14: APH, PPH, and preterm birth in women with EMS.

ART [52]. At the same time, a similar miscarriage risk was observed between 674 women with stage III/IV EMS and 681 women with EMS I/II. In addition, the early and late stages of EMS were observed to share similar epidemiological characteristics, suggesting an epidemiological (and pathogenetic) continuum between different stages of EMS [53]. The present results imply that with the increase in staging of EMS, miscarriage risk appeared not to show significant differences. In the present included papers, unresected and resected OMA were both not found to be associated with miscarriage. At the same time, the surgical and expectant management of OMA in infertile women prior to ART did not show significant differences in miscarriage risk, suggesting that OMA might not be the main causative factor of spontaneous abortion [54]. Therefore, there might be a lack of sufficient evidence to remove OMA before pregnancy. It is recommended to adopt a conservative treatment plan in the long-term management of OMA. Furthermore, it was revealed that DIE was associated with miscarriage and that women with SUP had a higher miscarriage risk. However, the surgical excision of the DIE did not significantly decrease the incidence of miscarriage [55, 56]. In addition, in the following laparoscopic surgery for SUP, the diminished ovarian reserve resulted in the adverse prognosis for pregnancy [57]. Considering the lack of number of studies and sample size, the observation should be cautiously interpreted. Larger high-quality studies are expected to verify these present results in the future.

A systematic review considered that in the second half of pregnancy, the EMS appeared not to have negative effects on pregnancy outcomes [58]. In the present study, compared with those without EMS, women with EMS had a higher early abortion risk, while late abortion risk was similar in women with or without EMS. In addition, women with EMS had a higher early abortion risk (at <12weeks) than late abortion risk (at \geq 12 weeks). It was revealed that women with EMS appeared to be associated with first-trimester spontaneous abortion [59]. The limited data available for analysis should be highlighted. Future studies are required to determine whether women with EMS are more likely to have early pregnancy loss.

The pathophysiology of EMS and AD remains poorly understood. However, growing studies have suggested that oxidative stress, inflammation factors/cytokines, angiogenesis,

FIGURE 15: Ectopic pregnancy, stillbirth, gestational diabetes, and placenta praevia in women with EMS.

and hormonal interactions play major roles in EMS [60–63]. Meanwhile, sex hormone receptors, junctional zone disruption, and inflammatory factors are considered the causal factors for AD [64, 65]. It has been reported that an increased expression level of nitric oxide species (eNOS) and reactive oxygen species (ROS) in oxidative stress can influence the oocyte and embryo quality, which leads to declined embryo implantation rate in EMS patients [61]. It was reported that attenuated progesterone action might be the basis for the implantation failure in EMS [66]. Vascularization was considered a major pathogenesis in EMS. Proper endometrial vascular development was considered crucial for successful embryo implantation. However, abnormal angiogenesis and uterine natural killer cell (uNK cell) number/function might result in reproductive failure [64]. Disturbances in vascular development might be a causal factor in spontaneous abortion. In addition, it was reported that an increased number of CD56+ uNK cells were detected in the peri-implantation endometrium from women with recurrent miscarriage [67]. It was interesting that the EMS and AD frequently coexisted [68, 69]. The presence of oxidative stress and anomalies in free-radical metabolism might alter the uterine receptivity in EMS and AD. The abnormal endometrial milieu and endometrial dysfunction in EMS and AD contributed to the adverse pregnancy outcome through hormonal, metabolic, and inflammatory mechanisms [70]. Among these theories, inflammatory mechanisms were considered more relevant in EMS and AD. Overall, further researches are required to

confirm the biochemical links between EMS and AD and miscarriage to develop preventive measures.

The present study had several strengths. A large amount of studies had allowed for the subgroup analyses to prove the robustness of the results, and subgroup analyses were carried out to evaluate the miscarriage risk by week of pregnancy loss, which has not yet been reported in prior literatures [71]. In addition to reporting the miscarriage risk in women with EMS, the investigators also reported some important reproductive outcomes that were not presented in previous reviews [50], such as ectopic pregnancy. The limitations of the present study were affected by the quality of each of the included studies and the heterogeneity of the overall eligible publications. Since the diagnostic methods were not restricted, the diagnoses of EMS or AD were not uniform between studies. The included studies differed in the selection of control groups with the use of fertility women and subfertility women as the controls. One potential limitation was that unpublished studies were not searched, which might limit the comprehensiveness of retrieved literatures. In addition, since the articles that reported positive results were more likely to be published, the present study had a potential risk of reporting bias.

5. Conclusions

Women with EMS have an augmented miscarriage risk, when compared to those without EMS in SC, and women with EMS have a similar miscarriage risk, when compared to those with tubal infertility during ART. Meanwhile, it is found that women with EMS have higher odds of early abortion (<12 weeks). Miscarriage risk increases in women with AD using ART. With the increase in staging of EMS, miscarriage risk appears not to show significant differences. Women with SUP and DIE have an increased miscarriage risk, respectively, while unresected and resected OMA are both not observed to be associated with miscarriage. These present findings suggest that pregnant women with EMS in SC or AD during ART may require closer prenatal monitoring and follow-ups to prevent miscarriage, especially in the first trimester (<12 weeks). Furthermore, a consensus on its accurate recording is required in future studies, including the types and stages of EMS and week of miscarriage.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

All authors declare no conflict of interest.

Acknowledgments

This study was supported by the Second Affiliated Hospital of Guangzhou University of Chinese Medicine [2017] (No. 18-ml015); the National Natural Science Foundation of China (81574008); the Science and Technology Project of Guangdong Science Academy of Chinese Medicine 2017 [81] (YN2016ML05); the Special Clinical Research Project of Guangdong Hospital of Traditional Chinese Medicine (No. YN10101902); the Guangzhou University of Chinese Medicine (No. [2020]62); and the Special Funds for Construction of National and Regional TCM in Diagnosis and Treatment Centers (Letter of the State Administration of Traditional Chinese Medicine (No. [2018]205) from the Department of Surgery in Guangdong Hospital of Traditional Chinese Medicine).

References

- P. Parasar, P. Ozcan, and K. L. Terry, "Endometriosis: epidemiology, diagnosis and clinical management," *Current Obstetrics and Gynecology Reports*, vol. 6, no. 1, pp. 34–41, 2017.
- [2] M. L. Macer and H. S. Taylor, "Endometriosis and infertility: a review of the pathogenesis and treatment of endometriosisassociated infertility," *Obstetrics and Gynecology Clinics of North America*, vol. 39, no. 4, pp. 535–549, 2012.
- [3] G. Benagiano, I. Brosens, and M. Habiba, "Structural and molecular features of the endomyometrium in endometriosis and adenomyosis," *Human Reproduction Update*, vol. 20, no. 3, pp. 386–402, 2014.
- [4] J. Naftalin, W. Hoo, K. Pateman, D. Mavrelos, T. Holland, and D. Jurkovic, "How common is adenomyosis? A prospective study of prevalence using transvaginal ultrasound in a gynaecology clinic," *Human Reproduction (Oxford, England)*, vol. 27, no. 12, pp. 3432–3439, 2012.
- [5] J. Horton, M. Sterrenburg, S. Lane, A. Maheshwari, T. C. Li, and Y. Cheong, "Reproductive, obstetric, and perinatal outcomes of women with adenomyosis and endometriosis: a systematic review and meta-analysis," *Human Reproduction Update*, vol. 25, no. 5, pp. 592–632, 2019.
- [6] M. Hamdan, S. Z. Omar, G. Dunselman, and Y. Cheong, "Influence of endometriosis on assisted reproductive technology outcomes: a systematic review and meta-analysis," *Obstetrics and Gynecology*, vol. 125, no. 1, pp. 79–88, 2015.
- [7] Higgins JPT GSe, Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [Updated March 2011], The Cochrane Collaboration, 2011, http://handbook.cochrane.org.
- [8] R. DerSimonian and N. Laird, "Meta-analysis in clinical trials," *Controlled Clinical Trials*, vol. 7, no. 3, pp. 177–188, 1986.
- [9] M. Egger, G. D. Smith, M. Schneider, and C. Minder, "Bias in meta-analysis detected by a simple, graphical test," *BMJ*, vol. 315, no. 7109, pp. 629–634, 1997.
- [10] D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, "Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement," *International Journal of Surgery*, vol. 8, no. 5, pp. 336–341, 2010.
- [11] D. E. Pittaway, C. Vernon, and J. A. Fayez, "Spontaneous abortions in women with endometriosis," *Fertility and Sterility*, vol. 50, no. 5, pp. 711–715, 1988.
- [12] P. Curtis, A. Jackson, A. Bernard, and R. W. Shaw, "Pretreatment with gonadotrophin releasing hormone (GnRH) analogue prior to in vitro fertilisation for patients with endometriosis," *European Journal of Obstetrics, Gynecology, and Reproductive Biology*, vol. 52, no. 3, pp. 211–216, 1993.
- [13] S. Geber, T. Paraschos, G. Atkinson, R. Margara, and R. M. L. Winston, "Results of IVF in patients with endometriosis: the severity of the disease does not affect outcome, or the incidence

of miscarriage," Human Reproduction (Oxford, England), vol. 10, no. 6, pp. 1507–1511, 1995.

- [14] F. Olivennes, D. Feldberg, H. C. Liu, J. Cohen, F. Moy, and Z. Rosenwaks, "Endometriosis: a stage by stage analysis-the role of in vitro fertilization," *Fertility and Sterility*, vol. 64, no. 2, pp. 392–398, 1995.
- [15] A. Arici, E. Oral, O. Bukulmez, A. Duleba, D. L. Olive, and E. E. Jones, "The effect of endometriosis on implantation: results from the Yale University in vitro fertilization and embryo transfer program," *Fertility and Sterility*, vol. 65, no. 3, pp. 603–607, 1996.
- [16] R. Pabuccu, G. Onalan, U. Goktolga, T. Kucuk, E. Orhon, and T. Ceyhan, "Aspiration of ovarian endometriomas before intracytoplasmic sperm injection," *Fertility and Sterility*, vol. 82, no. 3, pp. 705–711, 2004.
- [17] M. Bahceci and U. Ulug, "Does underlying infertility aetiology impact on first trimester miscarriage rate following ICSI? A preliminary report from 1244 singleton gestations," *Human Reproduction (Oxford, England)*, vol. 20, no. 3, pp. 717–721, 2005.
- [18] P. Kuivasaari, M. Hippeläinen, M. Anttila, and S. Heinonen, "Effect of endometriosis on IVF/ICSI outcome: stage III/IV endometriosis worsens cumulative pregnancy and live-born rates," *Human Reproduction (Oxford, England)*, vol. 20, no. 11, pp. 3130–3135, 2005.
- [19] A. K. Omland, T. Åbyholm, P. Fedorcsák et al., "Pregnancy outcome after IVF and ICSI in unexplained, endometriosisassociated and tubal factor infertility," *Human Reproduction* (*Oxford, England*), vol. 20, no. 3, pp. 722–727, 2005.
- [20] I. Esinler, G. Bozdag, F. Aybar, U. Bayar, and H. Yarali, "Outcome of in vitro fertilization/intracytoplasmic sperm injection after laparoscopic cystectomy for endometriomas," *Fertility and Sterility*, vol. 85, no. 6, pp. 1730–1735, 2006.
- [21] I. M. Matalliotakis, H. Cakmak, N. Mahutte, Y. Fragouli, A. Arici, and D. Sakkas, "Women with advanced-stage endometriosis and previous surgery respond less well to gonadotropin stimulation, but have similar IVF implantation and delivery rates compared with women with tubal factor infertility," *Fertility and Sterility*, vol. 88, no. 6, pp. 1568–1572, 2007.
- [22] K. Kuroda, M. Kitade, I. Kikuchi et al., "The impact of endometriosis, endometrioma and ovarian cystectomy on assisted reproductive technology," *Reproductive Medicine and Biology*, vol. 8, no. 3, pp. 113–118, 2009.
- [23] E. Mathieu d'Argent, C. Coutant, M. Ballester et al., "Results of first in vitro fertilization cycle in women with colorectal endometriosis compared with those with tubal or male factor infertility," *Fertility and Sterility*, vol. 94, no. 6, pp. 2441–2443, 2010.
- [24] M. F. Costello, K. Lindsay, and G. McNally, "The effect of adenomyosis on in vitro fertilisation and intra-cytoplasmic sperm injection treatment outcome," *European Journal of Obstetrics, Gynecology, and Reproductive Biology*, vol. 158, no. 2, pp. 229– 234, 2011.
- [25] C. H. Kim, J. W. Ahn, S. H. Kim, H. D. Chae, and B. M. Kang, "Effects on in vitro fertilization-embryo transfer outcomes of vascular endothelial growth factor receptor-1, -2 and -3 in eutopic endometrial tissue of women with endometriosis," *The Journal of Obstetrics and Gynaecology Research*, vol. 37, no. 11, pp. 1631–1637, 2011.
- [26] J. A. Martínez-Conejero, M. Morgan, M. Montesinos et al., "Adenomyosis does not affect implantation, but is associated

with miscarriage in patients undergoing oocyte donation," *Fertility and Sterility*, vol. 96, no. 4, pp. 943–950.e1, 2011.

- [27] H. K. Opøien, P. Fedorcsak, A. K. Omland et al., "In vitro fertilization is a successful treatment in endometriosis-associated infertility," *Fertility and Sterility*, vol. 97, no. 4, pp. 912–918, 2012.
- [28] R. Salim, S. Riris, W. Saab, B. Abramov, I. Khadum, and P. Serhal, "Adenomyosis reduces pregnancy rates in infertile women undergoing IVF," *Reproductive Biomedicine Online*, vol. 25, no. 3, pp. 273–277, 2012.
- [29] L. Benaglia, L. Cardellicchio, M. Leonardi et al., "Asymptomatic adenomyosis and embryo implantation in IVF cycles," *Reproductive Biomedicine Online*, vol. 29, no. 5, pp. 606–611, 2014.
- [30] M. V. Hjordt Hansen, T. Dalsgaard, D. Hartwell, C. W. Skovlund, and Ø. Lidegaard, "Reproductive prognosis in endometriosis. A national cohort study," *Acta Obstetricia et Gynecologica Scandinavica*, vol. 93, no. 5, pp. 483–489, 2014.
- [31] K. Mekaru, H. Masamoto, H. Sugiyama et al., "Endometriosis and pregnancy outcome: are pregnancies complicated by endometriosis a high-risk group?," *European Journal of Obstetrics, Gynecology, and Reproductive Biology*, vol. 172, pp. 36–39, 2014.
- [32] M. Polat, F. K. Boynukalın, İ. Yaralı, İ. Esinler, and H. Yaralı, "Endometriosis is not associated with inferior pregnancy rates in in vitro fertilization: an analysis of 616 patients," *Gynecologic and Obstetric Investigation*, vol. 78, no. 1, pp. 59–64, 2014.
- [33] S. Pop-Trajkovic, V. Kopitovic, J. Popovic, V. Antic, D. Radovic, and R. Zivadinovic, "In vitro fertilization outcome in women with endometriosis & amp; previous ovarian surgery," *The Indian Journal of Medical Research*, vol. 140, no. 3, pp. 387–391, 2014.
- [34] L. Yan, L. Ding, R. Tang, and Z. J. Chen, "Effect of adenomyosis on in vitro fertilization/intracytoplasmic sperm injection outcomes in infertile women: a retrospective cohort study," *Gynecologic and Obstetric Investigation*, vol. 77, no. 1, pp. 14–18, 2014.
- [35] H. Guo, Y. Wang, Q. Chen, W. Chai, Q. Lv, and Y. Kuang, "Effect of natural cycle endometrial preparation for frozenthawed embryo transfer in patients with advanced endometriosis," *Medical Science Monitor*, vol. 22, pp. 4596–4603, 2016.
- [36] P. Santulli, L. Marcellin, S. Menard et al., "Increased rate of spontaneous miscarriages in endometriosis-affected women," *Human Reproduction (Oxford, England)*, vol. 31, no. 5, pp. 1014–1023, 2016.
- [37] S. Senapati, M. D. Sammel, C. Morse, and K. T. Barnhart, "Impact of endometriosis on in vitro fertilization outcomes: an evaluation of the Society for Assisted Reproductive Technologies Database," *Fertility and Sterility*, vol. 106, no. 1, pp. 164–71.e1, 2016.
- [38] A. K. Singh, R. Chattopadhyay, B. Chakravarty, and K. Chaudhury, "Altered circulating levels of matrix metalloproteinases 2 and 9 and their inhibitors and effect of progesterone supplementation in women with endometriosis undergoing in vitro fertilization," *Fertility and Sterility*, vol. 100, no. 1, pp. 127–34.e1, 2013.
- [39] G. Queiroz Vaz, A. V. Evangelista, M. C. Almeida Cardoso, P. Gallo, M. C. Erthal, and M. A. Pinho Oliveira, "Frozen embryo transfer cycles in women with deep endometriosis," *Gynecological Endocrinology*, vol. 33, no. 7, pp. 540–543, 2017.

- [40] L. Saraswat, D. T. Ayansina, K. G. Cooper et al., "Pregnancy outcomes in women with endometriosis: a national record linkage study," *BJOG: An International Journal of Obstetrics* & *Gynaecology*, vol. 124, no. 3, pp. 444–452, 2016.
- [41] A. Hashimoto, T. Iriyama, S. Sayama et al., "Adenomyosis and adverse perinatal outcomes: increased risk of second trimester miscarriage, preeclampsia, and placental malposition," *The Journal of Maternal-Fetal & Neonatal Medicine*, vol. 31, no. 3, pp. 364–369, 2018.
- [42] L. V. Farland, J. Prescott, N. Sasamoto et al., "Endometriosis and risk of adverse pregnancy outcomes," *Obstetrics and Gynecology*, vol. 134, no. 3, pp. 527–536, 2019.
- [43] S. Sharma, S. Bathwal, N. Agarwal, R. Chattopadhyay, I. Saha, and B. Chakravarty, "Does presence of adenomyosis affect reproductive outcome in IVF cycles? A retrospective analysis of 973 patients," *Reproductive Biomedicine Online*, vol. 38, no. 1, pp. 13–21, 2019.
- [44] M. G. Porpora, F. Tomao, A. Ticino et al., "Endometriosis and pregnancy: a single institution experience," *International Journal of Environmental Research and Public Health*, vol. 17, no. 2, p. 401, 2020.
- [45] S. Sharma, S. RoyChoudhury, S. Bathwal et al., "Pregnancy and live birth rates are comparable in young infertile women presenting with severe endometriosis and tubal infertility," *Reproductive Sciences*, vol. 27, no. 6, pp. 1340–1349, 2020.
- [46] A. Bergendal, S. Naffah, C. Nagy, A. Bergqvist, P. Sjöblom, and T. Hillensjö, "Outcome of IVF in patients with endometriosis in comparison with tubal-factor infertility," *Journal of Assisted Reproduction and Genetics*, vol. 15, no. 9, pp. 530–534, 1998.
- [47] A. S. Kohl Schwartz, M. M. Wölfler, V. Mitter et al., "Endometriosis, especially mild disease: a risk factor for miscarriages," *Fertility and Sterility*, vol. 108, no. 5, pp. 806–814.e2, 2017.
- [48] H. S. Youm, Y. S. Choi, and H. D. Han, "In vitro fertilization and embryo transfer outcomes in relation to myometrial thickness," *Journal of Assisted Reproduction and Genetics*, vol. 28, no. 11, pp. 1135–1140, 2011.
- [49] V. Thalluri and K. P. Tremellen, "Ultrasound diagnosed adenomyosis has a negative impact on successful implantation following GnRH antagonist IVF treatment," *Human Reproduction (Oxford, England)*, vol. 27, no. 12, pp. 3487–3492, 2012.
- [50] F. Zullo, E. Spagnolo, G. Saccone et al., "Endometriosis and obstetrics complications: a systematic review and meta-analysis," *Fertility and Sterility*, vol. 108, no. 4, pp. 667–72.e5, 2017.
- [51] G. Younes and T. Tulandi, "Effects of adenomyosis on in vitro fertilization treatment outcomes: a meta-analysis," *Fertility* and Sterility, vol. 108, no. 3, pp. 483–90.e3, 2017.
- [52] M. A. Barbosa, D. M. Teixeira, P. A. Navarro, R. A. Ferriani, C. O. Nastri, and W. P. Martins, "Impact of endometriosis and its staging on assisted reproduction outcome: systematic review and meta-analysis," *Ultrasound in Obstetrics & Gynecology*, vol. 44, no. 3, pp. 261–278, 2014.
- [53] F. Parazzini, M. Ferraroni, L. Fedele, L. Bocciolone, S. Rubessa, and A. Riccardi, "Pelvic endometriosis: reproductive and menstrual risk factors at different stages in Lombardy, northern Italy," *Journal of Epidemiology and Community Health*, vol. 49, no. 1, pp. 61–64, 1995.
- [54] C. Q. Wu, A. Albert, S. Alfaraj et al., "Live birth rate after surgical and expectant management of endometriomas after in vitro fertilization: a systematic review, meta-analysis, and critical appraisal of current guidelines and previous meta-anal-

yses," *Journal of Minimally Invasive Gynecology*, vol. 26, no. 2, pp. 299–311.e3, 2019.

- [55] U. Leone Roberti Maggiore, C. Scala, E. Tafi et al., "Spontaneous fertility after expectant or surgical management of rectovaginal endometriosis in women with or without ovarian endometrioma: a retrospective analysis," *Fertility and Sterility*, vol. 107, no. 4, pp. 969–976.e5, 2017.
- [56] L. Mounsambote, J. Cohen, S. Bendifallah et al., "Deep infiltrative endometriosis without digestive involvement, what is the impact of surgery on in vitro fertilization outcomes? A retrospective study," *Gynécologie Obstétrique Fertilité & Sénologie*, vol. 45, no. 1, pp. 15–21, 2017.
- [57] J. Boujenah, I. Cedrin-Durnerin, C. Herbemont, C. Sifer, and C. Poncelet, "Non-ART pregnancy predictive factors in infertile patients with peritoneal superficial endometriosis," *European Journal of Obstetrics, Gynecology, and Reproductive Biology*, vol. 211, pp. 182–187, 2017.
- [58] S. Palomba, R. Homburg, S. Santagni, G. B. la Sala, and R. Orvieto, "Risk of adverse pregnancy and perinatal outcomes after high technology infertility treatment: a comprehensive systematic review," *Reproductive Biology and Endocrinology*, vol. 14, no. 1, p. 76, 2016.
- [59] M. Groll, "Endometriosis and spontaneous abortion," *Fertility and Sterility*, vol. 41, no. 6, pp. 933–935, 1984.
- [60] A. Maheshwari, S. Gurunath, F. Fatima, and S. Bhattacharya, "Adenomyosis and subfertility: a systematic review of prevalence, diagnosis, treatment and fertility outcomes," *Human Reproduction Update*, vol. 18, no. 4, pp. 374–392, 2012.
- [61] S. Asghari, A. Valizadeh, L. Aghebati-Maleki, M. Nouri, and M. Yousefi, "Endometriosis: perspective, lights, and shadows of etiology," *Biomedicine & Pharmacotherapy*, vol. 106, pp. 163–174, 2018.
- [62] A. D. Greene, S. A. Lang, J. A. Kendziorski, J. M. Sroga-Rios, T. J. Herzog, and K. A. Burns, "Endometriosis: where are we and where are we going?," *Reproduction*, vol. 152, no. 3, pp. R63–R78, 2016.
- [63] C. Tomassetti, C. Meuleman, A. Pexsters et al., "Endometriosis, recurrent miscarriage and implantation failure: is there an immunological link?," *Reproductive Biomedicine Online*, vol. 13, no. 1, pp. 58–64, 2006.
- [64] X. Chen, G. C. W. Man, Y. Liu et al., "Physiological and pathological angiogenesis in endometrium at the time of embryo implantation," *American Journal of Reproductive Immunology*, vol. 78, no. 2, article e12693, 2017.
- [65] S. Vannuccini and F. Petraglia, "Recent advances in understanding and managing adenomyosis," *F1000Research*, vol. 8, 2019.
- [66] S. Campo, V. Campo, and G. Benagiano, "Infertility and adenomyosis," Obstetrics and Gynecology International, vol. 2012, Article ID 786132, 8 pages, 2012.
- [67] M. W. Laschke and M. D. Menger, "Basic mechanisms of vascularization in endometriosis and their clinical implications," *Human Reproduction Update*, vol. 24, no. 2, pp. 207–224, 2018.
- [68] M. Gonzales, L. A. de Matos, M. O. da Costa Gonçalves et al., "Patients with adenomyosis are more likely to have deep endometriosis," *Gynecological Surgery*, vol. 9, no. 3, pp. 259–264, 2012.
- [69] W. Naphatthalung and S. Cheewadhanaraks, "Prevalence of endometriosis among patients with adenomyosis and/or myoma uteri scheduled for a hysterectomy," *Journal of the*

Medical Association of Thailand, vol. 95, no. 9, pp. 1136–1140, 2012.

- [70] S. Vannuccini, V. L. Clifton, I. S. Fraser et al., "Infertility and reproductive disorders: impact of hormonal and inflammatory mechanisms on pregnancy outcome," *Human Reproduction Update*, vol. 22, no. 1, pp. 104–115, 2016.
- [71] S. Lalani, A. J. Choudhry, B. Firth et al., "Endometriosis and adverse maternal, fetal and neonatal outcomes, a systematic review and meta-analysis," *Human Reproduction (Oxford, England)*, vol. 33, no. 10, pp. 1854–1865, 2018.